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Reducing Switching Activity on Datapath
Buses with Control-Signal Gating
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Abstract—This paper presents a technique for saving power
dissipation in large datapaths by reducing unnecessary switching
activity on buses. The focus of the technique is on achieving
effective power savings with minimal overhead. When a bus is
not going to be used in a datapath, it is held in a quiescent
state by stopping the propagation of switching activity through
the module(s) driving the bus. The “observability don’t-care
condition” of a bus is defined to detect unnecessary switching
activity on the bus. This condition is used to gate control signals
going to the bus-driver modules so that switching activity on the
module inputs does not propagate to the bus. A methodology for
automatically synthesizing gated control signals from the register-
transfer-level description of a design is presented. The technique
has very low area, delay, power, and designer effort overhead. It
was applied to one of the integer execution units of a 64-bit, two-
way superscalar RISC microprocessor. Experimental results from
running various application programs on the microprocessor
show an average of 26.6% reduction in dynamic switching power
in the execution unit, with no increase in critical path delay and
negligible area overhead.

Index Terms—Clock gating, control signal gating, data buses,
datapaths, logic synthesis, low power, power management, switch-
ing activity.

I. INTRODUCTION

POWER dissipation continues to grow as an important
challenge in deep submicron chip design. Power manage-

ment is crucial for reliability, packaging, and cooling costs of
high-performance systems, and battery life of portable devices.
Achieving low average power dissipation in a complex chip
calls for employing a combination of various low-power
techniques at all levels of design abstraction [1]–[3]. However,
low power is usually a secondary design goal after high
performance and, in some cases, even after designer effort.
This calls for low-power techniques that give significant power
savings with low overhead.

A large fraction of the total power dissipation on a chip
today is typically due to clocks, memory, and datapaths
[4], [5]. Circuit design techniques are used to reduce the
power consumption of active elements in memory cells, clock
latches, and datapath modules. Heavily loaded wires in each
of these design areas need special attention since the dynamic
switching power due to high capacitive loading on the wires
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can dominate the total power dissipation. Low-swing buses are
used extensively in memories to reduce power consumption
very effectively. Using low swings on datapath buses also
gives good power savings, but it requires significant effort
in the design and layout of bus receivers [5].

The technique presented in this paper, control-signal gating,
targets the dynamic switching power of heavily loaded buses
in large datapaths. The emphasis is on taking advantage of
redundant switching activity on each bus within a datapath to
save power, while keeping the timing, area, and computational
overhead low. Datapaths have a regular bit-slice structure of
logic modules connected by buses. Some of the logic modules
are controlled by control-signal inputs that are generated
by random logic outside the datapath, called control logic.
Control-signal gating modifies the control logic to reduce
unnecessary switching activity on datapath buses. Conditions
that imply that a bus is not going to be used to compute any of
the primary outputs of the datapath are detected in the control
logic. These conditions are used to gate control signals going
to the modules driving the bus, so that no switching activity
propagates through those modules. Thus, the switching activity
on a bus is turned off when it is detected to be unused.

A brief discussion of the existing low-power techniques
most applicable to datapaths, and their tradeoffs, is given
in Section II. The formulation of control-signal gating is
presented in Section III, where formal definitions are given
for conditions when a bus is unused and when switching
activity does not propagate through a module. These defi-
nitions are used to derive gated control signals that reduce
unnecessary switching activity on buses. A methodology for
implementing this technique on real designs is presented in
Section IV. Section V discusses overheads and corner cases of
the technique. In Section VI, experimental results of applying
control-signal gating to a large datapath in a microprocessor
show an average of 27.7% reduction in dynamic switching
activity, resulting in 26.6% average reduction in the dynamic
switching power of the datapath, with negligible overhead.

II. L OW-POWER TECHNIQUES FORDATAPATHS

Clock gating turns off the clock signal going to large
functional units when they are not needed [6], [7]. This saves
dynamic switching power on the clock line, as well as power
dissipated in the functional unit. High-level conditions that
indicate that the output of a functional unit would be unused,
such as a global stall in a microprocessor, are used to disable
the output bus drivers of the functional unit [8]. This saves
dynamic switching power on heavily loaded buses. However,
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Fig. 1. Example datapath.

clock gating or disabling bus drivers at this level does not take
advantage of situations when one part of a functional unit is in
use while other parts are unused. Control-signal gating takes
advantages of low-level redundancies within the datapath of a
functional unit to save power.

Two techniques exist for grouping flip-flops within a func-
tional unit for clock gating: hold-condition detection [9] and
redundant-clocking detection [10]. In hold-condition detection,
flip-flops that share common hold conditions are grouped
together for clock gating. This technique is not applicable
when enabled flip-flops are used, which is common in large
datapaths. Redundant-clocking detection collects and analyzes
simulation traces to group flip-flops for clock gating. The
grouping is trace dependent, and generation of the clock-
gating conditions is not automated. Also, clock gating at
low levels of granularity, such as applying different gating
conditions on the clock inputs of two different modules within
a datapath, increases local clock skew. This is an issue in
high-performance designs, since controlling the clock skew is
critical to performance.

Example 1: Fig. 1 shows part of a 64-bit datapath gen-
erating a primary output bus,OutBus. If clock gating was
applied to this datapath, the clock would be turned off when
none of the primary outputs of the datapath were going to
be used. However, even when other parts of the datapath are
computing useful output,TBus, IBus,and RBusare unused
when sum_enis zero. Also, IBus is unused whenmux_sel
is one, andTBus is unused whenmux_sel is zero. Using
only one gated clock for the entire datapath would allow the
buses to switch unnecessarily under these conditions. If clock
gating was applied at a lower level, the clock line going to
Reg1 would be turned off ifsum_enwas going to be zero or
mux_selwas going to be one. Similarly, the clock line going
to Reg2 would be turned off ifsum_enor mux_selwas going
to be zero. This would stop unnecessary switching activity on
TBus and IBus. However,RBuswould switch unnecessarily
if mux_selchanged whilesum_enwas zero. Also, the skew
between the clocks going toReg1 and Reg2 would pose an
additional constraint on the arrival time ofmux_sel.

Precomputation-based methods [11] precompute the output
of a sequential circuit one clock cycle early to reduce power
dissipation in the following cycle. A few bits of the inputs
going to the circuit are used to precompute the output. The

circuit is selectively turned off based on these precomputed
output values. Logic duplication of parts of the target circuit
is required for multioutput circuits. When applied to modules
in a datapath, another concern would be the extra wiring
complexity added in the otherwise regular structure of the
datapath in order to route bits of buses to precomputation logic.

Example 2: In Fig. 1, precomputation is not applicable
since it is not possible to precompute the output of the adder
or the multiplexer without using all bits of the input buses.
The amount of logic added for precomputation would be
comparable to the existing logic of those modules.

Guarded evaluation [12] places enabled transparent latches
on inputs of the modules that need to be selectively turned off,
using existing signals in the design as latch enables. Automatic
selection of the enable signals is based on logical implication,
which is complex to compute for large designs. The area and
power overhead of placing guard latches in wide datapaths
would be quite high.

Example 3: If the adder in Fig. 1 was to be selectively
turned off through guarded evaluation, two 64-bit transparent
latches would be placed onRBus and SBus,both disabled
when sum_enwas zero.

Although precomputation and guarded evaluation are quite
effective for random logic and small datapaths, they have
significant overhead in large datapaths. Also, both of the
techniques focus on stopping switching activity in the circuits
of datapath modules. In comparison, control-signal gating
focuses on saving dynamic switching power on datapath
buses. There is no logic or wiring added in the datapath
structure, resulting in very low overheads. Also, structural
information available at the register-transfer (RT) level is used
to synthesize gated control signals, giving high computational
efficiency.

Example 4: If control-signal gating was applied to Fig. 1,
control signalsmux_seland sum_enwould be used to de-
termine the conditions when the internal busesIBus, TBus,
andRBusare unused. These conditions would be used to gate
ireg_en, treg_en,andmux_selso that no new values are driven
unnecessarily onIBus, TBus,andRBus,respectively.

III. CONTROL-SIGNAL GATING

The rationale of control-signal gating is that buses that are
not used by the environment should be frozen in a quiescent
state by stopping the propagation of switching activity through
their drivers. This is achieved by using the “observability
don’t-care condition” (ODC) to detect when a bus would
be unused and to stop the propagation of switching activity
through the module(s) driving the bus.

A. Observability Don’t-Care Conditions

In logic synthesis, the condition under which a Boolean
variable in a combinational circuit is not observed by the
environment is called the ODC of the variable [13]. The
ODC of a variable is computed by traversing back through its
fanout cone from primary outputs of the circuit to the variable,
while incrementally computing ODC’s of variables from the
ODC’s of their immediate successors. For a variablewith
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one immediate successorthat is expressed by a logic function
the ODC is computed as shown in (1)

ODC ODC (1)

In this paper, “ ” is used to represent the logicalOR, “&”
is used to represent the logicalAND, “ ” is used to represent
the exclusiveOR, “ ” is used to represent restriction condition,
and overline is used to represent the complement of Boolean
functions and variables.

The first term in (1) is the complement of the Boolean
difference of with respect to which denotes the condition
under which is not observed at The second term denotes
the condition under which itself is not observed by the
environment.

In this work, we redefine the ODC to deal specifically
with datapath buses. A datapath is treated as a logic network
graph with vertices representing datapath modules and primary
input/outputs and directed edges representing interconnections
of the modules. Both sequential and combinational modules
are included in the graph. The value of a Boolean function or
variable in the current clock cycle is given a “” suffix, the
same value in the previous clock cycle is given a “ ”
suffix, and that value in the next clock cycle is given a
“ ” suffix. Thus, if a signalCurSigwas the output of a
flip-flop, the value ofCurSig would be the same as the
value of the input of that flip-flop in the current clock cycle. If
CurSigwas the input of a flip-flop, the value ofCurSig
should have been the same as the value of the output of that
flip-flop in the current clock cycle. Unless otherwise specified,
Boolean functions and variables are referred to in the current
clock cycle. We define two types of ODC’s of a bus in two
environmental contexts: Bus ODC (ODC) and Module ODC
(ODC )

Definition 1: The ODC of a datapath bus with respect
to primary outputs of the datapath is called the bus ODC of

or ODC
The ODC of a bus gives the condition under which the

bus is unused in the datapath. Hence bus transitions when the
ODC is Trueare useless and can be eliminated to save power.
We can eliminate bus transitions by stopping the propagation
of switching activity through bus drivers.

Definition 2: The ODC of an input bus of a datapath
module with respect to the module outputs is called the module
ODC of or ODC through that module.

When the ODC is True for all inputs of a module, no
switching activity propagates through the module. Thus, the
rationale of control-signal gating can be realized if, when the
ODC of a datapath bus isTrue, the ODC of all inputs of
datapath modules driving that bus is also madeTrue. This is
illustrated in Example 5.

Example 5: For the datapath in Fig. 1, assuming that the
ODC of OutBusis zero (always observed), ODC(IBus) in (2)
captures the fact thatIBus is not used in the datapath either
when the multiplexer is not selecting it or when the tristate
driver is disabled. ODC (InIBus) captures the fact that no
switching activity is going to propagate to the output ofReg1

in the current clock cycle () if the register enable was zero
in the previous clock cycle ( ). Unnecessary switching
activity on IBus can be reduced by making ODC(InIBus)
True when ODC (IBus) is True. This gives the equation
for ireg_en_gated Converting this to the equation for
ireg_en_gatedin the current clock cycle, we get the condition
that ireg_en should be gated in the current clock cycle if
ODC (IBus) is going to beTrue in the next clock cycle. This
reduces, but may not stop, unnecessary switching activity on
IBus, since the unobservability due to the adder is ignored

ODC IBus muxsel sumen

ODC InIBus ireg en

ireg en gated ireg en ODC (IBus)

ireg en gated ireg en ODC IBus

(2)

B. Computing Low-Overhead Module ODC (ODC)

Depending on the type of datapath module, the ODCof an
input bus of the module can range from quite complex to quite
simple. An input bus of a 64-bit multiplier is unobservable at
the output when the other input bus is zero. Generating this
ODC condition in hardware would require a 64-bitNOR gate
for each input bus. This adds significant area, delay, power,
and design effort overhead for introducing new elements in
the regular datapath structure. On the other hand, as seen in
Example 5, the ODC of a register input bus is simply the
complement of a one-cycle late version of the register enable.
To use this disparity among ODC complexities through
different datapath modules, we classify datapath modules into
two categories:computational modulesandsteering modules.

In computational modules, the ODC of one input bus
depends on the values of other input buses. Arithmetic and
logic modules such as adders, multipliers, logic gates, etc., fall
into this category. Making use of the unobservability through
a computational module to save power would require inserting
new logic in the datapath, resulting in prohibitive overheads.
Hence for the purpose of control-signal gating, we will assume
that inputs of a computational module are always observed at
the outputs. Thus, the ODCthrough computational modules
is zero by definition.

Steering modules selectively steer one or none of the input
data buses to the module output, depending on the values of
control-signal inputs. The ODC of a data input of a steering
module only depends on control signals. We consider three
commonly used steering modules:tristate drivers, registers,
and multiplexers. All registers are assumed to be enabled
registers, and all multiplexer select lines are assumed to be
one-hot. Equation (3) summarizes the ODCof input buses
through different steering modules shown in Fig. 2

- ODC

ODC

ODC

ODC

ODC (3)
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Fig. 2. Steering module types: tristate, register, and multiplexer.

The input bus of a tristate driver is unobservable at the
output when the tristate enable is false. A register input bus
is unobservable at the output in the current clock cycle () if
the register enable signal was false in the previous clock cycle
( ). A multiplexer input bus is unobservable at the output
when the corresponding select line is false. Thus, the ODC
of a bus through a steering module is simply the complement
of the control signal that steers the bus to the module output.

C. Computing Bus ODC (ODC)

The ODC of a bus is computed by traversing its fanout
cone backward from primary outputs to the bus while in-
crementally computing the ODC at each vertex from its
immediate successors in the cone. Starting with the ODC of
primary outputs, new terms are added to the bus ODC at each
steering module along each fanout path of the bus.

In its traditional definition, the ODC of a variable with mul-
tiple fanouts is computed by first computing ODC’s along each
fanout independently and then combining them. Combining
the ODC’s of a bus at a multifanout point would be quite
complex if the fanout ODC’s depended on the bus itself [13].
Such dependencies are likely to be introduced by conditional
branch mechanisms where the output of comparison of two
buses controls a steering module. Taking advantage of such
dependencies would also require expensive routing of wires
from the datapath to the control-signal gating logic. This
is simplified in control-signal gating by assuming that there
are no data-dependent control signals controlling the steering
modules. This allows for ODC’s along different fanouts of a
bus to be combined simply by intersection.

If a bus has fanouts Fanout , Fanout , , Fanout ,
it is not observed at the primary outputs of the datapath if and
only if none of the fanouts are observed. The ODCof the bus
is the intersection of the ODCof all fanouts, as shown in (4)

ODC bus ODC Fanout (4)

If a bus is connected to one of the inputs of a module that
has outputs Out , Out , , Out , it is not observed
at the primary outputs of the datapath either when it is not
observed at the module output or when none of the module
outputs are observed at primary outputs of the datapath. If the
module loading the bus is combinational, the ODCof the
bus is given by (5)

ODC bus ODC bus ODC Out (5)

If the module loading the bus is sequential, the current value
of the bus will not be observed at the primary outputs of the
datapath if it does not propagate to the module output in the
next clock cycle, or if the module output in the next clock

Fig. 3. Computation of ODCB of DBus.

cycle is not observed at the primary outputs of the datapath.
The ODC of the bus is given by (6) in this case

ODC bus ODC bus ODC Out

(6)

Equations (4)–(6) are used repeatedly in the fanout cone
of a bus to compute its ODC Example 6 illustrates the
computation of the ODC a bus.

Example 6: The fanout cone ofDBusis shown in Fig. 3. If
the ODC’s of primary outputsMuxOut, Sum,andCarry were
given, the ODC of DBus would be computed as shown in
(7). Here, since the adder is a computational module, it does
not contribute to the ODC of Fanout

ODC Fanout ODC Sum ODC Carry

ODC Fanout muxsel ODC MuxOut

ODC DBus ODC Fanout ODC Fanout

(7)

Reconvergent fanout on a bus introduces redundant terms
in its ODC Hence computed ODC’s of buses should be
simplified using logic optimization to remove these redundant
terms. This is illustrated in Example 7.

Example 7: If MuxOut in Fig. 3 was connected to the
unconnected input of the adder, the ODCof MuxOutwould
be the same as the ODCof Fanout1 in (7). This would
change the ODC of DBus to (8)

ODC Fanout muxsel ODC Fanout

ODC DBus ODC Fanout ODC Fanout

ODC Fanout (8)

D. Stopping Propagation of Switching
Activity Through a Module

As discussed in Section III-A, propagation of switching
activity through a module should be stopped when the ODC
of its output(s) isTrue. Depending on the type of module, this
can be done either by forcing the ODCof all inputs to be
True or by holding all inputs unchanged.

Since the ODC through a computational module is zero,
stopping the propagation of switching activity through a com-
putational module requires that none of the inputs change.
This would require placing enabled latches on wide input
buses in the datapath, which can be quite expensive. Hence
control-signal gating is not applied to computational modules.
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Fig. 4. Gating a tristate driver.

Fig. 5. Gating a register.

In a tristate driver, the ODC of the input bus is simply the
complement of the tristate enable (3). Thus, the propagation
of unnecessary switching activity through a tristate driver is
stopped by gating the tristate enable by the ODCof its output
bus, as shown in Fig. 4.

In a register, the ODC of the input bus is the complement
of the register enable in the previous clock cycle (3). Hence
the register enable needs to be gated one cycle early in order to
stop the propagation of switching activity through the register
when the ODC of its output isTrue. This is done by gating
the register enable by a one-cycle early version of the output
ODC ODC as shown in Fig. 5. The fanin cone of
the ODC is backtracked up to flip-flops, and the logic of the
cone is reconstructed from the inputs of those flip-flops instead
of the outputs to get ODC

In a multiplexer, since the ODC of each input bus
is the complement of its corresponding select line (3), the
intersection of ODC ’s of all input buses is empty. Thus, in
order to stop the propagation of unnecessary switching activity
through a multiplexer, the select lines and the selected input
bus need to be held unchanged when the ODCof its output
is True. As shown in Fig. 6, a select line is held unchanged
by backtracking its fanin cone up to flip-flops and gating
the enables of these flip-flops with the ODC of the
multiplexer output. Similar to gating register enables, the flip-
flop enables are gated one cycle early in order to stop the
select lines from changing in the current cycle if the ODC
of the output bus isTrue. If the fanin cone of a select line has
fanouts leaving the cone, some logic needs to be duplicated
to preserve the functionality of those fanouts. However, the
required duplication is likely to be small since heavily loaded
select lines are likely to have only a few levels of logic after
flip-flops in order to meet timing constraints.

To hold the multiplexer input buses unchanged, enabled
latches would have to be added in the datapath. We chose
not to do this to maintain low overheads at the expense
of giving up power savings. However, control-signal gating
applied to steering modules in the fanin cone of a multiplexer

Fig. 6. Gating a multiplexer.

input bus would hold the bus unchanged in some fraction
of all the clock cycles when the output ODCis True and
the input bus is selected by the select lines. We save power
on the multiplexer output bus in only these clock cycles.
In the remaining clock cycles, the multiplexer output would
switch unnecessarily, mirroring the activity on the selected
input bus. The fraction of clock cycles in which power can
be saved on the output bus of a multiplexer depends on
other fanouts of the input buses, as illustrated in Examples 8
and 9.

Example 8: In Fig. 1, the multiplexer output isRBus, which
is unused in the datapath whensum_enis zero. Both multi-
plexer input busesTBusand IBus have no other fanouts. As
shown in (9), the ODC of RBuslogically implies the ODC ’s
of IBusandTBus. Using these ODC’s to stop the propagation
of switching activity would give (10) for gated control signals

ODC IBus muxsel sumen

ODC TBus muxsel sumen

ODC RBus sumen

ODC RBus ODC TBus ODC IBus (9)

ireg en gated ireg en ODC IBus

treg en gated treg en ODC TBus

muxsel gated muxsel gated

if ODC RBus True

(10)

Thus, if sum_enis going to be zero in the next clock cycle,
both ireg_en_gatedand treg_en_gatedare zero in the current
cycle, andmux_sel_gatedis held unchanged. Unnecessary
switching activity onRBus is stopped in 100% of all clock
cycles when it is unused in the datapath, since switching
activity is also stopped on bothTBusand IBus in those clock
cycles.

Example 9: On the other hand, consider modifying the
datapath of Fig. 1 to put additional fanouts on multiplexer
input buses, as shown in Fig. 7. Tristate enableslogic_en,
sum_en,and shift_enare mutually exclusive, and the ODC
of OutBus is zero. Unlike Example 8, the ODCof RBus
does not imply the ODC of TBusor IBus, as shown in (11)

ODC IBus muxsel sumen logic en

ODC TBus muxsel sumen shift en

ODC RBus sumen (11)
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Fig. 7. Modified example datapath.

Gated control signals are generated by using (11) in (10).
When mux_selis zero (selectingIBus) and sum_enis zero,
RBus is unused in the datapath and its switching activity
depends onIBus. In this case, if logic_en was one,IBus
would continue switching since it is used by the logic module.
This would causeRBus to switch unnecessarily. However,
if shift_en was one instead, switching activity would be
stopped onIBusby ireg_en_gatedandRBuswould not switch
unnecessarily. If all three tristate enables had equal probability
of being one, unnecessary switching activity would be stopped
on RBusin 50% of the clock cycles whensum_enwas zero.

Equation (12) summarizes the method to stop the propaga-
tion of switching activity through different types of steering
modules shown in Figs. 5–7

Tristate:
tri en gated tri en & ODC TriOut)

Register:
reg en gated reg en & ODC RegOut

Multiplexer:
if (ODC (MuxOut) True),
muxsel gated muxsel gated . (12)

The logic added to stop the propagation of switching activity
in all three types of steering modules uses and modifies control
signals only. Hence control-signal gating does not require any
modifications in the datapath.

IV. I MPLEMENTATION METHODOLOGY

Fig. 8 shows the tool flow for applying control-signal gating
to real designs. The inputs to the tool are 1) a structural
RT-level description of the design that has been partitioned
into datapath and control-logic units and 2) information about
ODC’s of primary outputs. Using a netlist database manipula-
tion system, steering modules in the datapath are topologically
sorted and traversed twice to generate gated control signals

Fig. 8. Methodology for control-signal gating.

that are resynthesized with the existing control logic using a
synthesis tool.

A. Topological Ordering of Steering Modules

For the purpose of topological ordering, the logic network
graph representation of a datapath (discussed in Section III-A)
is converted to a directed acyclic graph (DAG) by removing
feedback edges. Also, computational modules are removed
from the set of vertices of this DAG and are treated as
fanout points from each input to all outputs of the module.
This DAG is sorted [13], [15] in increasing topological order
from primary inputs of the datapath to primary outputs. The
complexity of topological sort is where is the
number of vertices and is the number of edges in the
DAG [16]. Even for large datapaths with wide buses, the
DAG representation used here is quite simple since it only
has as many vertices as the number of steering modules in
the datapath and individual bits of buses are collapsed in the
edges. This results in insignificant computational times for
topological ordering.

B. First Pass

The first pass visits steering modules in the datapath netlist
in decreasing topological order (from primary outputs to
primary inputs). The logical expression of the ODCof the
output bus of each steering module is computed as shown in
the pseudocode ofComputeBusODCin Fig. 9.

For a given steering module driving an output bus,Compute-
BusODCstarts with an ODC of one (never observed) for the
bus and follows each fanout of it in the datapath netlist. If the
fanout is a primary output, its ODC is assigned to the fanout
ODC If the ODC of the primary output is not given, it is
assumed to be zero (always observed). If the module loading
the fanout is a steering module, the ODCof the fanout is
computed from its ODC through the loading module and the
ODC of the outputs of the loading module. Due to sequential
feedback loops in the datapath, the steering module loading the
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Fig. 9. Pseudocode for computing bus ODC.

fanout could have a lower topological order number than that
of the driving module. In this case, the ODCof the outputs
of the loading module is not yet computed, and hence it is
assumed to be zero. This is a conservative simplification that
gives up some redundant switching activity on the fanout due
to steering modules in the feed-forward path from the loading
module to the driving module.

If the loading module is a computational module,Compute-
BusODCis called recursively for each of its outputs. From (4),
the ODC of the fanout is computed as the intersection of all
computational module output ODC’s. Similarly, in the outer
loop, the ODC of the bus is computed as the intersection of
all fanout ODC ’s. For registers and multiplexers, the logical
expression of the ODC of the output bus is computed
from the fanin cone of the corresponding ODCcomputed by
ComputeBusODC,as described in Section III-D.

C. Second Pass

The second pass traverses steering modules in the datapath
netlist in increasing topological order, from primary inputs to
primary outputs. Depending on the type of steering module
visited, the logic required for gating control signals is com-
puted using (12). In the netlist of the control-logic unit, new
logic is added for generating the gated control signals and bus
ODC’s, and steering-module control signals are replaced with
the gated control signals.

D. Postprocessing

Last, the control-logic unit needs to be resynthesized to
optimize and map control-signal gating logic along with the
rest of the unit. Timing analysis should be performed to make
sure that timing constraints are met after applying control-
signal gating.

V. OVERHEADS AND CORNER CASES

While applying control-signal gating to a datapath, the
overheads and corner cases of the technique need to be

considered in order to decide its scope and applicability. These
are discussed in the next two subsections, along with proposals
for design-specific solutions to overcome some of them.

A. Overheads

Throughout the derivation of control-signal gating in
Section III, tradeoffs were made to keep the overhead of
the technique to a minimum. Gates are added in the control-
logic unit for generation of ODC’s and gated control signals,
and some control logic is duplicated in order to preserve the
functionality of fanouts leaving fanin cones of multiplexer
select lines, as discussed in Section III-D. This comprises the
area overhead and also results in additional power dissipation
in control logic.

There are extra fanouts added to control signals to generate
the ODC of buses. This could slow down the control signals
and increase short-circuit power due to slower rise and fall
transitions on these signals.

An extra gate is added in the paths of register and tristate
enables. If an enable signal is in the critical path, its fanin
cone should be reoptimized after adding the gating logic in
order to absorb the gating delay into the existing logic. If such
a signal has a lot of other fanouts (such as a microprocessor
Stall signal) and is in the critical path, a small amount of logic
duplication should be considered.

The ODC of a bus that is topologically close to the
primary inputs of a datapath is more complex than that of
a bus that is close to the primary outputs, since the fanout
cones grow as we go from primary outputs toward primary
inputs. In topologically deep datapaths, the ODCof a bus
close to primary inputs could get quite complex. This provides
opportunity for maximum removal of unnecessary switching
activity on the bus looking ahead over multiple levels of
steering logic. However, if the logic for generation of the
ODC of such a bus ends up in the critical path, the fanout
cone should be restricted to a smaller size. This can be done
by traversing backward through the fanout cone of the bus and
removing steering modules at the leaves of the cone until the
resulting ODC meets timing constraints.

B. Corner Cases

Signals that are primary inputs of the chip or are fetched
from on-chip memory in the current clock cycle are just-in-
time signals. It is not possible to find a one-cycle early version
of such a signal.

Control-signal gating uses a one-cycle early version of the
ODC of register and multiplexer output buses to gate the
control-signal inputs of those modules. It is not possible to
generate the ODC one cycle early if its fanin cone depends
on a just-in-time signal. Hence the ODC of the primary output
or the ODC of the steering module input that depends on a
just-in-time signal is assumed to be zero when computing the
ODC of a register or a multiplexer output. This case is more
likely to occur in a datapath with a pipeline of registers.

Example 10: For a -stage pipeline of registers, the register
enable of the first register in the pipeline would have to be
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gated by a -cycles early version of the output ODC
of the last register.

If the fanin cone of a multiplexer select line contains a just-
in-time signal, it cannot be gated to remain unchanged when
the ODC of the multiplexer output isTrue. This can be fixed
by inserting an enabled transparent latch in the path of the
just-in-time signal going to the fanin cone. If enabled latches
are not present in the library, or if placing a latch causes the
corresponding select line to end up in the critical path, the
select lines of that multiplexer should not be gated.

Another scenario is when an input bus of a multiplexer
is just-in-time or its switching activity cannot be stopped
by control-signal gating. Applying control-signal gating to
the multiplexer select lines would be worthwhile in a wide
datapath if switching activity on at least one input bus of the
multiplexer could be controlled. If none of the input buses can
be controlled by control-signal gating, the select lines of that
multiplexer should not be gated.

If the fanout of a bus drives a control input of a steering
module, it should be disconnected for the purpose of deriving
gated control signals to preserve the assumption that there
are no data-dependent control signals. Such a fanout should
be assumed to have zero ODC, and the steering module
controlled by it should be treated as a computational module.

VI. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

The protocol processor (PP) of the MAGIC chip designed
by the FLASH multiprocessor team [17] formed the basis
of our experiments. The PP is a two-way superscalar RISC
microprocessor, designed in a 0.5-m CMOS technology.
Control-signal gating was applied to one of the two integer
execution units of PP: the BExecuteUnit, which consists of
control logic and datapath. The area of the control section
is 0.37 mm with approximately 1.6 K transistors, and the
datapath is 3.3 mmwith approximately 45 K transistors.

The datapath of BExecuteUnit is 64 bits wide, with three
input and two output buses, seven computational modules and
11 steering modules. Gated control signals were generated for
three registers and a multiplexer that drive four internal buses
IBus, TBus, SBus, and RBus. The remaining seven steering
modules drive the two output buses. One of the output buses
drives flip-flops without enables in a state machine, and the
other output bus has an ODC that depends on the value of the
instruction that is not yet fetched from the instruction cache.

Hence, the ODC’s of both output buses were assumed to be
zero.

Dynamic switching power was estimated using (13), where
is the power-supply voltage andis the clock frequency.

For a design with nodes, is the capacitive loading and
is the switching activity on node

(13)

The power supply for our design was 3.3 V, and the clock
frequency was 100 MHz. Benchmark programs were run on
the structural RT-level netlist of PP. Capacitive loading on
each node was extracted from the chip layout. The capacitive
loading of new nodes added by control-signal gating was
estimated after resynthesizing the control logic. Node toggle
count, the number of clock cycles in which a node toggles
during a benchmark run, was collected for each node in
both control and datapath units. For each benchmark run, the
switching activity ( ) of a node was calculated using (14)

Node Toggle Count
Total Clock Cycles in Benchmark

(14)

B. Results

Table I shows results of running five integer benchmarks
and a multiprocessor protocol test on PP. ProtocolProc runs a
cache-coherent multiprocessor memory protocol. Sumup adds
elements of an array of 100 integers. Saxpy multiplies such
an array by a constant and adds that with another array.
QuickSort and BubbleSort sort the elements of such arrays.
Sparse adds the sum of each row of a 1064 matrix
to each element in the row. The second column shows the
runtime of each program in number of clock cycles. The
third column shows the occupancy of BExecuteUnit, which
is the percentage of clock cycles in which BExecuteUnit is
executing instructions. The benchmarks are listed in order
of increasing occupancy. Higher occupancy causes higher
switching activity on internal buses in the BExecuteUnit, po-
tentially resulting in more conditions of unnecessary switching
activity that can be saved by control-signal gating. The fourth
column gives percentage net reduction in the total switching
activity after applying control-signal gating, which accounts
for reduced switching activity in the datapath and increased
activity in the control logic. The next two columns give
dynamic switching power dissipation in watts in the original
(ungated) netlist and the (gated) netlist after applying control-
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Fig. 10. Profile of instructions in BExecuteUnit.

Fig. 11. Reduction in switching activity on major buses.

signal gating. The last column gives the percentage reduction
in dynamic switching power. We get an average of 27.4%
reduction in switching activity, resulting in 26.6% average
reduction in dynamic switching power in the BExecuteU-
nit.

Fig. 10 shows a profile of BExecuteUnit instructions for
each benchmark, classified into three major categories: Shift,
Add, and Load/Store. The-axis displays the benchmarks and
the -axis gives the occurrence of each type of instruction as a
percentage of total BExecuteUnit instructions. Fig. 11 shows
the percentage reduction in switching activity on each bus.
Of the four buses controlled by control-signal gating, Shift
instructions useTBus, Add instructions useSBus, TBus, and
RBus, and Load/Store instructions useSBus, IBus, andRBus
as operands. The total reduction in switching activity in the
datapath reflects the cumulative effect of reduced switching
activity on these four buses and the resulting reduction in
switching activity in the datapath modules and other buses
in the fanout cones of these buses.SBus has very little
unnecessary switching activity on it because it is used by
both Add and Load/Store instructions. Hence the amount of
switching activity reduced onSBusis consistently low in all
benchmarks.

ProtocolProc, Sumup, and Saxpy have the lowest BExecu-
teUnit occupancy, resulting in low occurrence of unnecessary

TABLE II
AREA OVERHEAD IN CONTROL-LOGIC UNIT

switching activity on the internal buses. The majority of the
unnecessary switching activity is onTBus only since the
instruction profile of these benchmarks in Fig. 10 is dominated
by Load/Store instructions. This results in a high reduction in
switching activity onTBus in Fig. 11 but overall low power
savings in Table I.

QuickSort and Sparse have a higher occupancy, and evenly
distributed instruction profiles in Fig. 10. This gives many
conditions of redundant switching activity, resulting in a
significant reduction in switching activity on all four buses in
Fig. 11. Therefore, these benchmarks give high power savings
in Table I.

BubbleSort also has a high occupancy of the execute unit,
but its instruction profile is strongly dominated by Add instruc-
tions in Fig. 10. This leaves very little avenue for reducing
unnecessary switching activity onSBus, TBus, andRBus. Even
though low occurrence of Load/Store instructions results in
high reduction in switching activity onIBus in Fig. 11, the
overall power saving is low in Table I.

Table II shows the area overhead. The area was com-
pared from synthesis area estimates before and after applying
control-signal gating. Control-signal gating added only a few
gates and nets, resulting in less than 5% increase in the area
of the control-logic unit. Since the size of the control logic is
10% the size of the datapath, this overhead is insignificant.

Enable signals for the three-input registers had an extraNOR

gate delay in their path after applying control-signal gating.
After resynthesis of the control-logic unit, we were able to
keep the critical path delays of these signals the same as they
were before control-signal gating was applied.

VII. CONCLUSIONS

We have presented a practical method for reducing unnec-
essary switching activity on datapath buses. Control-signal
gating offers minimal area and timing overheads and low
computational cost. This technique is particularly relevant to
hardware designers, providing a methodology that can be used
even without a dedicated tool to take advantage of those
cases of redundant switching activity that would be otherwise
cumbersome to find in large datapaths. It is easily usable by
a designer to reduce unnecessary power dissipation in the
datapath of their unit, without having to worry about side
effects such as clock skew or changes in the datapath layout.
The technique was applied to one of the integer execution
units of a superscalar microprocessor. Results of benchmark
simulations on the microprocessor showed an average 26.6%
reduction in dynamic switching power in the execution unit,
a 5% increase in the area of the control logic, and no new
critical paths.
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