
554 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 4, DECEMBER 1998

Power Optimization of Core-Based Systems
by Address Bus Encoding

Luca Benini, Giovanni De Micheli,Fellow, IEEE,Enrico Macii, Member, IEEE,
Massimo Poncino,Member, IEEE,and Stefano Quer

Abstract—This paper presents a solution to the problem of
reducing the power dissipated by a digital system containing an
intellectual proprietary core processor which repeatedly executes
a special-purpose program. The proposed method relies on a
novel, application-dependent low-power address bus encoding
scheme. The analysis of the execution traces of a given program
allows an accurate computation of the correlations that may exist
between blocks of bits in consecutive patterns; this information
can be successfully exploited to determine an encoding which
sensibly reduces the bus transition activity. Experimental results,
obtained on a set of special-purpose applications, are very sat-
isfactory; reductions of the bus activity up to 64.8% (41.8% on
average) have been achieved over the original address streams. In
addition, data concerning the quality and the performance of the
automatically synthesized encoding/decoding circuits, as well as
the results obtained for a realistic core-based design, indicate the
practical usefulness of the proposed power optimization strategy.

Index Terms—Bus encoding, integrated circuit, intellectual
property, low power, power optimization.

I. INTRODUCTION

T HE use of intellectual proprietary components, such as
core processors and microcontrollers, as basic blocks for

the development of dedicated (i.e., special-purpose) digital
systems is becoming a well-established design strategy in
the microelectronics industry. Financial reasons motivate this
choice. The core-based design style is, in fact, the hardware
counterpart of the software programming paradigm based on
the reuse of library functions. A reduced product turn-around
time is thus guaranteed with a reasonably good quality and
limited economical effort.

In this paper, we focus on the design of low-power, special-
purpose systems. More specifically, we face the problem of
reducing the power dissipated by a design containing a core
processor, or a microcontroller, through the application of
system-level optimization techniques.

It is well known that, due to the intrinsic capacitances
of system-level buses, a considerable amount of power is
dissipated at the input/output interface of a processor when

Manuscript received December 12, 1997; revised May 15, 1998. This work
was supported in part by the CIS and the NSF under Grant MIP-9421129.

L. Benini is with the Dipartimento di Elettronica Informatica e Sistemistica,
Universitá di Bologna, Bologna 40136 Italy.

G. De Micheli is with the Computer Systems Laboratory, Stanford Univer-
sity, Stanford, CA 94305 USA.

E. Macii, M. Poncino, and S. Quer are with the Dipartimento di Automatica
e Informatica, Politecnico di Torino, Torino 10129 Italy.

Publisher Item Identifier S 1063-8210(98)08520-5.

binary patterns have to be transmitted over the communication
channel. More precisely, the capacitive load on the proces-
sor’s input/output drivers is usually much larger (up to three
orders of magnitude) than that on the internal nodes of the
processor [1]. As a consequence, dramatic optimizations of
the average power consumption of a processor-based system
can be achieved by minimizing the number of transitions (i.e.,
the switching activity) on the buses connected to the primary
outputs of the processor.

One way of accomplishing this task is to encode the binary
patterns that must be transmitted over the bus. Most of
the proposed schemes leverage some statistical properties of
typical bus streams. In particular, in the case of address buses,
the high probability of memory addresses to be consecutive is
exploited to reduce the average number of signal transitions
[2]–[4].

However, even in the situations where address streams have
low sequentiality, it may well be the case that other types of
correlations exist between the patterns that are being trans-
mitted. More specifically, we have experimentally observed
that time-adjacent addresses usually show highblock correla-
tions. For processors adopting segment/page-based memory
architectures, this can be easily justified by the fact that
intrasegment/page branches and jumps are much more fre-
quent than intersegment/page ones. Therefore, even though
the strict sequentiality of addresses may be destroyed by a
branch/jump instruction, some portions of the patterns may
still be highly correlated.

We exploit block correlations in address streams to au-
tomatically generate encoding schemes which minimize the
average bus switching activity. Our approach, called in the
following the Beach solution,1 can be summarized as follows.
Starting from typical address bus traces, we collect statistical
information identifying possible block correlations. We then
group the bus lines in clusters according to their correlations,
i.e., lines belonging to the same cluster are highly correlated.
For each cluster, we automatically generate an encoding func-
tion, that is, a one-to-one combinational Boolean function, that
translates each bit configuration in the original cluster into a
new one.

The algorithm that finds the encoding functions targets the
minimization of the switching activity. Thus, well established
technology initially developed in the context of finite state
machine synthesis can be successfully exploited. The output

1The Beach Clubis the name of the place where the method was initially
conceived by the authors during DAC’96 in Las Vegas.

1063–8210/98$10.00 1998 IEEE

BENINI et al.: POWER OPTIMIZATION OF CORE-BASED SYSTEMS 555

of the encoder is a stream with reduced average number of bus
line transitions. At the receiving end of the bus, the original
encoding is required; then, the inverse function must also be
calculated.

Since the target is a reduction of the power consumed by the
system as a whole, it is mandatory to guarantee that savings
achieved are not offset by the extra power dissipated by the
encoding and decoding circuitry. In addition, bus latency is
usually a critical design constraint. Therefore, simultaneous
power and timing optimization must be targeted during the
synthesis of the logic for address encoding/decoding. The
Beach solution is a step forward in addressing these two issues.
The encoder and the decoder are the gate-level implementa-
tions of the encoding and decoding functions, respectively.
Since they operate on blocks, their speed can be easily
controlled by specifying a maximum block size. However, if
the timing constraints are not tight, our approach can be used
to explore the opportunities for power savings that become
available when large blocks are allowed.

If the internal description of the core is accessible and
modifiable, the encoding operation can be incorporated directly
into the address generation step. On the other hand, for black-
box IP components, resorting to an encoder is mandatory; thus,
its design is key for making the Beach solution applicable
in practice.

II. PREVIOUS WORK

In this section, we review previous work in the area of power
minimization by reduction of the switching activity in the
memory-processor interface. We can categorize the existing
approaches in two broad classes:bus encodingtechniques and
memory organizationtechniques.

A. Bus Encoding Techniques

The switching activity on a communication bus can be
reduced by encoding the binary patterns before they are
transmitted. Depending on the type of information to be
exchanged, several low-power encoding schemes, exploiting
distinctive spectral characteristics of the pattern streams have
been recently proposed.

Stan and Burleson have introduced the use of thebus-
invert code [5]. The method performs well when patterns
to be transmitted are randomly distributed in time and no
information about pattern correlation is available; therefore,
it seems appropriate for encoding the information traveling on
data buses.

When address buses are considered, the temporal correlation
between successive addresses is usually strong. In fact, streams
are typically composed of bursts of in-sequence addresses, in-
termingled with out-of-sequence ones (corresponding to taken
branches and jumps) [6]. The high frequency of consecutive
patterns is fruitfully exploited by codes such asGray [2]
or [3], [4]. However, if the percentage of in-sequence
addresses decreases, the effectiveness of the aforementioned
codes diminishes as well.

The recently proposedworking zoneencoding [7] tackles
some of the limitations of Gray and T0, and it is well suited for

address buses of both instructions and data streams. It is based
on the observation that many programs access multiple data
arrays. The accesses to each array are mainly in-sequence, but
unfortunately they are often interleaved; then, the sequentiality
on the bus is destroyed. The working zone scheme restores
sequentiality by memorizing the reference addresses of each
working zone on the receiver side and by sending only the
highly sequential offset. Whenever the data access moves to
a new working zone, this information is communicated to the
receiver with a special codeword. The receiver changes the
default reference address and offset transmission can resume.

Although working zone encoding is more flexible than
Gray and T0, it still relies on strong assumptions on the
patterns in the stream. If the data access policy is not array-
based, or if the number of working zones is too large, this
encoding scheme looses effectiveness. Moreover, similarly
to the case of the T0 code, it requires extra bus wires for
communicating a working zone change. This requirement
might not be acceptable because it changes standard bus widths
and chip pinouts.

B. Memory Organization Techniques

Bus encoding schemes reduce interface power by changing
the format of the information transmitted on the processor-
memory bus. An alternative approach to the problem consists
of changing the way the information is stored in memory
so that the address streams generated by the processor have
already low transition activity. Two research directions have
been pursued.

The first one targets the optimal exploitation of memory
hierarchies [8]–[10]. Higher levels of the memory hierarchy
can be accessed at a low-power cost, but they have lim-
ited storage capacity. Power can be reduced by organizing
the data in such a way that the higher levels of memory
hierarchy are optimally exploited and data transfers from
lower levels are minimized. The second area of research
targets specifically the bus-memory interface [8], [11], [12].
Data are allocated in memory trying to emphasize sequential
accesses since they have inherently lower switching activity
than unordered accesses.

Both bus encoding and memory organization have advan-
tages and limitations. Bus encoding can be applied with limited
or no knowledge about the functionality of the application
being executed, while memory organization techniques need
detailed information on data structures, loops and control
flow structures. On the other hand, bus encoding imposes
hardware overhead (the encoder and decoder) while memory
organization exploits the existing hardware.

Memory organization techniques and bus encoding are not
mutually exclusive. On the contrary, optimal power minimiza-
tion strategies should leverage their synergy. For instance,
data allocation emphasizing sequential memory access can
be used in conjunction with T0 encoding to heuristically
minimize the number of bus line transitions. For hierarchical
memory systems, bus encoding can be implemented at any
level of the memory hierarchy, for example between cache
and main memory.

556 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 4, DECEMBER 1998

Fig. 1. The Beach solution.

III. T HE BEACH SOLUTION

The solution we propose to minimize the power dissipated
by the processor-memory path of a core-based system belongs
to the category of bus encoding techniques. In particular, we
target a reduction of the number of transitions occurring on
the address bus. The Beach solution differs from previously
presented low-power encoding schemes in that it is strongly
application oriented. In fact, the encoding and decoding func-
tions are properly determined for a given program based
on the analysis of the address streams produced by one
or more executions of such program. For this reason, the
technique is not applicable to general-purpose, multiuser,
and multitasking computing systems, where several programs
(possibly characterized by address streams of substantially
different nature) can run concurrently. On the other hand, it has
proven to be particularly suitable to special-purpose machines,
where the same portion of embedded code is executed over
and over by the core processor.

A. Overview

A high-level block diagram of the basic operations required
to apply the Beach solution is depicted in Fig. 1.

The entry point is the address stream produced by one or
more runs of the embedded code on the core processor or
microcontroller. Such stream is fed to the tool, calledBCC
(bit correlation calculator), whose task is to perform some
statistical analysis of the patterns appearing in the stream,
and to extract from the result of such analysis a measure
of the correlation that may exist between pairs of bus lines.
This information is then processed by programPART, whose
objective is to determine a partition of the bus lines in
disjoint clusters. Each cluster is finally processed by theENC
program, whose basic function is to encode the bus lines
belonging to the cluster so that the number of bus transitions
occurring when the embedded code is executed again gets
minimized. The output of theENC program is a set of
encoding and decoding functions, one for each bus line, whose
implementation in combinational logic through an automatic
synthesis tool originates the encoder and decoder circuitry.

B. Correlation Measures

As outlined in the previous section, our technique targets a
reduction in power dissipation by decreasing the frequency
of transitions of multiple bus lines. To achieve this goal,
patterns that are often consecutively transmitted on the bus
should be reencoded to patterns with similar codes, i.e., codes
with a minimum Hamming distance (possibly equal to one).
In principle, it is possible to measure exactly the probability
of every pair of patterns to be sent consecutively on the bus.
Given a stream of patterns, a set of 3-

tuples should be stored, one for each different
pair of consecutive patterns that appear in the stream. The
first pattern of the pair is the second one is and the
number of occurrences of the pair in the stream is

There are two practical problems with this idea. First, the
amount of memory required to store the 3-tuples is, in the
worst case, proportional to the length of the stream. This is
unacceptable because the stream length may be in the order of
millions. Second, in many cases we are interested in encoding
only blocks of bits. If, for example, the most significant bits
of the pattern have extremely low switching activity, encoding
them is not really useful.

For these reasons, we decided to use a more compact
measure and we focus on thecorrelationsbetween groups of
bits. We measure correlations using apairwiseapproximation.
The key advantage of pairwise correlation measures is that
they can be stored in where is the bus width.

Let us call the pattern transmit-
ted on the bus at time where each is a bit of the pattern.
Let us consider two bits and transmitted on the bus, in
the same position, i.e., or in two different positions, i.e.,

and at the same time, i.e., or at two different but
consecutive clock cycles, i.e., and

For each bit of the bus we define variable as the
symmetric encoding of bit when and

when Then, given a pattern stream of length
we define for each variable its average value and its

standard deviation

In addition, we define thecovarianceof two variables, and
and a time lag as:

(1)

and thecorrelation coefficientbetween bit and bit as

(2)

By setting or and using equal or different
values of and we obtain different types of correlations
that we callspatial, temporal, andspatio-temporal. Roughly
speaking, the first type, obtained by setting and
expresses the likelihood of correctly predicting the value of
one bit of pattern knowing the value of another bit in
the same pattern. The second type, obtained by setting

BENINI et al.: POWER OPTIMIZATION OF CORE-BASED SYSTEMS 557

and expresses the likelihood of correctly predicting the
value of a bit in pattern by observing its value on the
previous pattern. In general, for and we have
spatio-temporalcorrelation.

Since we are interested in measuring the likelihood of con-
current switching of more than one bus line, onlyspatial
andspatio-temporal correlations have some relevance to
us. If spatial correlation between bits and is high and
both and have high transition activity, the likelihood of
a double transition is high as well. A similar reasoning holds
for spatio-temporal correlations.

Although spatial and spatio-temporal correlations do contain
useful information, it is possible to formulate a measure of
correlation that is more directly related to the probability of
multiple switchings. We define theswitching correlation
as the spatial correlation between pairs oftransition variables.
A transition variable is defined as follows:

has value “1” if bit makes a raising transition from
clock cycle to , it has value 1 in case of a falling
transition, and it is zero otherwise. We can compute the
switching correlation covariance between transition variables

and and the switching correlation coefficient
between bits and using (1) and (2), in which is replaced
with and is set to zero.

Switching correlation directly measures the likelihood of
having a concurrent transition on two bus lines, therefore we
expect it to be a more reliable source of information. Notice,
however, that all correlation measures we have defined are
approximate. The information on how transitions ongroups
of bits are correlated with transitions on other groups is
completely lost. Consequently, we cannot claim that switching
correlation is always the best measure, and the results of our
experiments have confirmed this fact.

Notice that the complexity of the procedure for extracting
the correlation coefficients is since the entire stream
(of length) has to be analyzed. However, we do not need to
store the stream in memory. In fact, the correlations can be
computed on-the-fly by a filter-like program.

C. Clustering Heuristics

The pairwise correlation coefficients, computed with one
of the methods outlined in Section III-B, can be collected in a

correlation matrix, We try to exploit the correlation
information to identify subsets of bits that are suitable to be
encoded together. Intuitively, we want to cluster together bits
that have high pairwise correlation, since this is an indication
that the probability distribution of bit patterns in the cluster
is highly nonuniform. If this is the case, encoding can be
very effective in reducing the average number of concurrent
transitions for bits in the cluster.

The correlation matrix can be seen as the adjacency
matrix of a weighted undirected graph The set of
vertices, of represents the set of bus lines; two vertices,

and are connected by an edge if at least one of
the correlation coefficients and is nonzero; in this
case, the edge weight is

One approach for determining a good clustering of the bus
lines is that of computing the strongly connected components
of a graph, derived from through an edge pruning step.
Such step, consisting of the removal of the edges inwhose
weights are below a given threshold is useful to filter out
correlations that are not statistically significant. The problem
with this simple solution is that only a rough control of the
size and the granularity of the clusters is allowed through the
selection of the threshold value In particular, several
experiments have shown that the procedure tends to create
large clusters.

In principle, larger clusters enable the computation of better
encodings, since a more global optimality can be achieved. In
practice, however, they should be avoided, since the hardware
cost of encoder and decoder rapidly increases with the cluster
size, and so does the complexity of the data collection and the
encoding procedure. Therefore, we have developed a greedy,
yet effective clustering algorithm, described next, which offers
a high degree of control on the maximum cluster size, as well
as a good quality of the clusters.

The clustering procedure operates on the pruned graph,
and its flow is the following indicates the user-specified
maximum cluster size):

• select an edge with maximum weight;
• cluster the head and tail vertices of the edge together into

a single vertex;
• in case vertex clustering induces an edge merging, assign

to the merged edge the maximum weight among those of
the original edges;

• store in the clustered vertex the numberof original
vertices in it (initially, for each vertex);

• if a clustered vertex has eliminate that vertex
and all the edges connected to it;

• repeat all the steps above until the graph is empty or no
edge is left;

The clustering algorithm, whose run time is linear in the
number of edges of returns a set of clusters with number
of elements bounded by Such clusters are the starting
points for the encoding algorithm which is described in the
next section.

Example 1: Fig. 2(a) shows a pruned graph, with six
vertices: to each of which has initially The
procedure applied to this graph with proceeds as
follows. The edge with maximum weight, is selected,
and the head and tail vertices, and are clustered,
thus producing vertex with in Fig. 2(b). Now,
edge is selected, and vertices and are clustered,
originating vertex with [Fig. 2(c)]. The vertex
merging operation also induces the merging of edges
and . The merged edge, has now weight

. Edge is selected next, and
vertex with is created [Fig. 2(d)]. At this point, node

identifies a cluster with maximum allowed size; therefore,
it is eliminated from the graph, and all the edges connected

558 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 4, DECEMBER 1998

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Clustering example.

to it (i.e., edge are removed [Fig. 2(e)]. Finally, vertices
and are clustered, giving the final result of Fig. 2(f).

D. Synthesis of the Encoding/Decoding Logic

The clusters obtained using the algorithm of Section III-
C are further manipulated in order to collect more accurate
statistical information. In particular, for each cluster of size

we build a new weighted graph called
the transition graph. The set of vertices is the set of
combinations of the bit lines (belonging to the cluster) that
appear in the stream. The cardinality ofis and it
is generally much smaller than the upper-bound because not all
combinations appear in the sample. The weights on the edges
are the frequencies of transitions between the bit configurations
associated to the vertices connected by the edges.

Example 2: If a block includes lines, we have a
maximum of vertices in Assume that the three lines in
the sample only take on the values 001, 000, 111, and 100.
The graph has then four vertices:

and If in the sample there are 120
transitions and 268 transitions the
weight on the edge between verticesand is 388. The
resulting graph is shown in Fig. 3.

The output of thePART program (see Fig. 1) is a set of
graphs one for each cluster. Given that the edge
weights of transition graphs are transition frequencies, we
might change the vertex codes of each graph so as to minimize
the following cost function:

(3)

Fig. 3. Transition graph example.

Fig. 4. Reencoding to minimize the number of transitions.

where is the weight of edge and is the
Hamming distance between the two codes of verticesand

. The rationale is to assign closer (in the Hamming sense)
codes to vertices joined by “heavy” edges.

Example 3: The cost for the graph of Fig. 3 is 1782, as
shown in Fig. 4 (left part). By reencoding vertexfrom 111
to 101, we have now that is “closer” to vertices and

The total amount of transitions between the vertex pairs
, , and is thus reduced, and the value of

the new cost function is 1350.
It has been experimentally observed that, in general, transi-

tion graphs contain relatively few vertices (that is, combina-
tions of patterns) if compared to the number of all possible
-bit patterns, where is the size of the corresponding

cluster. This characteristics is particularly desirable when
trying to reencode a graph, since it provides many degrees
of freedom that can be exploited in reassigning codes to the
various vertices.

TheENCtool reencodes the transition graph of each cluster.
It uses the algorithm proposed in [14], which is fully based on
implicit representations of Boolean and pseudo-Boolean (i.e.,
real-valued) functions by means of binary decision diagrams
(BDD’s) and ADD’s. The reencoding problem, whose exact
solution is NP-hard, is solved heuristically.

The program provides two heuristics; the first one is based
on the solution of amaximum weighted matching, while
the second heuristics is based on a recursive version of the
Kernighan–Lin [15] partitioning algorithm. The two heuristics
can be used to trade off accuracy for memory requirements of
the BDD/ADD representations; while the matching heuristics
provides more accurate results, the minimum-cut one is less
memory consuming.

For a graph representing a cluster of bits, the
reencoding information is given as a set ofreencoding func-
tions where each function expresses
each bit as a function of all the other bits. In other terms, the
reencoding can be thought of as an input/output relation

which binds reencoded bits to

BENINI et al.: POWER OPTIMIZATION OF CORE-BASED SYSTEMS 559

the original bits In practical terms, the construction and
synthesis of the encoding and decoding logic is obtained by
building a Boolean expression for the relation represented
with BDD’s, and eventually dumping the BDD representation
to a file as a network of multiplexors. This procedure yields the
netlist for the encoder, that can be optimized using standard
techniques.

Given the relation obtaining its inverse (which
represents the decoding relation) is quite easy, since it
is sufficient to swap the sets of ’s and ’s, that is,

The netlist for the decoder is again obtained through logic
optimization of the network of multiplexors derived from the
BDD’s of .

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results concerning
the use of the Beach solution. We first show data regarding
the reduction in switching activity that we have obtained
for software programs commonly executed by core proces-
sors of embedded systems. All these experiments have been
executed on the MIPS R4000 microprocessor running in
single-user/single-task mode. Because of its architecture—the
address bus is multiplexed between instruction and data ad-
dresses—this microprocessor well simulates the behavior of
most of the core processors and microcontrollers that are
available on the market. Then, we present an application of the
Beach solution to a real system consisting of a core processor,
a memory containing the program to be executed, and some
glue logic.

A. Special Purpose Programs

We have selected a set of software functions which are
usually executed by dedicated systems for image processing,
automotive control, DSP, robotics, plant control, and so on.
We have collected the address streams generated by typical
runs of such applications, we have encoded them using our
approach, and we have simulated the new traces to determine
the total number of bus transitions. Finally, we have compared
the so obtained bus activity results to those computed before
the encoding was applied.

Table I reports the outcome of our investigation. For each
application, we give the length of the address stream consid-
ered for the experiment, the number of bus transitions when no
encoding is used, the number of bus transitions after encoding,
and the percentage of savings achieved with respect to the
unencoded case. Also shown (two right-most columns of the
table) are the number of transitions and the percentage of sav-
ings achieved when the working zone encoding (WZE) scheme
of [7] is applied to the original trace. In our experiments,
WZE has outperformed all previously proposed bus encoding
methods, including Gray, T0, Bus_Invert, T0 Bus_Invert,
Dual_T0, and Dual_T0 Bus_Invert [4].

Results are highly satisfactory; in fact, a 41.8% average
savings has been obtained, with a peak improvement of 64.8%
for the vxv _mul example. Also, the comparison with WZE
is clearly in favor of the Beach solution. Running times of the

TABLE I
RESULTS FORSPECIAL PURPOSEPROGRAMS

TABLE II
ENCODER AND DECODER IMPLEMENTATION

overall encoding procedure are always within a few minutes. It
should be noticed that the data concerning thedashb example
do not refer to a single run of the embedded code but, rather,
to an average value taken over a total of 10 runs with different
input conditions. This is necessary to mitigate the impact of
data dependency on the order of execution of the program’s
instructions.

An issue that cannot be neglected regards the complexity,
and thus the speed and the power consumption, of the en-
coding/decoding logic that must be added at the bus ends. In
Table II, we report the characteristics of the circuits (that is,
area in m2, delay in ns, and power inW) obtained through
automatic synthesis and optimization of the encoding/decoding
functions. The results are obtained using Synopsys Design-
Compiler for the synthesis, and Synopsys DesignPower for
the power estimation. The circuits are optimized for delay,
and mapped onto a 0.35m, 3.3 V gate-library from SGS-
Thomson containing approximately 120 cells.

B. Case Study: Core-Based System

In this section, we show an application example of the
Beach solution to a realistic, yet simplified core-based design
[17]. The system implements a three-tap digital filter which is
characterized by the following equation:

560 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 4, DECEMBER 1998

Fig. 5. High-level system architecture.

The hardware realization of the filter uses, as embedded core,
the load/store CPU distributed with the SpeedChart tool [18], a
program for Statecharts manipulation. The assembly language
of the CPU consists of eight 16-bit instructions, each of which
is composed of a 10-bit field for the address and a 6-bit field
for the instruction op-code.

The architecture of the system is shown in Fig. 5. Besides
the core processor, it contains a RAM, an address
selector, a 7-to-1 multiplexor, and two input buffers. Memory
addresses are 10-bit wide, while data are 16-bit wide.

The assembly code of the filter consists of a total of 38
instructions, which are stored in the RAM starting at address

. After the initialization phase (which involves the
access to some constants which are stored in the bottom 16
memory cells), the program executes the following operations
for an infinite number of times, that is, until the system is
halted:

1) the coefficients and are loaded from the pri-
mary inputs and stored in cells
and ;

2) the sample, to be processed is loaded from the primary
inputs and stored in cell ;

3) the intermediate terms and are computed
through iterative sums, and then accumulated in cell

;
4) the value of now contained in cell is

moved to one of the top 512 cells of the memory at
the address contained in cell ;

5) the content of cell is incremented by 1, using
a modulo-512 arithmetic;

6) A jump back is made to restart the sequence of oper-
ations.

Notice that the coefficients of the filter can be modified before
a new sample is processed, and that the results are stored in
a 512-word circular queue (spanning addresses from
to for subsequent usage.

Table III shows the results of the application of the Beach
solution to the address streams generated by the core proces-
sor (busADDR_INT in Fig. 5) when the filtering routine is
executed. The data refer to a stream of approximately 465 000

TABLE III
RESULTS FOR THECORE-BASED SYSTEM

TABLE IV
ENCODER AND DECODER FOR THECORE-BASED SYSTEM

patterns, corresponding to the processing of a total of 5,000
input samples. The coefficients of the filter are reprogrammed
every 500 samples.

The encoder/decoder circuits have been implemented as
for the case of the special-purpose programs; the results of
the synthesis (i.e., area, delay, and power dissipation) are
summarized in Table IV.

In order to estimate the usefulness of the proposed solution,
we need to compare the amount of power saved on the bus
to the additional power dissipated by the encoding/decoding
circuitry, whose value is: W. We have
conservatively assumed a 100 MHz clock frequency (i.e., the
clock period is 10 ns). The additional delay introduced by the
encoder and decoder on the processor-memory path is 4.35
ns, which amounts to less than 50% of the clock period. The
supply voltage is V.

We now define theequivalent capacitancefor the encoder
and decoder as the capacitance that, when switched at every
clock cycle, causes a power dissipation equal to that of the
encoder and decoder. In symbols

pF

Clearly, the adoption of the Beach solution becomes conve-
nient if it reduces the average switched capacitance on the bus
by more than

Let us call the capacitance of each bus line, and assume
that all lines have the same capacitance. The average total

BENINI et al.: POWER OPTIMIZATION OF CORE-BASED SYSTEMS 561

switched capacitance on the bus with the standard binary
encoding is

With our encoding, such capacitance becomes

Therefore, the savings in switched capacitance per clock
cycle we get by applying the Beach solution amounts to

Then, the encoding becomes advantageous when
or, equivalently:

pF
pF

This is not a large value even for an on-chip bus line [19]. In
fact, a typical value of capacitance per unit length for a 1.5m
wide wire is 0.2 fF/ m. Thus, a 1 cm wire has a capacitance
of 2 pF. Off-chip lines have generally much larger capacitance
values [20]. We conclude that, for this case study, the Beach
solution provides a viable power optimization technique.

V. CONCLUSIONS

We have presented a new solution to the problem of encod-
ing the address bus of microprocessor-based systems to reduce
the total bus switching activity. The proposed technique,
unlike existing approaches, is strongly application-dependent.
Therefore, it is suitable for achieving power optimizations in
application-specific systems consisting of a core processor or
a microcontroller which repeatedly executes a special-purpose
program.

Given the address bus traces corresponding to the execution
of the embedded program, statistical information identifying
possible block correlations between the bus lines is collected
and exploited to group the bus lines into clusters. The encoding
and decoding functions are then generated for each cluster, and
the corresponding logic circuits, to be placed at the address bus
terminals, are automatically synthesized and optimized.

Experimental results have shown that large improvements
over application-independent encoding schemes can be
achieved with the proposed technique. In addition, the size, the
delay, and the power consumption of the synthesized encoding
and decoding circuits have shown to be small enough to make
the Beach solution applicable in practice.

ACKNOWLEDGMENT

The authors wish to thank L. Lavagno for the C code of the
dashb example and F. Ferrandi and F. Fummi for the VHDL
code of the core processor.

REFERENCES

[1] M. Stan and W. P. Burleson, “Limited-weight codes for low-power,” in
Proc. IWLPD-94: IEEE/ACM Int. Workshop Low Power Design, Napa
Valley, CA, Apr. 1994, pp. 209–214.

[2] C. L. Su, C. Y. Tsui, and A. M. Despain, “Saving power in the control
path of embedded processors,”IEEE Design Test Comput., vol. 11, pp.
24–30, Winter 1994.

[3] L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano,
“Asymptotic zero-transition activity encoding for address buses in low-
power microprocessor-based systems,” inProc. GLS-VLSI-97: IEEE
Great Lakes Symp. VLSI, Urbana, IL, Mar. 1997, pp. 77–82.

[4] L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano, “Address
bus encoding techniques for system-level power optimization,” inProc.
DATE-98: IEEE Design Automation Test Europe, Paris, France, Feb.
1998, pp. 861–866.

[5] M. R. Stan and W. P. Burleson, “Bus-invert coding for low-power I/O,”
IEEE Trans. VLSI Syst., vol. 3, pp. 49–58, Mar. 1995.

[6] J. L. Hennessy and D. A. Patterson,Computer Architecture—A Quanti-
tative Approach, 2d Ed. New York: Morgan Kaufmann, 1996

[7] E. Musoll, T. Lang, and J. Cortadella, “Exploiting the locality of memory
references to reduce the address bus energy,” inProc. ISLPED-97:
ACM/IEEE Int. Symp. Low Power Electron. Design, Monterey, CA, Aug.
1997, pp. 202–207.

[8] S. Wuytack, F. Catthoor, L. Nachtergaele, and H. De Man, “Global
communication and memory optimizing transformations for low power
design,” in Proc. IWLPD-94: ACM/IEEE Int. Workshop Low Power
Design, Napa Valley, CA, Apr. 1994, pp. 203–208.

[9] , “Power exploration for data dominated video applications,” in
Proc. ISLPED-96: ACM/IEEE Int. Symp. Low Power Electron. Design,
Monterey, CA: Aug. 1996, pp. 359–364.

[10] J. P. Diguet, S. Wuytack, F. Catthoor, and H. De Man, “Formalized
methodology for data reuse exploration in hierarchical memory map-
pings,” inProc. ISLPED-97: ACM/IEEE Int. Symp. Low Power Electron.
Design, Monterey, CA, Aug. 1997, pp. 30–35.

[11] P. R. Panda and N. D. Dutt, “Reducing address bus transitions for low
power memory mapping,” inProc. EDTC-96: IEEE European Design
Test Conf., Paris, France, Mar. 1996, pp. 63–67.

[12] , “Low power mapping of behavioral array to multiple memo-
ries,” in Proc. ISLPED-96: ACM/IEEE Int. Symp. Low Power Electron.
Design, Monterey, CA, Aug. 1996, pp. 289–292.

[13] J. Heinrich,MIPS R4000 Microprocessor User’s Manual, 2nd Ed., MIPS
Technologies, 1994.

[14] G. D. Hachtel, M. Hermida, A. Pardo, M. Poncino, and F. Somenzi,
“Re-encoding sequential circuits to reduce power dissipation,” inProc.
ICCAD-94: IEEE/ACM Int. Conf. Computer-Aided Design, San Jose,
CA, Nov. 1994, pp. 70–73.

[15] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,”Bell Syst. Tech. J., vol. 49, pp. 291–307, Feb. 1970.

[16] C. Passerone, L. Lavagno, C. Sansoé, M. Chiodo, and A. Sangiovanni,
“Trade-off evaluation in embedded system design via co-simulation,” in
Proc. ASP-DAC-97: IEEE Asia South Pacific Design Automation Conf.,
Chiba, Japan, Jan. 1997, pp. 291–297.

[17] F. Ferrandi, F. Fummi, E. Macii, M. Poncino, and D. Sciuto, “Testing
core-based digital systems: A symbolic methodology,”IEEE Design Test
Comput., vol. 13, pp. 69–77, Winter 1997.

[18] SpeedChart Project Designer User’s Manual, Version 3.2.0, Speed S.A.,
1995.

[19] N. Weste and K. Eshraghian,Principles of CMOS VLSI Design, 2nd Ed.
Reading, MA: Addison-Wesley, 1992.

[20] H. Johnson and M. Graham,High-Speed Digital Design: A Handbook
of Black Magic. Englewood Cliffs, NJ: Prentice Hall, 1993.

Luca Benini received the Dr.Eng. degree in electri-
cal engineering from Universit`a di Bologna, Italy,
in 1991, and the M.S. and Ph.D. degrees in electri-
cal engineering from Stanford University, Stanford,
CA, in 1994 and 1997, respectively.

Since 1997, he has been a Research Associate
at Universit̀a di Bologna and a Postdoctoral fellow
at Stanford University. He also holds a position as
Visiting Scientist at the Hewlett-Packard Laborato-
ries, Palo Alto, CA. His research interests are in all
aspects of computer-aided design of digital circuits,

with special emphasis on low-power applications.

562 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 4, DECEMBER 1998

Giovanni De Micheli (S’79–M’82–SM’89–F’94) is Professor of Electrical
Engineering, and by courtesy, of Computer Science at Stanford University,
Stanford, CA. His research interests include several aspects of the computer-
aided design of integrated circuits and systems, with particular emphasis
on automated synthesis, optimization, and validation. He is the author of
Synthesis and Optimization of Digital Circuits(New York: McGraw-Hill,
1994), coauthor ofDynamic Power Management: Circuit Techniques and CAD
Tools (New York: Kluwer, 1998), and of three other books.

Dr. De Micheli received the 1987 IEEE TRANSACTIONS ONCOMPUTER-AIDED

DESIGN/ICAS Best Paper Award and two Best Paper Awards at the Design
Automation Conference in 1983 and 1993, respectively. He is the Editor-in-
Chief of the IEEE TRANSACTIONS ONCOMPUTER-AIDED DESIGN OFINTEGRATED

CIRCUITS AND SYSTEMS.

Enrico Macii (M’92) received the Dr.Eng. degree
in electrical engineering from Politecnico di Torino,
Italy, in 1990, the Dr.Sc. degree in computer science
from Universit̀a di Torino, Italy, in 1991, and the
Ph.D. degree in computer engineering from Politec-
nico di Torino in 1995.

From 1991 to 1994, he was an Adjunct Faculty
Professor at the University of Colorado, Boulder.
Currently, he is an Assistant Professor at Politecnico
di Torino. His research interests include synthesis,
verification, and simulation and testing of digital
circuits and systems.

Massimo Poncino (M’97) received the Dr.Eng.
degree in electrical engineering in 1989 and the
Ph.D. degree in computer engineering in 1993, both
from Politecnico di Torino, Italy.

From 1993 to 1994, he was a Visiting Faculty
Professor at the University of Colorado, Boulder.
Currently, he is an Assistant Professor at Politecnico
di Torino. His research interests include synthesis,
verification, and simulation and testing of digital
circuits and systems.

Stefano Quer received the Dr.Eng. degree in elec-
trical engineering and the Ph.D. degree in computer
engineering from Politecnico di Torino, Italy, in
1991 and 1996, respectively.

Since 1995, he has been receiving a Postdoctoral
fellowship at the Computer Engineering Depart-
ment of Politecnico di Torino. His research interests
include logic synthesis, formal verification, and sim-
ulation and testing of digital circuits and systems.

