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1. Abstract

Component reuse requires designers to determine
whether or not an existing component implements desired
functionality. If a common structure is used to represent
components that are described at multiple levels of
abstraction, comparisons between circuit specifications and
a library of potential implementations can be performed
quickly. A mechanism is presented for compactly specifying
circuit functionality as polvnomials at the word level
Polynomials can be used to represent circuits that are
described at the bit level or arithmetically. Furthermore, in
representing components as polynomials, differences in
precision between potential implementations can be detected
and quantified.

2. Introduction

The increased complexity of integrated circuits has
forced designers to reuse existing circuitry when
constructing new systems. The proliferation of reusable
blocks has promised opportunities to complete new designs
more quickly and with fewer errors. However, searching the
space of existing implementations is time consuming and
fraught with pitfalls, as the suitability of existing blocks is
determined by manual methods or verbal descriptions. This
search promises to become more complex as the number and
need for reusable designs increases. The structures and
methods presented in this paper enable automation of this
search.

Component matching is the problem of allocating
complex blocks given a system specification. This problem
reduces to determining if an element in a library of existing
designs performs the same function as part of the
specification. For example, in designing the baseline JPEG
encode block of Figure 1, subblocks are required to perform
a discrete cosine transform (DCT), quantization, DC (zero
frequency) encoding, and AC (non-zero frequency)
encoding. This system can be synthesized by matching the
arithmetic specification of each of these functions to a bit
level description of the implementation.

Component matching is closely related to verifying
that a specification and implementation match exactly, but
presents a few important differences. Several blocks may be
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able to satisfy the functionality of a specification, but contain
very different implementations, allowing for tradeoffs in
execution time, area, power consumption, precision and
other qualities. For example, in performing DCT operations,
an implementation may compute the cos(x) to a very high
degree of accuracy, yielding smooth object edges, but
incurring a high cost in area and execution time, while
another implementation may employ the same technique at a
lower level of precision to preserve area and increase
performance.  Both  implementations  match  the
specification’s functionality, yet yield different numerical
resuits.

The examples discussed above can be specified very
efficiently with polynomial models. For example, cos(x) can
be approximated by:

K20+ xH4L - x/6! + ..+ xn!
This paper presents methods for developing analogous word
level polynomial models for existing implementations given
a bit level description of the implementation. These methods
are ideally suited for circuits that implement arithmetic
functions and. in this paper, are applied to combinational
circuits.

In constructing polynomial models, we derive a
means for determining whether a specification and
implementation perform the same function and a means for
quantifying their differences. Quantifying the differences
between these two models allows functionality to be
approximated within specified bounds to achieve higher
performance or lower area and power costs. Furthermore,
quantifiable differences can be compensated for by adding
logic around an existing block.

3. Related Work

Component matching has historically been restricted
to allocating combinational logic gates. Many structures,
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Fig. 1 Mapping JPEG encode onto existing designs



such as ROBDDs ([Br86]), are ideal for mapping HDL
specifications onto a library of gates. The canonicity and
ease of composition that ROBDDs provide make them ideal
for matching small combinational circuits. However, for
more complex functions, the potentially exponential size of
BDD structures makes comparison of BDDs time consuming
and memory intensive. When comparisons are sought
between functions that are not described at the bit level,
BDD structures are not sufficient to represent circuit
functionality. Furthermore, BDDs can yield information on
whether or not a specification and implementation match
exactly, but offer no path for quantifying the degree to which
the two are the same. That is, two functions that have similar,
but not equal, BDD structures may implement drastically
different functions while two very different BDDs may
implement the same function with different degrees of
precision.

Binary Moment Diagrams (BMDs) ([BrCh95]) have
been developed to ease the memory and time required to
manipulate complex structures by generating word level
representations. BMDs have been used to verify the
functionality of linear circuits [ChBr96]} and could be
adapted to perform component matching for those circuits.
However, BMDs are unsuitable for use in non linear
functions because of the resulting exponential complexity.
Hybrid Decision Diagrams ([CIFu95]) and Multi Terminal
BDDs ([CIFu93]) suffer from similar restrictions. PHDDs,
developed in [ChB1r97] are well suited to handling the non
linearities associated with floating point arithmetic, but can
still be exponentially complex for non-linear functions.

Minato introduced a method for modeling and
manipulating circuits that implement polynomial functions
using Zero-suppressed BDDs ([Mi96]). This structure
provides an efficient representation for those circuits for
which a polynomial description is specified, but becomes
exponentially large if discontinuities exist in the function.
The methods we will present here develop a mechanism for
deriving the polynomial representation given a Boolean
circuit description. In addition we will present a mechanism
for manipulating and modeling circuits that contain
discontinuites and for detecting these discontinuites.

Efficient component matching requires data
structures that are canonical, constructible in polynomial
time, and allow for simple composition. This paper will
demonstrate  methods  for  determining  polynomial
representations for circuits that are described at the bit level.
Furthermore, we will prove that a unique minimum order
polynomial representation exists for all circuitry without
feedback. In representing hardware as polynomials, blocks
can be efficiently compared with one another to determine if
they implement the same functionality. In addition,
polynomials are easily composable, allowing efficient
determination of the functionality of hierarchical or
partitioned blocks.

4. Bit Level Polynomial Representations
Generating a word level polynomial representation
for a Boolean function may appear to be an inconsistent

679

problem because Boolean functions are inherently
discontinuous. However, a Boolean function, y == F(x), where
x and y are bit vectors, can be treated as a collection of
coordinates (x, y) which can be fit to a minimum-order
polynomial. If the order of this polynomial is known to be n,
then n+1 coordinates can be extracted from the function and
a set of n+1 equations and variables (the coefficients of the
polynomial) can be constructed and solved. Thus, the
problem of generating a word level polynomial
representation for a Boolean function reduces to determining
the order of the polynomial.

4.1 Existence and Uniqueness

The following theorem is the basis for determining
the polynomial representation of circuits described at the bit
level. This theorem, derived from the binomial distribution
from traditional calculus, is proven for integers and adapted
to prove the existence and uniqueness of polynomial
representations of Boolean functions.
Theorem 4.1 Given a polynomial function F(x) of order n,
where xe Z, the function F(x) = F(x+1) ~F(x)is of
order exactly n-1.

n
Proof Let F(x) = Zci~x'
i=0

n .

F(x) = Zci-(x+1)’~ci-xl
i=0 .
i-

i
i i N (i AR o (1) i
¢ (x+1) —cx —ci‘[‘)_’(j)w_.x] = c{)_‘(j) XJ
j=0 =0

thus, each term of order i in F(x) contributes a polynomial of
order exactly i-1 to F (x). Thus, x" contributes a polynomial

of order n-1 and is the only term to do so. Therefore F (x) is
of order n-1 .
To illustrate Theorem 4.1, note that if F(x) = x3 , then
F(x+1) - F(x) = x> + 3x*> + 3x + | - x> = 3x®> + 3x + 1. From
Theorem 3.1, a useful corollary can be derived.
Corollary 4.1.1 For all x, me Z, the set of row vectors is
linearly independent:
(O™ (™, 1]
[x+D™, x+ D™ 1)
[erm)™, (x+my™ !, 1)
Proof From Theorem 4.1, by recursively subtracting row i-1
from row i, we reduce the order of each entry in row i by 1
each iteration. If this is performed i times for each row i, then
each entry in row 1 with an original entry of order less than i
will be O (i.e. order is reduced to zero after 1 iterations, then a
constant is subtracted from itself) and each row with an
original entry of order greater or equal to i will be nonzero.
Thus, the following set of row vectors results:

(O™, 0™, 1)

[(x+ D)™ )™ G+ D™ Lx)™! 0]

"[.(x+m)m -((“; - (x+m-1)™ j o (D™ 0, 0]

which are linearly independent. Therefore the original set of



vectors is linearly independent Q.
To illustrate Corollary 4.1.1, notice that, for x =0 and
m=3:

0001 0001 0001 0001
rrry_ 1 rro 1110 _ 1110
8421 7310 6200 6200
27931 195190 12200 6000

Thus, the initial set of vectors is linearly independent.

The following theorems establish the existence of
polynomial representations for combinational univariate
functions and the uniqueness of the minimum order
polynomial representation.

k
Theorem 4.2 (Existence) Let Xe B", Je B ,and x,ye Z

be the integers corresponding to %, 7. Given a Boolean

function F:X — ¥, F can be represented by a polynomial y =

apX™ + ag  x™! + .+ ay where m < 2",

Proof If e B", then there are 2" possible values that x can

take on {0, 1, ..., 2"-1} and 2" corresponding values that y

can take on {F(0), F(1), ..., F(2"-1)}. The solution to the set

of linear equations (m = 2"-1):
F(m)=c,m™ + ¢, ym™

F(m-1)= cp(m-1) + ¢y (m-D™ ! 4+ 4+ ¢

l+...+C0

F(0)=c,0™ + ¢y 0™ + .+ ¢

exists if no row [i™, L 1] is a linear combination of the
others. We know this is true from Corollary 4.1.1. Note that
the dimension of y does not affect the polynomial
representation of F 0.

Theorem 4.3 (Uniqueness) The minimum order polynomial
representation of a Boolean function F:%¥ —»§, where
2e B", 3 BX,is unique.

Proof Assume there exist two minimum order polynomial
representations for F, where x,ye Z are the integers
corresponding to X,y :

y = apx™ + ag, x™!

+...+2y
y = b X™ + by x™ 1 L+ by
=> there are two possible solutions to the set of linear
equations:
F(m)= c,,;m™ + ¢y ym™

F(m-1)= cp(m-1)™ + ¢ (m-1)™1 4+ ¢

l+...+CO

F(0)= cp0™ + ¢ 0™ ! + .. + ¢
=> there exists a row [F(i), i™, i™!, ..., 1] that is a linear

combination of the others. But the subrow [i™, i™, ..., 1]is
linearly independent of all other such subrows (from
Corollary 4.1.1) which means that the full row is linearly
independent =><=. Therefore, the minimum order
polynomial is unique Q.

An example of the application of Theorems 4.2 and
4.3 is the following set of Boolean equations (input width n =
2 and output width k = 5) that model an existing circuit:
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Fy(x) = xg

Fix)= x;-xq
Fyx)=0
F3(x) = x

Fyx)= x;-xq

y= x3 is the unique, mintmum order polynomial (m = 3) that
represents this circuit, and would match a specification that
requires the computation of the third power of x.

4.2 Polynomial Computation

In the previous section, we have proven that any
combinational circuit can be uniquely represented by a
minimum order polynomial. Once the order of this
polynomial is determined, then the coefficients of the
polynomial can be calculated by examining a finite number
the circuit outputs. Thus, the problem of determining a
canonical polynomial representation for a circuit can be
reduced to finding the order of the polynomial that represents
that circuit.

To begin deriving a method for determining the order
of a Boolean function, remember from Theorem 4.1, that the
order of a polynomial F(x) will be reduced by exactly one by
computing F (x) F(x+1) - F(x). Furthermore, from
Theorem 4.2, a polynomial representation exists for a
Boolean function F(x), where x € B". Therefore, the order
of F(x) can be determined exactly by recursively performing
ﬁ(x) = F(x+1) - F(x) until lf(x) is identically zero for all
values of x. In the algorithm discussed here, two’s
complement arithmetic is employed to compute this

difference. The number of iterations required to set F (x) = 0
is the order of the unique, minimum-order polynomial that
represents the circuit.

In computing the order of a Boolean function, we
assume that each bit of the function is represented as an
Ordered Binary Decision Diagram. While this does present
an exponentially sized data structure for some functions, we
will show a heuristic in Section 7 that reduces this data
structure to linear complexity with respect to the number of
input bits. In the succeeding sections, we derived the steps
required to reduce the order of F(x) by one.

4.2.1 Determining F(x+1)

The first step in computing F (x) = F(x+1) - F(x) is to
determine F(x+1). This can be performed in polynomial time
by replacing each bit x, of x with (x, & x_ _, x5 .. xg)
in the OBDD of F(x).

4.2.2 Determining -F(x)
The next step in computing F () is determining

-F(x). Using two’s complement arithmetic, this could be
performed by inverting each bit F;(x) of F(x) and adding one
(-F(x) = F’'(x) + 1). Inversion of Fj(x) is simple as it only
requires inverting each leaf of the corresponding OBDD.
However, if we make the assumptions that F(x) is an n bit
function, x is an n bit word, and the BDD of F;(x) has at least

n nodes, computing F’(x) + 1 is at least of complexity O(n*).



To reduce the complexity of the negation, the
increment of the bitwise inversion of F(x) does not have to
be calculated. This results in the following computation, a

slightly altered version of F (x):

F(x) = F(x+1) + F'(x) = F(x+1) - F(x) - 1
Note that on successive computations of ls(x), denoted l;‘, the
subtraction of one does not accumulate:

F2(x) =F(x+1)-F(x)- 1
= (Fx+2)-F(x+1) - 1) - (F(x+1)-F(x)-1)- 1
(F(x+2) - F(x+1)) - (F(x+1)-F(x))- 1

Thus, instead of P:(x) = F(x+1) - F(x) being used to
successively reduce the order of F(x) by one, F~(x) = F(x+1) -

F(x) - 1 is a less complex way to reduce the order of F(x) by
one.

4.2.3 Performing F(x+1) - F(x)
Once F(x+1) and F’(x) have been determined, the

two functions must be summed to produce F(x). If performed
in ripple carry fashion, this is an exponentially expensive
operation with respect to word length due to the propagation

of the carry (for the ith bit, the carry computation requires 3i
logic operations). To eliminate the computation of the carry,
a carry save addition can be performed (bitwise):

Foum(¥) = Fx+ 1) ® F(x)

Feary(x) = F(x+ 1) F(x)
However, this yields an F(x) that is uniquely specified by
l‘:sum(x) and F—C;my(x):

F(X) =Fgum(x) + (Fgy(x) << 1)
Note that there are now two terms that must be

negated when computing Fz(x): Foum(x) and chy(x)<<l.
Negating both terms requires a bitwise inversion and an
increment of each term. As in Section 4.2.2, in order to avoid
these increments, 2 must be subtracted from the summation

of lE(x+]) and I;’(x). This results in the following

computation, a slightly altered version of F(x):
F(x) = Foum(x+1) + (Feamy(x+) << ) +
Floum(X) + (F cay(x)<< 1)
= Foum(x+1) + (Fegry(x+1) << 1) -
(Fsum(®) + (Fgy(x)<< 1)) - 2
Since F(x+1) and F’(x) are specified as the
summation of a sum and carry term, their summation must
be performed in two steps, as if 2 carry save adder stages
(Figure 2) were combined.
In computing F(x) = F(x+1) - F(x) - 2, the order of
F(x) is successively being reduced by one using a
computation that is of polynomial complexity with respect to
the length of the input word.

4.2.4 Checking if F(x+1) - F(x) =0

When F(x) = -2, we know F(x+1) - F(x) = 0 and the
order computation is complete. In order to efficiently

681

F iCany(X) Ficurry(x+l )
Fisum(x+l) F’isUm(x)

F’icurry(x) Ficurry(x+] )
F’isum(x)

......

Ficuny(x) Fisum(x)

Fig. 2 Two stage carry save adder for computation of F(x)

determine if F(x) is -2, a two stage carry save increment is
performed at the end of each recursive step, allowing

F(x)+1=-1 to be a sufficient condition for completing order
computation. Each bit of the resulting sum (S,.,) is checked

for tautology and each bit of the resulting carry (Cpy,) is
checked whether it is tautologically zero. We refer to this test
as the tautology check, and it is sufficient to guarantee F(x) =
-2 as explained in Theorem 4.4. As a result the ripple carry
computation does not need to be performed.

Theorem 4.4 Given three Boolean vectors s.c, fe B", where
f=s+(c<<l), then f=-1iff s,®¢c; | =land s;°¢,_, =0
for all 1.

Proof Forward implication (by induction):

Base case: since s + (c<<1) =-1=>55=1

c;=0= So@c_l =land $s3°¢, =0
Assume: 5®¢_ ) = land s;-¢;_; =0forall j<i
Inductive step: fi,y =1and s;-¢_; =0forall j<i

=s,,9¢ =1
Reverse implication:

fi=1since 5;,®c,_, =land s ¢_, =0foralli.

=f=-1=>s+(c<<)=-10.

At this point, we have developed an algorithm, of
polynomial complexity, for iteratively reducing the order of a
Boolean function by one and determining if the result of each
iteration produces a polynomial of order zero (Figure 3).

4.2.5 Bounding Function
A continuous function F:x->y, where x,y € Z, has a

. . > n
corresponding Boolean function F:¥ -, where Xe B

k . -
and ¥ e B, defined only over the domain [0, 2°-1]. This is
important to consider when performing order computations
because F(X +1) - F(i) actually corresponds to F(0) - F(2"-
1) if x = 2"-1. In performing order computations, this may
result in f(x) appearing to be discontinuous over the domain

[~e,2] even if it is continuous over the range of possible
values for x. Thus, in executing order computations it is
necessary to determine a bounding function that specifies



which values do not need to be considered when performing
tautology checks.
Definition 3.1 Given a function F(x), where x is an n bit
word, the bounding function B(x) on the mth order iteration
is:
2"-1 /n-1

Bx) = Y [H (x; = (i>>j) mod 2)]
i=2"-m =0
In words, this is the sum of the Boolean vectors whose
corresponding integer values are greater than 2"-m. For
example, after one iteration in determining the order of a
function with respect to an n bit variable x, the bounding
function is B = x _, - X, _, .. X,. After two iterations, the
bounding function would be B = x_ _, X, _, .- Xy +
Xp_1 Xpoz - Xg -

If a function is out of range when incremented, i.e.
x+1 = 2", then the resulting F(x) is immaterial, since the
input pattern can not be applied. Thus, F(x)+1 = -1 requires
that if S, is not a tautology, the bounding function must be

true. Similarly, if Cpg is not tautologically zero, the
bounding function must be true if F(x)+1 -1. The
tautology check is therefore performed on each bit of
(Stest + B)(Ceqt” + B)-

For example, if, after two order computations, bit k of S, is
(Xg_ | Xy_p %), then Sieqe + B = (x| X, _, o %)
+ Xy Xg_p e Xg ¥ X X _, - Xg =1 and the bit
satisfies the tautology check. Thus, within the interval x = [0,
2"-1], Siest is a tautology. The complete algorithm for
determining the order of a Boolean function is shown in
Figure 3. An example is completed in Appendix A.1.

Once the order of the function has been determined
to be m, F(x) is evaluated at x =0, x = 1, ..., x = m. Solving
the following set of linear equations for ¢y, ¢y, ... , ¢, yields

the polynomial representation of the Boolean function:
m-1
+

F(m) =cpm™ + ¢, ym ety

F(m-1) = cpy(m-1)™ + cm_l(m-l)"“l +..+¢g

F(0) = ¢ 0™ + ¢ 0™ 4+ ... + ¢

4.3 Extension to Multivariate Functions

The techniques described above consider only
univariate functions. However, multivariate polynomials
exhibit the same features that allow order computation to be
performed by recursively reducing a functions order. That is,
F(x,y) = F(x+1, y) - F(x, y) - 2 reduces the order of F(x, y)
with respect to x by one on each iteration if y is held
constant. Thus, the order of F(x, y) can be determined with
respect to x and with respect y. However, the unique,
minimum order polynomial computation requires solving a
set of m-n simultaneous linear equations, where m is the
order with respect to x and n is the order with respect to y.

S. Implementation of Discontinuous Functions
While the methods described above work well for
circuits that implement continuous functions, such as
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Initialize Calculate Calculate
Fam®) = F(O)—ml  Fn(x) s Fopx+l)
Fcarry(X) =0 chan.y(x) chy(x+1)
Set Calculate
Foum(X) =Fsum(x) Fsum(x)
Feamy(x) = Feamry(x) Fcan.y(x)
Order =
Number of Tautology Calculate
Interations Check B(x)

Fig. 3 Algorithm for computing the order of a
Boolean function

arithmetic units, some circuits employ branches that result in
discontinuous functions. For example, the JPEG Coefficient
Encoder selects an output based on the range of the
quantized input values

if (q==0) coefficient = 0;

else if (Iql < 2') coefficient = 1;

else if (Igl < 22) coefficient = 2;

else coefficient = 15;
The encoder is continuous within each branch, but

discontinuous at q = 2 Using the order computation
methods described above, the discontinuities will cause the

minimum order polynomial for q to be of order 27, if q is an
n bit word. To prevent an exponential number of order
computation iterations from being performed on such
functions, we define a discontinuity threshold. Once the
number of iterations has reached this threshold, the function
is assumed to be discontinuous. This threshold is determined
heuristically.

Branch discontinuities can be detected efficiently,
allowing order computation to be performed on each branch

. . . = n
of the circuit. Given a function F:x — y, where x€ B and

ye Bk, branch discontinuites can be detected by
performing an order computation on F(x) for the case x,, = 0
and the case x, = 1. If the orders for each computation are
different, and below the discontinuity threshold,

discontinuity has been detected and exists between x
011...1 and x = 100...0. If the order of F(x) for x, = 0 or x,
1 is still above the threshold, then a discontinuity exists
within the corresponding domain. Within that domain, an
order computation is then performed on F(x) for the case x,_;
0 and the case x,; = 1. This continues until the
discontinuity is detected.

Similar to performing a binary search, detection of a
single branch discontinuity is of linear complexity with
respect to the number of input bits, not considering the
complexity of the order computation. An example is

oo



completed in Appendix A.2.

6. Error Quantification

Polynomial representations provide a means for
quantifying the difference between a specification S(x) and
an implementation F(x). This can be achieved by computing
the polynomial e(x) = S(x) - F(x) and using traditional
numerical methods to find the maximum value of e(x). In
quantifying the maximum error of an implementation,
systems traits such as performance and area can be optimized
by selecting faster or smaller designs that implement less
precise arithmetic.

A means of approximating a specification for non
polynomial functions can be derived from the results of
Taylor series approximation. If a function Fyppro.(x) = 1 +

(dFO)/dx)x/1! + (d2F0)/dx3)x3/2! + ... + (d"F(0)/dx™)xn!,
then the difference between Fappmx(x) and F(x) is e(x) =

(@™ Fe)/dx™Hx™ /(n+1)! where 0 < ¢ < x. Thus, if the
error in a Taylor series approximation to a function can be
bounded, then the difference between an implementation that
matches that approximation and the specification can be
bounded. For example, an implementation that is determined

to be of order 4 and yields the polynomial 1 - x%/2! + x¥/4!
matches the cosine function used in DCT with an error e <
.0083 over the interval [0, 1].

The ease with which polynomials can be composed
can allow seemingly inappropriate implementations to be
combined to fulfill a specification. For example, the Boolean

function that implements F(x) = x? may appear to be a
completely inappropriate match for the specification cos(x).
However, if an adder exists in the implementation library,
F(x) can be allocated and composed with the adder to
approximate the cos(x): 1 - F(x)/2! + F(F(x)/4!.

7. Complexity Issues

The techniques described above are of polynomial
complexity with respect to input and output word length.
Solving the set of linear equations for polynomial
coefficients is of cubic complexity with respect to the order
of the polynomial, and we assume this order is small (less
than 16). However, the underlying OBDD data structure can
be of exponential complexity for common functions. Thus,
reducing the complexity of polynomial computation requires
reducing the complexity of the order computation which, in
turn, requires reduction of the complexity of the OBDD.

Assume a function F(x) has an OBDD with 2"
intermediate nodes, where x is an n bit word. If x is
partitioned into two words (X, yX;2..-X,200...0) and
(00...0xp5.1Xps2.2---Xg), the OBDDs that describe each

partition will require no more than two sets of 22

intermediate nodes. Similarly, partitioning x into m words

. . /
will result in a worst case total node count of T=m-2"",

Minimizing T with respect to m yields:
dT/dm = 2""™ - (n/m)2"™ - log, ;2
=2"™. (I1-n/m-log,,2)

=m=n-log,,2
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707
DCT = ¥ ¥ x(ij)

(1) DCT &L
= DCT/128-DC_ .
(2) Quantize LQ prevmuq
C=1
(3) Coefficient Code
(4) DC Code
C BaseCode Length
Y 010 T
T OT1 T
Z 100 3
3 00 B
4 0T 7
) TT0 54
6 110 10
7 TITT0 7
3 TTITI0 T4
9 TIITIT0 16
10 TTTTITIO T8
11 TTTITITIO 70
DC = (BaseCode<<C) + (Q mod 2°)

Fig. 4 Arithmetic description of the blocks for the DC path
of JPEG encode (inputs: x{i, j), output: DC).

Partitioning x into words of length (1/log,2) =4 will
minimize OBDD complexity and allow order computation of
functions that are of order less than 2*. This will result in

overall OBDD complexity of (n/4) - 2* = 4n.

This severe reduction in complexity comes at the
cost of accuracy. As described above, partitioning is
performed by setting each bit of x that is not part of the
current partition arbitrarily to zero. Thus, for a function with
an 8 bit input, order computation is completed for two
partitions: (x7xgX5X40000) and’ (0000x3x,x;X). This is
equivalent to computing the order of the function over the
domain x = {0, 1, 2 ..., 15,16, 32, 48, ..., 240}. Without
partitioning, order computation is exact and performed
considering every possible value of x.

8. Application

Generating polynomial descriptions allows a
specification and implementation to be compared simply by
comparing the coefficients of the polynomials. Consider the
DC path for the JPEG encode system described in Figure 4.
The Verilog description for each block of this system was
synthesized and the resulting netlists were used as library
elements for which polynomial models were computed.

The DCT block requires that an order computation
be performed for each input x(i, j). The order of the this
block with respect to each input is determined to be one and
the resulting polynomial is:

DCT =x(0,0) + ... +x(7, 7).
The order of the quantize block is similarly determined to be
one with respect to DCT[15:7) and DCpryious and the

resulting polynomial is:
Q =DCT[15:7] - DCpeyious-



Order computation for the coefficient and DC
encoding blocks yield an order greater than the discontinuity
threshold of 4. As a result, the upper bits of the inputs to each
block are successively set to 0 and 1, as described in Section

5, and the following intervals and polynomials are
determined:
Interval C Polynomial | DC Polynomial
Q=0 C=0 DC=2+0Q
0<Q<Z C=1 DC=6%0
<Q<F (=) DC=16+0
3<Q<8¥ C=3 DC=0Q
7Q<T6 =% DC =80+ Q
15<Q<32 C=5 DC =192+ Q)
3T<Q<64 C=6 DC =896+ Q
63<Q<128 C=7 DC=3840+0Q
177<Q<256 C=F DC=T13872+Q
255<Q<512 C=9 DC=64512+Q
STI<Q<T0Z24 C=I0 DT =726e4+Q
T1023<0Q<2048 C=TT DC=Teb+ Q

The resulting polynomials for generating the output
DC match the corresponding polynomials in the arithmetic
specification.

9. Experimental Results

To quantify the performance of the polynomial
methods presented in this paper, a combinational n bit
multiplier was constructed out of combinational 4 bit
multipliers. Multiplier logic was synthesized from Verilog to
construct the Boolean equations that implement the
Synopsys DesignWare multiplier. These equations were then
ported to the Cal-2.0 BDD package which was used to
perform BDD operations.

The time required to determine the order of this
circuit, shown in Figure 5, was obtained running on a
200MHz R4400 Indy Workstation with 64MB of memory.
Note that by using the complexity reduction methods from
Section 6, order computation was performed on successive 4
bit chunks of each input word. This yielded a maximum
BDD size of 61 nodes which fit completely in the 16KB
cache.

As expected, execution time varied with the square
of the size of the input word. This is due to the function F(x,
y) being of order one with respect to each input and having
two inputs. Note that a similar computation for F(x) = x + K
would have been of linear complexity with respect to the size

of x and a more complex function such as F(x) = X y2
would have varied with the fourth power of the size of the
input word.

10. Conclusion

In performing high level synthesis and reusing
existing designs, automating allocation requires a means for
quickly determining whether an existing block performs the
function outlined in the specification. Current methods for
completing this task become prohibitively memory intensive
or time consuming for circuits that implement non-linear
functions. We have developed an algorithm for performing
component matching that overcomes these limitations for
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Word Sizes Logic Ops Exec. Time
4 2003207 0.41s
8 8012236 1.34
16 32050480 4.76
32 128197824 19.3]
64 512783104 79.30
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Fig. 5 Execution time required to determine F(x, y) = xy

is of linear complexity with respect to x and y.
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linear and non-linear functions and is well suited to mapping
arithmetic blocks.

Circuit specifications can be efficiently matched to
existing implementations by generating the unique minimum
order polynomial functions for the specification and the
implementation and comparing those polynomials. These
functions can be generated with polynomial complexity with
respect to the number of input bits to each function.
Discontinuities in the specification or implementation can be
detected, allowing polynomial representations to be
computed for intervals between discontinuities. Furthermore,
using polynomial representations, differences between a
specification and implementation can be quantified, allowing
tradeoffs between precision and speed. In addition, the ease
with which polynomials can be composed can allow such
differences to be compensated for by combining multiple
existing blocks or constructing logic around a single block.

While polynomial methods are of polynomial
complexity with respect to the number of input bits, they are
of exponential complexity with respect to the number of
discontinuities. This makes these methods well suited for
matching  blocks that have compact arithmetic
representations, such as those found in DSP, computer
graphics, and ALUs, but less efficient for blocks that contain
many discontinuities such as controllers.

In this paper, we have consicered only combinational
circuits. To expand the realm of applicability of these
methods, an algorithm for constructing polynomial
representations of circuits that employ feedback and
sequential elements will be developed.
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Appendix A Examples
In the following examples, we demonstrate the
details of order computation and discontinuity detection and
show how these techniques are applied to match a simple
rasterizer specification to an existing implementation.

A.1 Order Computation
Consider the function F(x) = x? where x is a 2 bit

word. Initializing the sum s to F(x) and the carry ¢ to zero
yields the following input vectors:

Sp = Xp cp=0
sp=0 c =0
$2= Xo' Xy ¢y =0
S3 = Xg - X4 C3=0
S4:O C4=O

The following steps are followed to determine the order of
these input vectors:

(1) F(x+1):
So=Xg cop=0
s1=0 c =0
$2= Xy (X, ®xp) =0
$3= Xy (X, D x5 c3=0
s4=0 cy4=0
(2) FP(x):
Sp = Xp co=1
s;p=1 =1
Sy =Xg+ Xy ¢y =1
S3=Xg + Xy’ c3=1
sg=1 cy=1
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(3) Feo:
sop=1 cp=0
SER ¢ =1
S5 =X, DX, Co =X, @x,
$3= Xg + X| cy=X;’
Sy = xO" X cy=1
(4) Tautology Check
so=0 cg=0 fails
(5) F2(x)
$o=0 co=1
sy =1 =
sy =1 =0
S3=Xg +X; C3 = Xq
S4= Xy DX, Cy= Xg " X,
(6) Tautology Check
sp=1 cp=0
s;=0 ;=0 fails
M F0)
sp=0 cp=1
s;=0 ¢;=0
sp=1 =1
$3= X c3=Xy’
$4= Xg X} Cyq = Xg + Xy
(8) Tautology Check
sp=1 cp=0
sp=1 ¢;=0
s;=1 ;=0
s3= ¢3=0
s4=1 cy=0

Three iterations reduce F(x) to 0 for all x. Thus, F(x) is of
order 2.

A.2 Branch Discontinuity Detection

To illustrate how to detect discontinuities, consider
the function F(x) where x is a four bit word:

if (x>11) then F(x) = x3;

else F(x) = x°
If we proceed blindly, computing the order of F(x) will
generate an order of 2% because of the discontinuity at x=11.
However, if we start with an initial discontinuity threshold of
4, then after four order iterations, the uppermost bit of x will
be set to zero, then one, and the order computations will be
performed for each case. The order computation for x3=0
will result in an order of 2. The order computation for x3=1
will again reach the fourth iteration without converging. The
second most significant bit is set to zero, then one, and the
order computation is performed again. Then order
computation for x3x,=11 will result in an order of 3 and the
computation for X3x,=10 will result in an order of 2. Since

both computations converged, but converged to different
values, there is a discontinuity on the interval boundary.
Thus, in the interval [0, 11] an order of 2 will be determined
and in the interval [12, 15] and order of 3 will be determined.



