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ABSTRACT: Behavioral power estimation is required to help the designer in making
important architectural choices. In this work we propose an accurate and general hehav-
inral power modeling approach especially suited for synthesis-based design flows making
use of a library of hard macros implementing behavioral operators. Power dissipation mod-
els are pre-characterized and back-annotated in a preliminary step. Accurate :nformation
on the power dissipation of the used macros can then be collected during behavioral simu-
lation cf the syvuthesized circuit. Qur characterization and modeling methodology is based
on the theory of linear regression. Optimal linear power models are obtained wich methods
of least squares fitting and their generalization to a recursive procedure called tree regres-
ston. The regression models can be used for pattern-based dynamic power simulation and
for probabilistic static power estimation as well. Our behavioral simulator is integrated

- within PPP, a multilevel simulation engine for power estimation fully compatible with

Verilog XL.

INTRODUCTION

A critical feature for the success of behavioral
svnthesis tools is the capability of early estimat-
ing the power dissipation of large digital systems.
In this work we present a novel approach to be-
havioral power modeling especially suited for
svnthesis-based design methodologies.

In the design of large digital systems, build-
ing blocks are typically described by behavioral
models. For instance, at the register transfer level
(RTL) the circuit behavior is described by means
of arithmetic operators and registers controlled by

loop and conditional structures. RTL models are -

functionally accurate and enable behavioral simu-
lation orders of magnitude faster than gate-level
simulation. Since fully-functional RTL models are
available generally much carlier than their gate-
level counterparts, obtaining power data during
RTL simulation is an attractive possibility.
Techniques for power estimation based on be-
havioral models have been recently proposed.
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While in earlier approaches (Liu and Svensson.
1994) the effect of input signals statistics was not
taken into account, Landman and Rabaey (1995).
proposed a technique tha: accounts for signal
staristics and showed that power is strongly de-
pendent on such information. Unfortunately, the
applicability of this approach depends on a set
of assumptions on data representation and signal
statistics, and relies on human knowledge for the
formulation of basic behavioral models that are
subsegnently automatically optimized.

Our modeling technique allows accurate power
estimation in systems where the data representa-
tion and signal statistics do not satisfy the require-
ments for the applicability of the methods pro-
posed in (Landman and Rebaey, 1995). We start,
from a library of hard macros implementing be-
havioral operators. A characterization procedurc
is run once for all on the library elements (for
which we assume the availability of a gate or circuit
level representation). We focus on hard macros im-
plementing combinational logic primitives (arith-
metic operators, steering logic, encoding/ decoding
logic, etc.). Sequential macros, memories, analog
components are not discuss=d in this work.

Power models are automatically extracted and
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back-annotated in the behavioral representations
of the library elements. The back-annotated units
can be run within RTL simulation and provide a
high level power estimate. Notice that characteri-
zation of hard macros can be performed once for
all by the library vendor. This is not the case for
soft macros, that are generated from synthesizable
HDL at design time. In this work we do not deal
with soft macros.

Our approach is a generalization of well-known
lincar regression techniques. We abstract all infor-
mation on the internal structure of the unit (i.e.,
we assume that the circuit is a black boz). As a
consequence no human knowledge is required and
the model extraction procedure is fully automatic.
For a class of circuits the accuracy of the regres-
sion mode! can be improved if different regression
equations are obtained for different modes of op-
erations. We define a characterization procedure
called tree regression that automnatically captures
this kind of behavior.

An important strength of our regression models
is that they can be used for pattern-independent
static behavioral power analysis. RTL simulation is
run once for all and switching activities of the sig-
nals connecting the functional units are collected.
Architectural exploration can then be performed
without the need of repeating the simulation for
every selection of different units that the designer
wants to explore.

The experimental results show that behavioral
power estimation is a feasible alternative to gate-
level {or circuit level) techniques even iR cases
where no preliminary assumptions on data repre-
sentation and signal statistics can be exploited in
the pre-characterization phase. Although the loss
of accuracy is sizable, our models always perform
better than simple estimates based on average
power,

We have embedded the behavioral power esti-

mation tool in PPP (Bogliolo, Benini and Ricco,
1996), a multilevel power estimation engine con-
ceived to assist the designer with accurate power
information during the complete design process.
from the specification to the final gate-level imple-
mentation.

PREVIOUS WORK

In the simplest kind of RTL models (Liu and
Svensson, 1994; Martin and Knight, 1995), the
power dissipation of a functional unit is approxi-
mated with a single fitting coefficient P, namely,

the average power dissipation. The value of P is
generally computed by simulating the unit with
a long sequence of random input patterns possi-
bly resembling typical input statistic. The most
common assumption on the distribution of such
patterns is that of uniform white noise (UWN).
The power of a system composed by several func-
tional units is then computed as the sum of their
average power estimators.

Landman and Rabaey (1995) realized that for
signal processing systems operating with 2's com-
plement numbers, the input probability distribu-
tion is not UWN and the simple UWN assump-
tion can produce large errors. They concluded that
a dual bit type (DBT) model is a more accurate
representation of signal statistics. The least signif-
icant bits have an activ.ty pattern very close to
white noise, while the m.ost significant bits (sign
bits) have high correlation and cannot be modeled
as UWN. The model proposed in (Landman and
Rabaey, 1995) takes input statistics into account
by increasing the number of fitting coefficients to
be obtained during unit characterization. An im-
portant strength of the DBT model is that it al-
lows pattern-independens static power estimation
at the behavioral level. The designer simulates the
system at. the RTL level and collects data on the
signal statistics at the interface of the units. This
information is then explcited to perform architec-
tural power exploration: if different implementa-
tions of the functional units are available. the de-
signer may experiment with several combinations
without the need of re-simulating the RTL descrip-
tion.

Example 1. Consider a design where two 12-bit
adders M; and M, are instantiated. Assume that
four different adder implementation stvles are
available. The DBT power models {s;. u,] (simpli-
fied for the sake of explzenation) for the different
implementation styles are respectively: [0.5.3.1],
10.7,4.2], [0.31,5.1], [2.1, 2.7}). The first clement of
ecach array is the power coeflicient of the sign bits,
while the second is the power coefficient of the
UWN bits.

With a single preliminary RTL simulation (with,
say. 10° patterns), it is found that for adder A,
there are 7 sign bits and 5 UWN bits. For adder
M, there are 2 sign bits and 10 UWN bits. Dis-
regarding area and delay considerations. the first
implementation is the best choice for Al , with es-
timated power Ppry = 5%74+3.1%5 = 19. For Mo
the best choice is the fourth implementation with
cstimated power Ppr, =21%2+27+10= 312



REGRESSION MODELS FOR BEHAVIORAL POWER ESTIMATION 97

This architectural choice has been made without
iterating the simulation. Just one RTL simulation
was required to obtain the statistics on sign and
UWN bits. With pattern-dependent simulation, 16
runs of 10° patterns would have been required to
explore all possible alternatives.

The main limitations of the DBT approach are
i) the need of human knowledge for formulating
basic models for the units, ii) the degradation of the
accuracy to simple average power estimate when
the sign bits are a small fraction of the inputs, or
when the DBT model does not hold. We address
both the limitations and we propose a black-box,
general model that retains the desirable property
of allowing static behavioral power estimation.

More recently. Mehta, Owens and Irwin (1996)
proposed a behavioral characterization approach
based on clustering. The methodology presented in
(Mehta, Owens and Irwin, 1996) relies on the as-
sumption thar closely related input transition vec-
tors (a transition vector is the concatenation of
two successive input patterns) have similar power
dissipation. In our experience, for many circuits
the assumption is not valid. Consider. for instance,
the effect of the carry-in signal on the power con-
sumption of a full adder. Two transition vectors
that differ only for the value taken by the carry-in
bit in the second input pattern give rise to com-
pletely different power consumptions even if their
Hamming distance is 1. Although the authors ob-
tain an average error within 10-15% on the same
sample used for characterization, they don't dis-
cuss the dependence of the accuracy on the input
statistics. Finally, the model proposed in (Mehta,
Owens and Irwin, 1996) is strongly pattern depen-
dent: for each input pattern a table lookup must be
performed to obtain the power estimate. Hence, it
can be used in a pattern-based simulation context
but it is not applicable to static power estimation.

LINEAR REGRESSION MODELS

Consider a functional unit with n inputs and m
outputs. Assume that the circuit is stable at time
ty and t; (t2 > t1), and that an input transition
occurs in the time interval T = [t;,t;]. We de-
note by p the power consumption of the circuit in
the time period 7. Our goal is to find a black-box
pattern-dependent model of p using only boundary
information (i.e., the knowledge of the inputs and
outputs of the unit at time ¢, and t.).

To this purpose, we take T equal to the time pe-

riod between subsequent input patterns, and we
follow two simple observations: i) in a CMOS com-
binational circuit, some input has to switch in or-
der to dissipate power, ii) the presence of switch-
ing outputs corresponds to some internal activity.
Moreover, patterns with high input-output activ-
ity usually lead to higher power dissipation than
patterns with lower activity. Obviously this is not
always true also because the transitions of differ-
ent signals may have a differant impact on the dis-
sipated power.

We approximate the power dissipation in the cir-
cuit by means of a linear regression model based
on its input-output activity. The input (output)
activity is represented by a vector of Boolean vari-
ablesi = (i|.is,....i,) (0 = (01,09....,0m)) tak-
ing vilue 1 when there is a transition on the cor-

responding input (output) s.gnal. In symbols. our
power estimate is

P=Co + Criy + C2ly + ... + Cpip

F+Cnt101 + Cnp202 + ... + Cnt+mOm (1)

where ¢ = (cg,c1,...,Cnim) are fitting coefficients
to be determined during characterization. Notice
that there are 2" input transitions associated with
the same activity vector i.

Obviously, Equation (1) is only a rough approxi-
mation: power dissipation is also affected by several
other parameters (initial input values, input slopes
and signal skews) and its dependence on the I/0
activity is not exactly linear. On the other hand,
signal transitions are the main sources of power
consumption and the linear power mode! is attrac-
tive because it is simple and it does not require any
knowledge of the actual structure of the unit being
modeled.

To determine the coefficients of Equation (1) we
need a sample of input-output activities and corre-
sponding power consumption. The sample of data
collected during the characterization phase can be
represented by a pair (X, p). If s is the sample size,
X is an s x (n + m + 1) Boolean matrix contain-
ing the values taken by the :ndependent variables
during characterization (its k-th row being x(* =
(1, i(lk), i.E,k), o itE oik), o(2k", ..., 0N, while pis
a vector of size s containing the corresponding val-
ues of the dependent variable (the k-th element be-
ing p'®)) obtained from accurate gate-level power
simulation,

Given a sample (X, p), coefficients c are the un-
knowns of the following system of linear equations:

p = Xe. (2)
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Duc to the statistic nature of the characteriza-
tion process, the sample size must be significantly
larger than the number of parameters to be char-
acterized. Hence, matrix X has many more rows
than columns and the linear systern is over-defined.
The vector ¢ giving the minimum mean square er-
ror among all possible linear estimators of p can
be obtained from (2) using well-known techniques
of least squares fitting (Bowerman and O’Connell,
1990). An important property of the least squares
linear model is that it always produces an estimate
of p with the same average value as the average
value of p in the sample used for fitting. Therefore
it is guaranteed to perform at least as well as an
average value approximation.

Model Validity

In this subsection we check the validity of the
linear regression model by discussing the simplify-
ing assumptions we made to construct it.

The first assumption to be checked is that there
is correlation between the input-output switching
activity and power dissipation. We performed sev-
eral tests: a typical result is shown in Figure 1(a)
where the power dissipation is plotted as a function
of the toral input-output activity (i.c., the number
of inputs and outputs switching) for an eight-bit
carry-lookahead adder. It is apparent that in this
case there is good correlation between power con-
sumption and input-output activity. This result is
not general. but we experimentally found that it
holds for a large set of circuits with functionality
ranging from random logic to arithmetic operators.
Moreover. the proposed regression model provides
a deeper insight than the model used in Figure 1(a)
in that it accounts for the activity of single inputs
and outputs.

The second issue is the robustness of the lincar
model in presence of the “noise” made by the vari-
ation of parameters that do not take part in the
model (such as the initial state of the input sig-
nals). An important property of the least squares
equation is that it provides the optimum fit in a
statistical sense. If the dependent variable can be
seen as the superposition of a deterministic vari-
able (function of the independent variables) and
a random noise with Gaussian distribution, it can
be shown that the least squares fit maximizes the
probability that for a given value of the indepen-
dent variables the dependent nocisy variable has
the value predicted by the least squares solution
(Bowerman and O’Connell, 1990). We checked the
Gaussian hypothesis by plotting the distribution of

power dissipation obtained for several input tran-
sitions corresponding to the same configurations of
i and o (remember that a given value of the input
switching activity can be produced by 2" differ-
ent input transitions). An examnple probability dis-
tribution for the same adder mentioned before is
shown in Figure 1(b): the bell-shaped curve closely
resembles a Gaussian distribution. Again, we do
not claim the generality of this result. but our tests
show that it holds for a large class of circuits.
Finally, the last hypothesis to be tested is the
linearity of the model. Unfortunately. power is not
4 linear function of the switching activity at the in-
put and output signals. The linear model has been
chosen because the thecry of linear regression is
well-established. and it does not require any knowl-
edge of the internal structure of the circuit. How-
ever, trying to fit a non-linear relationship with a
linear model may cause sizable errors. Morecover,
the unit may have different modes of operaiion.
with completely dissimilar power consumption.

ADVANCED REGRESSION MODELS

!

Although the theory of linear regression is well-
established. and the procedures for model build-
ing are straightforward, the accuracy of simple re-
gression models for power dissipation is limited
by the strong non-linearity of its dependence on
[/O activity. Moreover. he unit may have differ-
ent modes of operation, with completely dissimi-
lar power consumption, 7o address the limitations
of linear regression we prapose an advanced proce-
dure closely related to the non-parametric statis-
tical model known as regression tree (Breiman ct
al.. 1993). We call our procedure tree regression.
because it recursively builds a tree structure with
linear regression equations on the leaves.

Tree Regression

The inputs of large logic units can often be
grouped into two classes: control inputs and daig
inputs. Control inputs have very strong influence
on the behavior of the units. because they se-
lect different modes of operation. On the other
hand, while high activity on data inputs usually
correlates well with high power dissipation, such
behavior is not observed for control inputs. Fron
this observation, it comes that control inputs can
he used to select among different regression equa-
tions. Given a control variable. and a sample, we
split the sample in two subsets. one for each value
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a) Correlation between the [/O activity of an 8-bit carry-lookahead adder and its energy-per-cycle consumption.

b} Bell-shaped distribution of the energy consumption of the same circuit due to input transitions corresponding to the
same activity vectors (namely, i = (0011001100011011), o = (00101001)).

of the control variable. On the two sub-samples we
then compute two new linear regression models.
The advantage of this procedure is intuitively
clear. If the behavior of the logic unit changes rad-
ically for different values of the control variable, a
single regression model will attempt to find a linear
fit between two widely spaced clusters of data. As
a result, the fitting will not be satisfactory for ei-
ther of the two clusters. If we split the data, and we
separately fit the two clusters, much better results
are obtained. The effectiveness of model splitting is
illustrated in Figure 2 for a two variable function.
This reasoning can be extended to multiple con-
trol variables in a recursive fashion. Once we have
split the data in two clusters, we can further split
if other control variables can be found in the par-
tial models. The structure generated by the recur-
sive splitting is called regression tree. The internal
nodes of the tree are labeled with the control vari-
ables on which we split the model, while the leaves

correspond to regression equations withn+m —d

independent variables, where d is the depth of the
tree. The number of leaves is exponential in the
depth of the tree. Consequently, the splitting pro-
cedure must be limited to a small number of input
variables.

Notice that, in principle, model splitting also
addresses non-linearities. A function p of Boolean
variables z,, 1, ...,z, is non-linear if and only if
some of the independent variables (say z;) affects
not only the value of p, but also the dependence of
p on some other variable (say z;). In other words,
z; plays the role of a control variable. Accuracy can
then be improved by using two different regression
models for the two values of z;.

Splitting Criterion

Since our goal is a black-50x modeling proce-
dure. we need an automatic splitting criterion
based on boundary information. To this purpose
we use a statistical approach that can be out-
lined as follows. i) The globzl regression model is
computed. ii) For each independent variable z;,
the proportion of variance #? of the dependent
variable p due to r; is computed (Bowerman and
O’Connell, 1990). iii) The independent variable
with the largest o} is chosen for splitting. The ra-
tionale behind this procedure is quite simple. The
variance o7 is high if a change in the value of r; is
associated to a wide variation of p (in average). In
other words, if the independent variable z; selects
between two radically different behaviors of the
unit, the variance of p due to z; will be significant.

The advantage of using a statistical method to
select the splitting variables is two-fold. No hu-
man knowledge is required to steer the character-
ization process, and the method may be also ap-
plied to units with no evident contro} signals, in
order to isolate behaviors with good linearity char-
acteristics. The automatic splitting process makes
our regression non-parametric. In non-parametric
regression different functional relationships are ap-
proximated with regression models for which not
only the fitting parameters dut also the structure
of the model itself may change. The regression tree
retains the soundness of linear regression, joined
with the flexibility of non-parametric methods.

One last issue is the choice of the terminating
conditions. If the number of samples is sufficient
and the distribution of the samples is uniform, the
user simply specifies the depth value, and the pro-
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Figure 2  a) Least squares linear approximation of a n
the same function using two linear equations of variable z

cedure automatically builds a complete regression
tree. This is not always the case. Some of the inde-
pendent variables are outputs of the module, and
the user has no control on their distribution. More-
over, the input vectors may not be uniformly dis-
tributed. As a consequence, some of the branches
may find singular or statistically not significant
least-square matrices. In this case, the least-square
equation of the level immediately above in the tree
is used, with the independent variable used for the
last splitting stuck at the value corresponding 1o
the branch of the tree.

The pseudo-code of the regression tree proce-
dure is shown in Figure 3. The procedure returns
the pointer to the top node of the regression tree.
The parameters are: the sample matrix X contain-
ing the values of the independent variables: the
sample vector p, containing the measured values
of power dissipation; the regression vector com-
puted in the upper level of the recursions (initial-
ized to NULL when the procedure is first called):
the current level of recursion (initialized to 0): the
required depth of the tree. Observe the two base
cases for the recursion: least-square matrix too
small (or singular) and leaf reached. The proce-
dure find max_variance selects the independent
variable z; with the maximum o2. The procedure
split, selects the rows of X with fixed value r =
or z = 1 and the corresponding elements in pP.

Example 2. Assume that our model has 4 inde-
pendent variables z1, 22, 23, 4. We want to obtain
a tree with depth 2. In the first iteration, variable
) is selected for splitting. The tree after the first
splitting is shown in Figure 4(a). In the sub-tree
with z; = 1, variable x4 is chosen for splitting. The

P X2 =0 A P lx?_ =
e, o
Peg,y

| 1
| ’ | b
[ 0 | 0

!

b) 1 1
X1

on-linear function of two Boolean variables. b) Exact fitting of
1- The value of z2 is used to switch between the two models.

two leaves are obtainec: they are two linear equa-
tions with 4 independent variables (Figure 4(b)).

In the subtree with z; = 0, variable z3 is se-
lected for splitting. The leaf with T3 = 1 can be
computed. The leaf z3 = 0 cannot be computed
because the least mean square matrix is singular.
The regression equation of the parent node is then
used for the leaf. The final structure of the regres-
sion tree is shown in Figure 4(c).

We have described thz advantages of our method
for the case of units with control inputs. It will be
seen in the discussion of the results that the re-
gression trec is useful ir. general. The choice of the
splitting variables is exclusively based on statisti-
cal criteria, thus even units with no evident control
signals may benefit of cur technique that dyvnami-
cally develops a model by trving to isolate behav-
lors with good linearity characteristics.

STATIC POWER ANALYSIS

The regression models described in the previ-
ous sections can be easily incorporated in any RTL
simulator to provide pattern-dependent power esti-
mates. At each clock cycle, the power consumption
of the functional units is obtained from the switch-
ing activity at their I/C signals (directly available
during simulation). The complexity of power eval-
uation is linear in the size of the model (i.e., in the
number of I/0 signals of each unit).

Even if power evaluation does not impair the ef-
ficiency of behavioral simulation, numerous simu-
lations are required 1o obtain significant estimates
of the average power. Moreover, power estimation
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tree RegTres(X, p, cyp, level, depth) {
if ( insufficient_sample(X,p) ) {

Node—leaf = Cups

return(Node);

else {

¢ = compute.least_square(X,p);

it (level == depth) {

Node—1leaf = c;

else {

Z = find.max.variance(X, p);

Node—»splitvar = 1;

(Xihen s Prhen) = split(X, p, z=1);

— e

Res = RegTree(X,nen s Pthen, €, level+1, depth);

Node—then = Res;
(Xeiser Petse) = split(X, p, £ =0);

Res = RegTree(X. 5., Peises €. level=1, depth);

Node—else = Res;

1
i

return(Node) ;

Figure 3

xl=1

101

/* Base case: sirgular matrix */

/+ Base case: leaf reached */

/* Recursion: split on the var. with max. p-variance */

Pseudo-code of the tree regression algorithm.

xl =0
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N

4=0 \\

-

________________________ >

| €50 +052 52 + c54.x4 l LcZO +e22x24+¢230 + ¢4 x4

3
{c
Figure 4

has to be repeated each time the designer decides
to explore a different design choice by replacing
one or more macros with functionally equivalent
ones. As a consequence, pattern-dependent power
simulation is not practical for exploring the de-
sign space. Faster (and usually less accurate) static
analysis techniques are often preferred: the entire
design is simulated once for all to collect statisti-
cal information about the switching activity at sig-
nals connecting functional units; signal statistics

)

Steps in the construction of a regression tree with depth 2.

are then used to estimate power consumption.

In this section we show how the regression mod-
els we propose can be used to perform static power
analysis at behavioral level, without loosing accu-
racy with respect to dynamic simulations based
on the same models. Consider the linear model
of Equation (1) applied to a n-input, m-output
macro. To estimate the power consumption of an
instance of the macro used in the context of a larger
design, we simulate the design for a large number



102 BENINIET AL.

of input patterns (say, N), we evaluate Equation
(1) at each clock cycle and we compute the average
of the N values we obtain. In symbols:

1 N

Parg = f\_' Zp(k)
k=1
N

1 (k)
:T\—;Z(Co-l-cl‘ll‘ s S
° k=1

T (k !
*Cn'lsf' + Cn4+10; ) +...+ Cn+m05,§)) (3)

where apex k is used to denote the k-th clock cycle.
For linearity, Equation. (3) can be rewritten as

N
1 (k)
pm-f,=Co+C1X’:Zil +-'.

k=1
N

AV
1 , 1 k
+Cn—’<; E 15,")+c,,;1—,\~ E g ) +..
T k=1 . =

7
k==
1 &
(k
+cn+m",\__—zom)
k=1
=C¢+tcT +...

+CaTi, + Cns1To, + CnimTo., (4)

where the 7's are the transition probabilities at the
inputs and outputs of the unit.

Equation (4) actually provides a behavioral
model for static power analysis. Transition proba-
bilities at the interconnections between the func-
tional units can be computed once for all and then
used to evaluate the power consumption of each
element. If different macros are available to imple-
ment each functional unit, different solutions can
be compared without re-simulating the circuit.

Notice that Equation (3) and Equation (4) rep-
resent exactly the same model. There is no loss of
accuracy in using the static approach instead of
the dynamic one. If the same set of .V test patterns
is used both to perform pattern-dependent power
simulation and to compute transition probabilities,
the two equations return exactly the same value.
In both cases, the accuracy depends on the model-
ing assumptions discussed in the previous section
and on the number of test vectors applied (N).

Similar considerations can be applied to regres-
sion trees, but in this case some accufacy may be
lost when using the static power estimation model.
The loss of accuracy is due to the inherent non-
linearity of the regression tree. This statement can
be clarified through an example.

Example 3. Consider the simple regression trec

of Figure 4(a). The average power estimate pro-
vided by the model is

,\I

1< K k k

Pavg = N Z(m§ )(Cxo + szxg ) + Clsxg )
k=1

+C14-’E$k)) “+ (1 - ;Egk))(c;go + ngiigk)

k k -

+c23x§ ) +(:24J:,(1 )) ). (3)

By applying the same transformations used in

Equation (4), we re-express Pavg in terms of tran-

sition probabilities:

Pavg =T1(C10 + C1272 + C1373 + C1474)
+(1 = 11)(ca0 + Caz72 + 233 + c7y). (6)

In this case, however, a further assumption is re-
quired to state the equivalence of the two expres-
sions. In fact, Equation (5) is not linear, therefore
the static power estimate does not imply loss of
accuracy with respect to the dynamic power esti-
mate only if 2 is statistically independent from all
other independent variables.

The pseudo-code of an algorithm for the static
evaluation of a regression tree is shown in Figure
5. The initial inputs are a pointer 10 the root of
the tree and the array T of input/output tran-
sition probabilities. Power consumption is recur-
sively computed at each node during a depth first
traversal of the tree. There are two main cases: at
a leaf node the value taken by the corresponding
linear equation is returned (Equation 4). while at
a non-leaf node the return value is the weighted
sum of those of the two branches (the weight being
the transition probability 7; of the splitting vari-
able r;). '

EXPERIMENTAL RESULTS

We tested our methodology on a set of bench-
marks from the MCNC suite and on arithmetic
units generated with Synopsys’ DesignWare. No-
tice that even if we have some partial knowledge
about the benchmark interface and size, we do not
know their internal structure (often we do not even
know their functionality). This is thc ideal testing
environment for our procedure: we want to auto-
matically generate power modeis for library units
without using any knowledge on their structure.

The data on power dissipation has been obtained
with PPP (Bogliolo, Ber.ini and Riccd, 1996), an
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float EvalRegTree(Node, 77) {
if ( Néde—)splitvat == NULL ) { /% Base case: leaf node */
p = EvalLinEq(Node—1leaf, T);
} else { /* Recursion: internal node */
Pthen = EvalRegTree(Node—then, T);
Petse = EvalRegTree(Node—else, T);
r; = Node—splitvar;
P = TiPthen + (1 = Ti)Pelsn s
}
return (p);
}
Figure 5  Pseudo-code of the algorithm for the static evaluation of a regression tree.
Table I  Results and comparison for different behavioral power models ¢
Circuit Const. Avg. Lin. Reg. Reg. Tree 1 | Reg. Tree 2
name Ins. Outs RMSE AVGE RMSE AVGE RMSE AVGE RMSE AVGE
alu2 10 6 0.4:41 0.3.46 0.33% i 0.291
1154 0.903 0.8 0.138 3.301 0.197 0.510 0.120
alud 14 R 0.388 0.291 0.275 0.260
1.042 0.762 0.518 0.072 0.549 0.147 0.521 0.119
17 5 2 0.701 0.422 0.37% 0.376
1.786 1.325 0.695 0111 0.686 0.015 0.660 0.070
c132 36 T 0.365 0.207 0.199 0.191
1.128 0.849 0.390 0.086 0.385 0.071 0.403 0.122
count 35 16 0.337 0.232 0.227 0.221
1.362 1.181 0.428 0.136 0.421 0.103 0.401 0.073
decod 5 16 0.607 0.374 0.313 0.301
1.683 1.231 0.636 0.107 0.549 0.100 0.458 0.031
parity 16 1 0.204 0.174 0.16: 0.163
0.693 0.570 0.382 0.224 0.397 0.251 0.405 0.266
pcle 19 9 0.442 0.364 0.344 0.323
1.307 1.038 0.602 0.136 0.605 0.178 0.57 0.113
fastdiv 17 9 0.462 0.364 0.333 0.331
1.193 0.729 0.677 0.050 0.666 0.076 0.685 0.086
mult 17 16 0.287 0.263 0.257 0.251
0.78% 0.596 0.463 0.164 0.459 0.162 0.445 0.132
sqrt 9 4 0.366 0.272 0.269 0.255
1.110 0.807 0.-496 0.053 0.507 0.112 0.510 0.121

accurate gate-level power simulator that has been
reported to produce estimates within 3% from elec-
tric simulation (for library-based design in CMOS
technology). Notice that electric simulation of our
benchmarks would have required an excessively
large amount of computation time, thus the avail-
ability of a fast and accurate power simulation tool
is paramount for model building.

For each benchmark circuit we generated a large
sample of input patterns and corresponding power
dissipation. The input patterns used for model
building were uniformly distributed and indepen-
dent. In a different design environment, typical
usage trace could be used. We built the regression
model using linear regression and tree regression
with depth one and two (i.e., two and four leaves).
The regression models were then compared to the
constant estimator given by the average power

on the sample (i.e., a pattern-insensitive estimate
equal to the average value).

Two different error measures have been used:
the relative root mean square error RAMSE
(RMSE = VMSE/AVG, where AVG is the
average power on the test sample) and AVGE,
the relative error on the average (AVGE =
|AV Grodet — AVG|/AVG). While RMSE pro-
vides information on how well the pattern depen-
dence of power dissipation is modeled, AVGE is
a measure of the accuracy in the estimation of the
average power.

The results are shown in Table I. First, we esti-
mated the accuracy of the models on a test sam-
ple composed by input vectors randomly chosen
from the large sample used for characterization. In
this case only the RMSE is significant, because
all models give by construction the same (correct)
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Table 11

gate-level simulations (GLS). The cycle time was of 100ns

Experimental results on the 19 units in the design of Fi
errors made by linear regressions (LR), regression trees of depth

gure 6. The last three columns report the relative
1 (RT1) and static power analysis (SPA) against accurate

" Unit GLS Relative Error (%)

Macro on m Gates Iustance (W) LR RTI SPA
CMPXX-11 22 1 48 AZero 368 1€.5 10.9 9.5
AMax 339 93 5.3 6.9

BZero 372 1€.3 12.2 11.0

BMax 337 94 4.1 3.8

EQCompare 449 35 3.5 4.0

ResultZerol 704 32.1 28.1 28.6

ResultZero2 686 27.9 ; 21.9 22.0

ResultMax1 651 31.2 21.5 23.2

ResultMax2 640 25.4 20.8 21.0

CMPGT-11 24 2 45 GTCompare 448 12.9 10.1 10.0
EXPSBS 25 13 110 SubAminusB 1178 9.1 1.2 3.7
SubBminusA 1216 9.0 1.6 2.9

ExpAdjl 729 17.2 38.5 39.2

INC-11 12 12 51 Explnci 585 16.3 16.3 16.3
Explnc? 842 10.4 10.4 104

MUX21-11 24 11 48 ExpFirstNormSelect 742 22.2 6.8 7.6
ExpDiffSel 392 18.0 44.1 43.3

ExpTopSel 546 12.7 9.8 11.4

MUXS51-11 60 11 118 ExpFinalSelect 596 23.9 17.5 18.1
Entire Exponent Logic 11820 15.2 7.7 8.5

average power estimate (AV'GE is always zero). It
can be seen that the regression tree approach leads
to models with improved quality compared to lin-
ear regression and constant models. Moreover, the
RAMSE decreases when we increase the depth of
the tree.

To test the flexibility of the regression mod-
els, we generated a new set of input vectors with
completely different statistical characteristics
from those used for characterization: the switch-
ing activity was much reduced (from 0.5 to 0.2)
and some correlation was randomly introduced
between inputs. In this case both RVMSE and
AVGE are significant. The performance of the
constant model is unacceptably degraded, both
in average and instantaneous power estimate. In
contrast, the performance and robustness of the
linear regression models for average power estima-
tion is generally good. Unfortunately, the RA/SE
is quite high, proving that linear models do not
perform well as instantaneous power estimators,

Although it is clear that linear regression
outperforms the simple average-power pattern-
independent model, the choice between regression
tree and standard linear regression is not straight-
forward. It seems that the regression tree is supe-
rior to linear regression when the usage patterns
are similar to the characterization patterns. If this
is not true. standard linear regression leads to the

best results.

Finally, we tested our behavioral power esti-
mates on a complex design of practical interest.
namely, a fully-functional high-performance IEEE
standard floating point adder/subtracter in dou-
ble precision described in Verilog HDL. The design
was composed by four units: the mantissa datap-
ath (53 bit wide), the exponent datapath (11 bit
wide). the rounding logic and the control logic
(to set the various rounding modes and to select
floating point sum or subtraction). The adder was
designed to perform an addition/subtraction per
clock cycle. The design was built starting from a
library of hard macros. We discuss the power csti-
mation of the exponent computation block. that
was simulated within the adder.

We performed fully behavioral simulation of the
whole floating point adder, with power estimation
mode activated only for -he units of the exponent
block. The timing model used for the signal prop-
agation through the unizs was a simple constant
delay model. Thus, the simulation was not cycle-
based: even if the timing model was not accurate,.
multiple transitions causad by propagation of sig-
nals through paths of unequal length were taken
into account. We found that the pure cycle-based
zero-delay simulation mode caused an unaceept-
able degradation in the quality of the power esti-
mation, and we traded off some simulation perfor-
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Figure 6

mance for increased accuracy in estimation.

Looking at Figure 6, we observe that several
inputs to the exponent logic are controls coming
from the mantissa datapath and the control logic.
Additionally, the design has several internal sig-
nal reconvergences. Obviously not only the uni-
formm white input distribution hypothesis is not
vaiid for macros in the exponent logic, but we can-
not even assume any simple distribution (such as
that proposed in (Landman and Rabaey, 1995) for
the numerous control inputs. Moreover, different
instances of the same macro have completely dif-
ferent I1/0 statistics, depending on their location
within the circuit.

The building blocks of the datapath were pre-
characterized before behavioral simulation. The

expResultEQMax1
- i CMPXX_11 '———
° expResuitEQO2
CMPXX_11
7 expResultEQMax2
CMPXX_11

finalExpUseEx; MUX41_11
ExpResult

High-level schematic of the exponent logic of a double-precision IEEE standard floating point adder.

patterns used for characterization had no relation
with those provided during simulation. This is the
typical usage situation: the macros are character-
ized once for all (possibly by the library vendor)
without any detailed knowledge on where and how
they will be used (by the designer). Uniformly
distributed randoin patterns were used for charac-
terization. Three different power estimators were
compared for each of the five macro types used
in the exponent logic: i) linear regression models
(LR), ii) regression trees of depth 1 (RT1) used in
the context of an RTL simulation, iii) static power
analysis (SPA) based on the same regression trecs.

Table II reports the relative errors (AVGE) for
the instances of the units and for the complete
block. The accuracy of the regression-based ap-
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proach on the total power is evident. The compen-
sation between over-estimates and under-estimates
for the units explains why the global average er-
ror is smaller than the error on the single blocks.
Notice also that for some instances of the macros
the error is large, therefore it would be mislead-
ing to assume that comparisons betwecn the es-
timated power consumption of different instances
within the design can be made with the same de-
gree of confidence. The range in accuracy for es-
timation of the power consumed by the units is
due to the widely varying input statistics. Regres-
sion trees generally outperform linear regression,
but sometimes they perform substantially worse
(namely, for ExpAdjl and ExpDiffSel). This is an-
other proof of the tradeoff between accuracy and
robustness that complicates the choice between lin-
ear regression and regression trees.

The last column refers to the static evaluation of
the regression tree based on transition probabili-
ties. We observe that some inacurracy is sometimes
introduced by the correlation between the split-
ting variable and (some of) the other ones. Notice
that. for the two instances of macro INC-1 1, there
are no differences between the three power estima-
tors. In fact, the splitting threshold criterion used
to construct the regression tree was not satisfyed
and the automatic characterization procedure re-
turned a traditional regression model instead of a
regression tree. As long as linear models are used.
static power analysis based on transition probabili-
ties is equivalent to dvnamic evaluation performed
during simulation.

Our experiments show that architectural explo-
ration based on regression models is feasible and
produces useful information. We believe that this
is a key advantage of our approach when compared
to table-lookup methods. Both for dynamic and
static power estimation, the models have minimal
computational impact.

CONCLUSIONS AND FUTURE WORK

In this work we discussed the theory and ap-
plication of simple and advanced linear regression
models for power dissipation of combinational hard
macros. Qur method does not rely on any assump-
tion on data representation and signal probabil-
ity distribution. No human knowledge is nceded
for providing an initial model. Our methodology is
particularly well suited for design methodologies
based on automatic synthesis and standard macro
libraries. The linear model has limited accuracy for

instantaneous power, but it is remarkably robust
and sufficiently accurate for average power estima-
tion. Regression models represent a noticeable im-
provement with respec: to single-parameter power
models and are widely applicable. Regression trees
further improve the accuracy of simple linear rc-
gression by reducing the effect of non-linearitics
and automatically idertifying control variables.
Although our method is flexible and general. it
targets a specific class of circuits, namely, combi-
national hard macros. More work has to be done
to obtain accurate black-box models of sequential
macros. Our method is not suitable to model the
behavior of memories. Mermories are better repre-
sented by customized models exploiting their reg-
ular architecture (Landman and Rabaey. 1995).
Finally, we cannot directly modcl the power dis-
sipation of controllers that are synthesized with
sparse logic. In this case, our method is applicable
after a fast synthesis step that provides a gate-level
implementation of the controller. From the simnu-
lation of the gate level implementation, we obtain
a regression model that can be back-annotated in
the behavioral description to provide a first-order
power estimation for the controller. that will be
fully optimized in later steps of the design process.
We incorporated linear regression models and
regression trees in PPP, a logic simnulation en-
gine for power estimasion based on Verilog XL,
PPP provides guidance to the designer during the
phases of the design process. from behavioral sim-
ulation to gate-level optimization and validation.
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