SpC: Synthesis of Pointers in C

Application of Pointer Analysis to the Behavioral Synthesis from C

Luc Séméria
lucs @ azur.stanford.edu

Giovanni De Micheli
nanni @ galileo.stanford.edu

Computer System Laboratory, Stanford University
Stanford, CA 94305

ABSTRACT

As designers may model mixed software-hardware sys-
tems using a subset of C or C++, we present SpC, a solu-
tion to synthesize and optimize a C model with pointers.
In hardware, a pointer is not only the address of data in
memory, but it may also reference multiple variables
mapped to registers, ports or wires. Pointer analysis is
used to find the point-to-set of each pointer in the pro-
gram. In this paper, we address the problem of synthe-
sizing and optimizing pointers to multiple variables and
array elements. Temporary variables are defined to opti-
mize loads and stores by minimizing the number of live
variables. The combinational logic can also be reduced
by encoding the pointers values. An implementation
using the SUIF framework is presented, followed by
some case studies such as the synthesis of a 2D IDCT.

1. INTRODUCTION: SYNTHESIS FROM C

Different languages have been used as an input to behavioral
synthesis. Hardware Description Languages (HDLs), such as Ver-
ilog HDL and VHDL, are the most commonly used. However,
designers often write system-level models using programing lan-
guages, such as C or C++, to estimate the system performance and
verify the functional correctness of the design. To implement some
parts of the design in hardware using synthesis tools, they must
manually translate these parts into a synthesizable subset of HDL.
This process is both time consuming and error-prone.

The use of C or a subset of C to describe both hardware and
software would accelerate the design process and facilitate the
software/hardware migration. Designers could describe their sys-
tem using C. The system would then be partitioned into software
and hardware blocks, implemented using synthesis tools.

In order to help designers refine their code for hardware syn-
thesis, we are trying 1o synthesize the full ANs1 C standard [5].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwice, to republich. to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

ICCAD98, San Jose, CA, USA

© 1998 ACM 1-58113-008-2/98/0011..$5.00

340

This task turns out to be particularly difficult because of dynamic
memory allocation, function calls, recursion, type casting and
pointers. In this paper we will focus on the problems related to the
use of pointers in C.

Different subsets of C and C-like HDLs have been defined for
synthesis. First, HardwareC [7] is a language with a C-like syntax
and a cycle-based semantic. It doesn’t include pointers, recursion
and dynamic memory allocation. Cones [14] from AT&T Bell
Laboratories is an automated synthesis system that takes behav-
ioral models written in a C-based language [2] and produces gate
level implementations. Here, the C model describes circuit behav-
ior during each clock cycle of sequential logic. This subset is very
restricted and doesn’t contain unbounded loops or pointers. More
recently, Compilogic [12] proposes a solution for translating C into
an RTL description in Verilog. For synthesis, they assume that
pointers are either memory references or parameters passed by ref-
erence without aliasing. Finally, SCENIC [8] from Synopsys is a
synthesizable subset of C which uses C++ constructs. Even though
any C or C++ code can be included in the SCENIC environment, the
synthesis of code with pointers and dynamic memory allocation
has not been addressed to date.

For hardware-software codesign, the CoWare system [1] uses
C/C++ as a language base for system specification. Additional
constructs have been introduced for defining blocks and concur-
rency. This description is used to synthesize the interfaces between
the blocks but the actual synthesis of the blocks into hardware is
left to the user. COSYMA [4] uses C", another superset of C with
processes and timing constraints. During hardware synthesis, func-
tions are inlined and pointers are only treated as memory refer-
ences.

In software, pointers represent addresses in memory. For
example, they are used to pass parameters by reference, access
array elements or address dynamically allocated memory. Data-
flow-analysis problems such as reaching definition and live-vari-
ables analysis are widely used to optimize and parallelize
programs. They all rely on knowing which variables are accessed
at each statement. In order to analyze a program involving point-
ers, it is necessary to have information about what each pointer
points to. Different pointer-analysis techniques (e.g [16], [17],
[11], [13]) exist for computing the point-to information. For hard-
ware synthesis, we also need to know which variables are accessed
at each statement. Therefore, pointer analysis could be used for the
behavioral synthesis of C models.

In this paper, we present a novel application of pointer analy-
sis to the synthesis and optimization of C models with pointers. In

Section 2, we define our synthesizable subset of C and how pointers
can be removed. In Section 3, we discuss different techniques for
optimizing the code. Then in Section 4, we present our implemen-
tation which synthesizes and optimizes C code with pointers using
SUIF and Behavioral Compiler. Some results are given for different
examples and an implementation of a 2-dimensional inverse dis-
crete cosine transform (IDCT).

2. SYNTHESIS OF POINTERS

In software, the semantics of pointers is the address of an ele-
ment in memory. This definition implies that the C program is tar-
geted to a virtual architecture composed of one memory in which
everything is stored. Even though register declaration may
allow programers to specify the variables to place in registers, the
assignment of variables to registers is generally done by the com-
piler. The notion of caches, memory pages, are transparent to pro-
gramers.

In hardware, at the behavioral level, designers want to have
control on where data are stored and want to optimize the locality
of the storage. Typically, a design contains multiple memory banks,
register files, registers and wires. Pointers may be used to reference
any variable no matter where its information is available. As a
result, pointers must be considered as references: references to
memory elements, registers, wires or ports. In particular, pointers
can be used to read and write data. In this paper we call the action
of reading data using a pointer a load. Subsequently, a store is the
action of writing data using a pointer.

The synthesis of pointers consists of synthesizing the appro-
priate logic for accessing data. For this purpose, we want to change
the addresses into numbers and replace loads and stores by some
assignments involving regular variables.

Example 1. Consider a pointer p that points to a or b. If we
associate the value 0 with a and 1 with b, we can remove the
pointer. First, for the addresses, instead of p=&a and p==&b, we
can write p=0 and p==1.
Then aload (c=*p) can be replaced by:
if(p==0) c=a; /* case p==&a */
else c=b; /* case p==&b */
Finally a store (*p=c) can be replaced by:
if (p==0) a=c; /* case p==&a */
else b=c; /* case p==&b */

In Example 1, after associating a number with each variable
the pointer may reference, we remove loads and stores by inserting
branching (e.g. 1£) statements. This requires to know at compile-
time the poini-ro-set of each pointer (i.e. the set of variable the
pointer may point to). For this purpose, we will be using pointer
analysis, also called alias analysis.

2.1 Pointer Analysis

Pointer analysis is a compiler technique to identify at compile-
time the potential values of the pointers in the program. This infor-
mation is used to determine the set of variables the pointer may
point to. For synthesis, in the case of loads and stores, we want to
synthesize the logic to access or modify the variable referenced by
the pointer. For this purpose, the point-to information must be both
safe and accurate: safe because we have to consider all variables
the pointer may reference and accurate because the smaller the
point-to-set is, the less logic we have to generate. We can distin-
guish two types of analyses:

341

» flow- and context-insensitive: the analysis [13] doesn’t distin-
guish the order in which the statements are executed (flow-insen-
sitivity) and the different calls of a function tconex:
insensitivity). This interprocedural analysis has an almost-iingar
complexity. It can be used to analyze very large programs but the
point-to information is rather inaccurate. Within a procedure.
flow-insensitive analysis gives global information (valid for all
references in the code) rather than the information specific to
each reference. Similarly, in the case of function calls, context-
insensitive analysis propagates the information from the call-site,
through the called function, and back to all call sites. With flow-
and context-sensibility, we are expecting more precise results.

» flow- and context-sensitive: this analysis provides more accurate
results. It distinguishes the different paths of control within the
program and the different calls of a function. One implementa-
tion [16], [17] by Wilson and Lam, within the SUIF framework,
can efficiently support the full-featured ANSI C with good accu-
racy. Even though the complexity of the analysis can be expo-
nential, it is not a limitation for hardware synthesis because we
deal with rather small and simple programs. Beside, most of the
inaccuracy comes from features such as dynamic memory allo-
cation, type casting, recursion and recursive data structures. And,
a priori, these features won’t be used for modeling hardware.

The second type of analysis is more appropriate for hardware syn-
thesis. In our case, the complexity of the analysis is not an issue,
and the coding style for modeling hardware leads to rather accurate
results. We are especially interested in the representation of arrays,
structures and variables. Here, the analysis doesn’t distinguish the
different elements within the array but it distinguishes the different
instantiations of variables and structures. This makes sense since all
elements of an array are usually alike.

Our implementation uses a flow- and context-sensitive analysis.
The aliasing information is then used to encode the pointers value
and to generate the appropriate logic for accessing the data.

2.2 Resolution of Pointers

Let us start with the definition of our synthesizable subset of
C. Our subset contains pointers to variables which can be stored in
multiple memories, registers or wires. Pointer arithmetic is only
allowed for pointers to array elements. Since memory blocks are
instantiated at compile time, pointers to dynamically-allocated
memory whose size is unknown ai compile time are not allowed.
This implies that, in general, malloc, free and recursions are
not supported. Nevertheless, malloc followed by £ree could be
allowed (treated as local variables in function calls) as well as tail
recursion. The problem of pointers to functions and type casting is
not addressed either.

The resolution of pointer can be done in three steps. First we
analyze the pointers in the program to know which variables arc
referenced. Then we replace the loads and stores. Finally we
encode the pointers value.

2.2.1 Replacing the Loads and Stores

After pointer analysis, the first task is to remove loads and
stores. For this purpose, given a pointer p, we define the following
variables:

* star_p: the value of the variable the pointer p points to (i.e.
*p).

p->{a,b} table(]

g->{tablel(},c}

a

Figure 1: Implementation of *gq=*p+1

+ p_index: the offset within the array (defined only in the case of
a pointer to an array element).

With the previous restrictions on the subset, loads and stores
can be replaced by case statements at compile time. When the
data are stored in registers, the case statement corresponding to a
load will be implemented using a multiplexor controlled by the
pointer’s value. In the case of a store, some control logic will be
generated to update the proper variable. We mention here that the
value of the pointers will be encoded in a second pass. In the case
of references to array elements in a memory, loads and stores are
simply treated as memory accesses.

Example 2. Consider the code segment *q=*p+1 where p points
to a or b and q points to either an element of table([] or c. We
create the variables star_p, star_q and q_index. The loads
and stores are then replaced by the following code:

switch p:
case &a: star_p = a;
case &b: star_p = b;
star_g = star.p + 1;
switch q:
case table: table{g_indexl=star_q;
case &C: c = star_dqg;

This code cannot be directly synthesized. A second pass is
necessary to remove the addresses ‘&’.

The removal of loads and stores can be done in one pass. For
each load (. ..=*p), we look at the point-to-set of the pointer at
this instruction and generate the case statements that defines
star_p according to the value of p and p_index. The load
instruction is then replaced by an assignment from star_p. For
each store (*p=...), we also look at the point-to-set of p at this
instruction. The store is then replaced by an assignment to star_p
and case statements are inserted to update the value of the vari-
ables p points to. In the case of a pointer to an array, pointer arith-
metic is supported by changing the value of the index: the value of
p_index is initialized when p gets the address of the array ele-
ment. Then, the index is modified instead of p.

2.2.2 Encoding the Addresses

During a second pass, the value of the pointers are encoded
and the addresses are removed. We define a new variable to store
the encoded value of a pointer p:

* p_tag: encoded value of the pointer. Its size is given by

[logy(size_of_point-to-set)].

A simple encoding technique is to look at all variables a
pointer may point to in the program and associate a number with
each of them. In the case of an assignment (p=qg) or comparison
(p==q), some circuit must convert the values of the pointers in the
hardware implementation. This leads to the possibility of further
optimization presented in Section 3.3.

Example 3. In the previous example (*q=*p+1), p points to a
and b. The value of o is encoded in one bit stored by p_tag and a

342

(resp. b) is associated with 0 (resp. 1). The value of q is encoded as
well. We end up with the following code for *q=*p+1:
switch p_tag:
case 0: star_p
case 1l: star_p
star_q = star_p + 1;
switch g_tag:
case 0: table{q_index]=star_q:
case 1l: ¢ star_d;

The architecture generated from this code segment is presented in
Figure 1. We can see that the load is implemented using a 2-input
multiplexor controlled by p_tag.

Example 4. consider the assignment of pointers (p=q), where p
points to a, b or ¢ and g points to b or c. In order to remove the
pointers, we create p_tag and g_tag. For p_tag we associate
the value 0 with a, 1 with b and 2 with c. For g_tag, we
associate 0 with b and 1 with c. The following code is generated
Jorp=q:
switch g_tag:
case 0: p_tag=1l;
case 1l: p_tag=2;
Now if b (resp. c) was associated with the value 0 (resp. 1) of
p_tag, p=q would have been replaced by:
p_tag=q_tag;
This shows that the logic generated for the assignment is directly
related to the encoding of the pointers.

In this section, we have presented simple techniques to trans-
form a C code with pointers into a code without pointers. Loads and
stores are removed using the temporary variable star_p and
case statements. The values of the pointers are then encoded. The
encoding could also be flow-sensitive depending of the point-to-set
at the current line in the program. For this purpose, an explicit static
single-assignment (SSA) representation [11] of the aliasing infor-
mation would be appropriate.

3. OPTIMIZATION

In the previous section, we have seen how pointers can be
removed using the information of pointer analysis. Now, we will
optimize the code for hardware synthesis. First we will present
techniques to minimize the number of live-variables (i.e. the num-
ber of register used) before loads and stores. Then we will show an
optimal encoding of the pointers value which reduces the amount of
logic for comparisons and assignments.

3.1 Optimization of Loads

We are trying to reduce the number of live-variables before
loads. By definition, a load may read any variable of the point-to-
set. This implies that all of these variables are live before the load
as well as the pointer. However, only one variable is accessed: the-
variable the pointer points to. Then, for a pointer p, the only value a
load really needs is star_p, the value p points to.

Example 5. In Figure 2, the load (out=*p) where p points to a,
b, or ¢, is replaced by an assignment from star_p. The number of
live-variables before the load goes from 4 {a, b, ¢, p} to]

I
|

out=*p

ls tar_p

out=star_p

lOU.C | lout

Figure 2: OptimiZation of a load

péb
C

{star_p}, assuming that none of these variables are live after
the load.

If we define star_p as early as possible in the program (i.e
move the assignment to star_p up in the program), we can reduce
the number of live-variable before the load by, at most, the number
of variables in the point-to-set. In our implementation, we define
star_p each time p or any variable in the point-to-set is modified.
Then we use dead-code elimination to remove the useless assign-
ments.

However, the early definition of star_p may increase the
number of live-variables. When all variables of the point-to-set are
live, staxr_p is just a copy of one of these variables and therefore
is not necessary. So, in order to minimize the number of live-vari-
ables, star_p should be killed when all variables of the point-to-
set are live. Here is the algorithm to optimize Joads:

Update star_p when p, or any variable of the point-to-set
changes.
¢ Do live-variable analysis [10] (backward dataflow analysis).

» Insert definition of star_p when all variable of the point-to-set
are live.

¢ Do dead-code elimination.
Example 6. Let us take the following code segment, before and

after optimization, where the pointer p points to a, b or c.
/* original code */ |/*code after optimization */

a=in; a=in;
| // if (p_tag==0) star_p=a;
clk++; clk++;
| switch p_tag
| case 0: star_p=a; break;
| case 1l: star_p=b; break;
temp=a+b+c; temp=a+b+c;
clk++; clk++;

out=*p+temp; | out=star_p+temp;

We assume that none of the variables are live after the last
line. During the first pass, we replace *p by star_p, and update
star_p after a=in. Then, because of temp=a+b+c, a, band c
are live when the clock (c1k) is incremented the first time. After
live-variable analysis we add the case statements which define
(i.e. kill) star_p. Finally dead-code elimination will remove the
assignment to stax_p at the beginning of the code. The number of
live-variables before the load has been reduced from 5
{a,b,c,p,temp} to2 {star_p, temp}.

This optimizatirn can drastically decrease the number of live
variables before (vads. Nevertheless, it increases the number of
branching statements which correspond to combinational steering
logic to control the value of star_p. Therefore there is a trade-off
here between the number of live-variables (i.e registers) and the
amount of steering logic in the hardware implementation.

3.2 Optimization of Stores

For hardware synthesis, functions can either be inlined or
implemented as components, When a function is inlined and one of
its parameters passed by reference is both read and written, we end
up with a /oad followed by a srore. Here, the number of live vari-
ables between the load and the store can be reduced by one. The
reason is that the store needs all variables of the point-to-set except
the variable p points to. For this purpose, given a pointer p and the
size of its point-to-set pts_size, we define the following class of
variables:

343

non optimized load and store optimized load and store

3 live variables

>

I
|
I
|

i
l
|
I
|
|

Figure 3: CDFG for *p="p+1 with p->(a,b)

¢ _starN_p: (stands for “not star p”) value of the set of variables
of the point-to-set p does not point to, where N goes from 1 to
(pts_size-1).

Remark that each _starN_p may only store the value of one of
two variables.

Example 7. If o may point to a, b or c. We define:

- _starl_p=(p!=&a)?a:b;

- _star2_p=(p!=&b)?b:c;
Example 8. Let us look at the example of (*p=*p+1) where p
points to a or b. Figure 3 shows the control/data-flow graph
(CDFG) before and after optimization using _starl_p. The code
corresponding to (*p=*p+1) after optimization is the following:

if(p==0) {

star_p = a;

_starl_p = b; }
else {

star_p = b;

_starl p = a; }
star_p = star_p + 1;
if (p==0) {

a = star_p;

b = _starl_p; }
else

b = star_p;

a = _starl_p; }

The definition of the temporary variables has been inserted before

the load, and the variables of the point-to-set are updated after the
store. We can verify that the number of live-variables between the
load and store has been reduced from 4 {a,b,p,star_p} to 3
{star_p,_starl_p,p}.

To perform this optimization, let us first consider an adapta-
tion of the algorithm described in Section 3.1. Indeed, one could
imagine an algorithm where the _staxrN_p variables are used at
each store and defined when p or any variable of the point-to-set is
modified. Since each _starN_p variable can only store the value
of one of two variables of the point-to set, they should be killed
each time one of the variables of the point-to-set is live. This cre-

ates a lot of logic to control their value, which turns out not to be
very practical.

In our implementation, we focussed on the case of a load fol-
lowed by a store. For a pointer p, the algorithm is the following:
* List the stores dominated by loads from the same pointer (for-
ward dataflow analysis).

» List the loads post-dominated by stores from the same pointer
(backward dataflow analysis).

* Do live-variable analysis assuming that the stores (*p=...), which
are in the list, kill all variables in the point-to-set.
o If, for all the loads in the list, none of the variables in the point-
to-set are live:
- define star_p and the _starN_p variables before the

loads and when p, or any variable of the point-to-set changes
between loads and stores,

- use star_p and the _starN_p variables to update the val-
ues of variables in the point-to-set after the stores.

Even though this optimization reduces the number of live vari-
ables before stores by at most one, it helps reducing the number of
registers while calling functions. This optimization can be per-
formed while optimizing the loads, as we will see in Section 4.

3.3 Encoding of Pointers

In software, the values of the pointers represent addresses in
memory. These values can then be assigned (p=g) or compared
(p==q). In hardware, as we have seen in Example 4, we have to
add case statements tc “translate” the values of the pointers by
means of some combinational circuit. We can use encoding tech-
nique to minimize the size of this circuit.

First, we want to ercode each tag with a minimum number of
bits. Moreover, when a pointer is assigned or compared to another
pointer, we would like the corresponding tags to be equal (e.g.
p_tag=qg_tag) or as close as possible to each other. If the tags
have different number of bits, one tag can be equal to a subfield of
the other.

The encoding problem can be formulated as follow. For each
pointer we define a set of symbols corresponding to the variables
the pointer may point to. As a result we have an ensemble of sets of
symbols and the dependencies among the sets. The problem con-
sists in encoding the symbols in the sets. The constraints on the
encoding are two: 1) the supercube of the symbols in each set must
have a minimum size. 2) the symbols that correspond to the same
variable in two dependent sets must be encoded as close as possi-
ble. The reason for the first constraint is to minimize the number of
bits to store while the reason for the second one is to reduce the
combinational logic implementing the pointer assignment and com-
parison.

Example 9. Consider 3 pointers, p, q, r and s. The dataflow is
represented in Figure 4. The pointers are defined as follow:

s=&a s5=&b
\ 4
rs r=&d g=&a g=&c g=&d
“/ \pl/
0= /
out*

Figure 4: Datalow graph defining the pointers p, g, r and s

344

- s is equal to &a or &b;

- r is equal to s (that points to a or b) or &d;

- g is equal to &a, &c or &4;

- p is equal to t (that points to a, b or) or q (that points to
a, cord).

After encoding, the pointers are replaced by the tags (p_tag,
qa_tag and r_tag). We define the sets of symbols ({q_a, q_b,
q d} {r_a r_b r_4d)}, {s_a, s_b}...) where q_a is the value of
q_tag when q points to a. We want 1o find an encoding for the
symbols in each set.

In the example the 3 assignments (p=q, p=r and r=s) define the
dependencies. To minimize the size of the supercubes, p_tag, q_tag
and r_tag require 2 bits to encode 3 or 4 values and s_tag requires
1 bit to encode 2 values.

If we assign s_a=0 and s_b=1 then we can derive r_a=00,
r_b=01, r_c=11(or10).

We can encode the other pointers in a similar vein, as shown in
Figure 5.

p-c

P-2 00

q.a

r_a

S
p_a = U0 GATETEY
_b = 10 r_a = 00
p_c = 11 r b = 10
p.d = 01 rc =11
g_a = 00 s_a =0
gq.c = 00 s b=1

Figure 5: Encoding of pointer’s values

With this encoding, no additional cost is incurred in translating the
pointers values.

The encoding problem can be solved by a specialized algo-
rithm or cast into an encoding problem for symbolic tables [3]. In
particular NOVA [15] can be used to find the required encoding by
constructing a symbolic table (to be interpreted by Nova) which
groups the symbols in each set and minimize the distance between
the codes of the pointers that are assigned or compared to each
other. Despite the fact that the pointer encoding problem differs
from symbolic table encoding problem [3], the use of NOVA can be
viewed as a heuristic to achieve optimal pointer encoding.

4. IMPLEMENTATION AND RESULTS

We have implemented the different algorithms using the SUIF
environment [18]. The toolflow is presented on Figure 6. Our
implementation takes a function with pointers in C and generates a
module in Verilog. This module can then be synthesized using the
Behavioral Compiler™ of Synopsys. For hardware synthesis, the
timing information is expressed in the C model: clk++ in C will
be translated into @ (posedge clk) in Verilog. The ports and the
data types are defined in a separate header file. The translation from
C to Verilog consists of different passes. After the front-end, we
inline the functions and perform the pointer analysis [16]. Then the
aliasing information is used to remove and optimize pointers in the
following order:

- define the point-to-set of each pointer;
- replace the loads and stores (insert star_p);

- optimize load 1: define star_p when p or any variable of
the point-to-set change;

C function

set point-to-set

AR S

inline function

Gy

T A

Verilog Module

Behavioral
Compiler

<
Netlist m

Figure 6: Toolflow for the Synthesis of Pointer in C

- optimize loads followed by stores: create the _starN_p
variables;

optimize load 2: kill star_p when all variables of the point-
to-set are live;

- encode pointers value using NOva [15];

- dead-code elimination.

v

The intermediate code without pointer is then translated into Ver-
ilog using Csuif2Verilog.

We have written several simple models to test the functionality and
the efficiency of our implementation. Table 1 and Table 2 show the
examples and the results after pointer resolution with and without
optimization.

area (no optimization) area (with optimization)

example G
P Mines e -~ non- - non-
combinational{ L combinational ..

combinational combinational

load 43 1527 2334 2076 1523
load/store | 48 5319 1427 5324 1042
encoding | 58 272 834 162 834

Table 1: Results after synthesis and optimization using target library
Isi_10k: combinational area and non-combinational area in gates.

example | C lines | time (no optimization) | time (with optimization)

model tests the optimization of loads. It contains one pointer that
may point to 3 integers stored in registers. After the definition of
the pointer, we have two paths and then a load. In one path. nore of
the variables of the point-to-set are used. In the other path. all v
ables of the point-to-set become live. Without any optimization we
have 5 32bit registers (i.e. 2300 gates of non-combinational area).
After optimization we only have 3 registers (i.e. 1500 gates of non-
combinational area). Notice the increase of the combinational area
and of the cumulative time caused by adding steering logic to
update the value of star_p. There is a trade-off between the num-
ber of registers and the size of the steering logic.

I
e}

In the second example, we have a pointer that may point to
two integer variables stored in registers. This pointer is used as a
parameter in a function call. After inline the function, we end up
with a load followed by a store. Here the optimization saves one
register with a little increase of the amount of steering logic.

Finally, we implemented the model in Example 9. Here the
encoding of the pointers value reduces the combinational logic by
40%. Since the design is simpler, the circuit is also faster.

Our implementation can also deal with larger designs and
arrays. We have taken a regular implementation of a two-dimen-
sional inverse discrete cosine transform (2D IDCT) [9] in C and
synthesized it. The 2D IDCT is widely used in image compression
standards such as JPEG, MPEG and H263. The 2D IDCT imple-
mented consists of two one-dimensional IDCTs (1D IDCTs). For
this purpose, we use 3 different memories: the input buffer
(in_table), the intermediate buffer that stores the result of the first
1D IDCT (buf_table) and the output buffer (out_table). To access
these memories, we use pointers and pointer arithmetic. In the
1D IDCT pointers are also used to reference two register banks
(buffl and buff2).

Pointers can also be used to optimized the circuit. In particu-
lar, the 2D IDCT can be implemented using only one call to 1D
IDCT:

2d_idet () {

int i, *p_in, *p_out;

for(i=0; i<2; i++) {

if(1==0) {

p_in = in_table;
p_out = buf_table;

} else {

p_in = buf_table;
p_out = out_table;

}

1d_idct(p_in, p_out);
}

Here pointers are not only used to access memories, but they
are also used to specify resource sharing: in this case only one
1d_idet is instantiated,

load 43 46 ns 51 ns
load/store 48 86 ns 88 ns : B ren it
tost | CPU (1D | C | Verilog| aea (”,“ gates) cy::f‘s

encodi 58 7.5 59 i i i

s ns s time| pir | lines | - lines combinational | non-combin. . | 20MHz
Table 2: Results after esis a timization usi et lib -

€ 2: Resuls after synthesis and optimization using target liorary idet|7.8s] 6 | 176 | 221 38172 12910 1088
Isi_10k: cumulative timing in ns.

Table 1 and Table 2 show the area and cumulative timing for
the examples. They illustrate each feature of the optimizer. The first

Table 3: Result of the synthesis of the IDCT running at 20MHz
using target library LSI10k.

—1 |
T
Steering Logic & Memory|

¥
— 1
Eﬂl uf Buil2

in_table buf”table out_iable

Control

]
]

L

S

Figure 7: architecture of the 2D IDCT

The results of the synthesis is presented on Table 3. The CPU
time for translating the C model! into Verilog was calculated on
SunUltra2. The Verilog module was synthesized with behavior
compiler without unrelling loops. The architecture of the IDCT is
presented in Figure 7. The design consists of 5 multipliers, 4 adders
and 2 ALUs. Other implementations can be found by changing the
timing and resource constrains.

5. CONCLUSION AND FUTURE WORK

We have presented an extension of the synthesizable subset of
C to pointers to variables. Pointers resolution is not only used to
synthesize C models with pointers, it also allows designers to fur-
ther optimize their code with explicit resource sharing. Our imple-
mentation takes a C function with pointers and generates a Verilog
module without pointers. The code of this module can then be syn-
thesized by commercial tools such as the Behavioral Compiles™ of
Synopsys.

In particular, we synthesize and optimize a C model with
pointers to multiple variables. These variables can be mapped to
registers, wires, ports or elements of different memories. Pointer
arithmetic is also allowed for pointers to array elements. The logic
is then optimized. In particular, we minimize the number of regis-
ters before loads and between loads and stores. The values of the
pointers are also encoded in order tc minimize both their size and
the circuit generated for the assignments and comparisons of point-
ers.

In the future, we are planing to extend this work to pointers to
pointers and dynamic memory allocation. We are also planning to
work on pointers to functions. This could be used for object-ori-
ented synthesis and reconfigurable hardware.

6. ACKNOWLEDGMENT

The work presented in this paper is supported by ARPA under
contract DABT63-95-C-0049 and by Synopsys Inc. We would also
like to thank David Heine from Stanford, for its help with the
implementation using SUIF, Joachim Kunkel, Abhijit Ghosh from
Synopsys Inc. for their comments and their support.

7. REFERENCES

[1] Ivo Bolsens, Hugo J. De Man, Bill Lin, Karl Van Rompaey,
Steven Vercauteren, Diederik Verkest, “Hardware/Sofware Co-
Design of Digital Telecommunication Systems”, Proceedings
of the IEEE, Vol 85, No. 3, pp.391-418, March 97.

346

[2] C.T.Bye, M.R. Lightner and D.L. Ravenscroft, “A Functional
Modeling and Simulation Environment based on ESIM and C”,
Proceeding of the 1984 ICCAD, pp.51-53, November 84.

[3] Giovanni De Micheli “Synthesis and Optimization of Digital
Circuits”, Mc Graw Hill, Hightstown, NJ, 1994.

[4] R. Ernst, J. Henkel, Th. Benner, W. Ye, U. Holtmann, D. Her-
rmann, and M. Trawny, “The COSYMA Environment for Hard-
ware/Software Cosynthesis of Small Embedded Systems”
Microprocessors and Microsystems 20(3),pp.159-166, May
1996.

[5] Brian Kernighan, Dennis Ritchie, “The C Programming Lan-
guage”, Prentice Hall Software Series, Englewood Cliffs, NJ,
1988.

{6] David Knapp, “Behavioral Synthesis: Digital System Design
Using the Synopsys Design Compiler”, Prentice Hall, Upper
Saddle River, NJ, 1996.

[71 David Ku and Giovanni De Micheli, “High-Level Synthesis of
ASICs under Timing and Synchronization Constraints” , Kluwer
Academic Publishers, Boston, MA 1992.

[8] Stan Liao, Steve Tjiang, Rajesh Gupta, “An Efficient Implemen-
tation of Reactivity for Modeling Hardware in the SCENIC
Design Environment”, Design Automation Conference DAC97,
pp.70-75.

[9] Elliot Linzer, Ephraim Reig, “New Scaled DCT Algorithms for
Fused Multiply/Add Architectures”, International Conference
on Acoustics, Speech, and Signal Processing, Proceedings
ICASSP ‘91, Vols.1-5, pp.2201-2204, 1991.

{10] Steven S. Muchnick “Advanced Compiler Design & Implemen-
tation”, Morgan Kaufmann Publishers, San Francisco, Ca,
1997.

[11] Cytron, Ron, and Reid Gershbein. “Efficient Accomodation of
May-Alias Information in SSA form”, Proceedings of the ACM
SIGPLAN’93 Conference on Programming Languages Design
and Implementation, pp.36-45, June 1993.

[12] Donald Soderman, Yuri Panchul, “Implementing C Designs in
Hardware: A Full-Featured ANSI C to RTL Verilog Compiler in
Action”, http://www.compilogic.com/

[13] Bjarne Steensgaard “Point-to Analysis by Type Inference of
Programs with Structures and Unions”, Proceedings of the
1996 International Conference on Compiler Construction,
pp-136-150, April 1996.

[14] Charles Stoud, Ronald Munoz, David Pierce, “Behavioral
Model Synthesis with Cones”, IEEE Design & Test of Comput-
ers, Vol 5 No3, pp.22-30, June 88.

[15] Tiziano Villa, Alberto Sangiovanni-Vincentelly, “NovA: State
Assignment of Finite State Machines for Optimal Two-Level
Logic Implementation”, 1EEE Transactions on Computer-
Aided Design, Vol. 9, pp.905-924, September 1990.

[16] Robert Wilson, “Efficient, Context-Sensitive Pointer Analysis
For C Programs”, PhD Dissertation, Stanford University, 1997.

[17] Robert Wilson, Monica Lam, “Efficient Context-Sensitive
Pointer Analysis for C Programs”, Proceeding of the ACM
SIGPLAN’95 Conference on Programming Languages Design
and Implementation, pp.1-12, June 95.

[18] R.P.Wilson et al. “Suif: An Infrastructure for Research on Par-
allelizing and Optimizing Compilers”, ACM SIPLAN Notices
28(9), pp.67-70, Sept. 1994.

