46.2

Computational Kernels and their Application to Sequential Power Optimization

G. De Micheli #

Stanford University
Computer Systems Laboratory
Stanford, CA 94305

L. Benini * A. Lioy

Abstract

We introduce a new sequential optimization paradigm based on
the exztraction of computational kernels, i.e., logic blocks whose
behavior mimics the steady-state behavior of the original circuit.
We present a procedure for the automatic extraction of such ker-
nels directly from the gate-level description of the design. The
advantage of this solution with respect to extraction algorithms
based on STG analysis ia that it can be applied to large circuits,
since it does not regquire to manipulate the STG specification.
We ezploit computational kernels for optimization purposes; in
particular, we describe an architectural decomposition paradigm
whose template is reminiscent of the muz-based scheme adopted
in parallel tmplementations of logic-level descriptions.

We show the usefulness of the new optimization style by ap-
plying it to the problem of reducing the power dissipated by a
sequenital circuit. Ezperimental results, obtained on standard
benchmarks, demonstrate the merit of the proposed approach.

1 Introduction

In spite of the large number of states that are potentially reach-
able by a sequential design, it is a well established fact that,
during normal operation, the circuit tends to run through only
a few of such states. An informal, though convincing proof of
this statement is given by the results of the probabilistic anal-
ysis of the finite state machines associated to large networks:
Only a few states have sizable steady-state occupation proba-
bility [1]. A similar situation occurs at the network primary
outputs. While the circuit walks through the most probable
states, a limited number of output patterns is generated.

We call computational kernel of a sequential circuit a logic block
whose behavior mimics the steady-state behavior of the original
network. Usually, such block is much smaller, faster, and less
power consuming than the circuit it is extracted from. Never-
theless, it can replace the original network for a large fraction
of the operation time.

For circuits with a few registers, computational kernels can be
calculated in an exact fashion through symbolic procedures for
FSM reachability analysis. However, when the network size
increases over a few tens of memory elements, the above ap-
proaches are no longer applicable for both memory and time
reasons. Resorting to approximate, simulation-based techniques
that rely on structural circuit analysis, is then mandatory.

In this paper, we discuss heuristics for the automatic extraction
of computational kernels, we propose an optimization paradigm
based on the exploitation of such kernels, and we illustrate how
the technique can be applied to sequential power minimization.

Permission to make digjtal/hard copy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage, the copyright notice, the title of the publi-
cation and its date appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 98, San Francisco, California

©1998 ACM 0-89791-964-5/98/06..$5.00

1

764

E. Macii * G. Odasso * M. Poncino }

! Politecnico di Torino
Dip. di Automatica e Informatica

Torino, ITALY 10129

The extraction procedure constructs the computational kernel of
a given sequential network incrementally by iteratively reducing
the size of the logic block implementing the next-state and the
output functions through implication analysis and redundancy
removal. The extraction algorithm is driven by a cost function,
whose objective is that of monitoring the quality of the kernel
with respect to a given optimization target (e.g., delay or power)
and thus providing a criterion for stopping the iterations.

Both the original circuit and its kernel are fed by the same pri-
mary inputs, and the state and output values are computed by
the low cost logic (i.e., the kernel) anytime this is possible. By
definition of computational kernel, there are high chances for
this situation to happen. Therefore, the average computational
cost decreases with respect to the original design. Moreover,
once the computational kernel is available as a logic network,
it can be exploited for optimizing the original circuit as well,
because the input conditions when the kernel is active are con-
trollability don't cares for the original circuit.

We show the usefulness of kernel-based optimization by apply-
ing it to the problem of reducing the power dissipated by a
sequential circuit. In this case, the cost function which drives
the kernel extraction procedure must take into account both
the switching activity and the capacitive load of the reduced
network. Experimental results, obtained on a set of standard
benchmarks, demonstrate the validity of the proposed approach.

2 Definition of Computational Kernel

For the sake of simplicity, we provide the definition of compu-
tational kernel of a sequential design by referring to the FSM
which models the behavior of the circuit. This definition is then
extended to the more interesting case of circuits described at
the structural-level, that is, to designs whose manipulation is
not constrained by the size of the available computer memory.
A finite state machine (FSM), M, is defined as the 5-tuple:

M =(X,2,5,5° R)

where X and Z are the input and output alphabets, S is the
finite set of states, S is the unique reset state, and R C X x
S x 8% Z — {0,1} is the global relation. R(x,s,t,z) = 1 if and
only if, under input € X, M moves from present state s € 5
to next state t € S with output z € Z.

Mealy-type FSMs produce the output value z when the transi-
tion from state s € S to state t € 9 labeled z is taken, while
Moore-type FSMs produce the output value z when a given
state s is reached. Therefore, in Moore-type machines, states,
rather than edges, are labeled with output symbols. M can be
represented by a state transition graph (STG); for Mealy-type
FSMs, the vertices of the STG are elements of s € S, and the
edges are labeled with pairs (z,z) € X X Z. On the other hand,
the vertices of Moore-type FSMs are labeled with z ¢ Z, while
the edges are labeled with = € X.

Given a Moore-type finite state machine, M = (X, Z, S5, 39, R),
modeling the behavior of a sequential circuit, and given a prob-
ability threshold, p, we define the p-order computational kernel
of M, denoted as My, as the following finite state machine:

M, = (Xp,Z,5p, 53, Rp)

Sp = SprUidle, where Spr = {s € S : P(s) > p} is the subset of
the states of M whose steady-state occupation probabilities are
larger than p, and tdle is an additional state which corresponds
to the remaining states of M. Sg equals S0 in case SO € Sy,
otherwise Sg = idle. X, is the set of input signals which in-
cludes X. Additional input signals are required to specify the
destination state in transitions from tdle to other states in Sp.
Finally, Rp(z, s,t,z) = R(z,s,t,2) — {(,s,t,2) : s € Spp At ¢
Sac}+{(z, s, t,2) : s = idlent € Sapp}+{(z,5,t,2) : s € SpAt =
idle} + (z, idle, idle, z).

As an example, consider the simple finite state machine shown
in Figure 1-a, in which the input and output values are omitted
for the sake of simplicity, and the states are annotated with the
steady-state occupation probabilities calculated through Marko-
vian analysis of the STG [1]. If we specify a probability thresh-
old p = 0.25, the computational kernel of the machine is de-
picted in Figure 1-b.

(a)

Figure 1: Moore FSM(a); 0.25-Order Computational Kernel (b).

When the FSM modeling the design is of Mealy-type, the def-
inition of computational kernel seen above becomes more com-
plex, since the output and the transition relations of M, must
be determined separately. The reason for this is that the out-
put values generated by the FSM are associated to the edges,
rather than to the STG vertices. Then, the way to proceed for
determining the kernel consists of extracting the two relations
above from the global relation through universal quantification,
applying the definition given for Moore-type FSMs to the STGs
of such relations, and forcing the two kernels to run in lock-step.
From the discussion above, it is apparent that calculating the
computational kernel of a FSM can be done easily through sym-
bolic manipulation, by handling simultaneously sets of states
represented as characteristics functions [2]. Well-established
technology developed in the context of exact [3, 4, 5, 6] and
approximate {7, 8] FSM reachability analysis can be easily ap-
plied to solve the kernel calculation problem in the case the STG
of the FSM is available or it can be extracted from the circuit
description.

If the computational kernel has been determined following a
top-down path starting from the STG (implicitly or explicitly
represented), state assignment must be performed, and existing
logic synthesis and optimization techniques [9] can be applied
to generate a sequential network functioning exactly as M.

765

A rather different situation must be faced when the STG con-
struction is prevented by the memory required to (implicitly)
store the STG itself. First, exact probabilistic analysis can not
be performed in absence of the FSM specification at the STG-
level. Approximate algorithms, such as those discussed in [10],
must then be employed; consequently, some states may be in-
correctly considered as belongingto M,. Second, state encoding
for Sp, is not performed, because it may be too time consuming.
In the next section, we propose a heuristic approach for simulta-
neously determining the output and the next-state kernels of a
sequential circuit, and to directly obtain a logic-level sequential
network for such kernels. The method does not require explicit
nor implicit STG manipulation; therefore, it is not memory in-
tensive, and can deal with large designs.

3 Heuristics for Kernel Extraction

In this section, we present an iterative procedure for determin-
ing the computational kernels of a sequential circuit that works
on the structural description of the network. The algorithm is
heuristic by nature, and it exploits concepts such as logic im-
plication and redundancy removal which have been in use for a
long time in applications like test generation and logic optimiza-
tion. More specifically, it takes the initial sequential circuit, A4,
and it iteratively computes the kernel, K, by removing gates
and connections from the combinational logic CL of A.

The elementary step of the iterative transformation is shown in
Figure 2. A connection w is selected inside network A. Signal w
is replaced with either the constant value O (shown in the figure)
or 1, and the circuit is simplified by propagating the constant
value in the fanout cone of w and by removing all the fanout-
free logic gates in the transitive fanin of w. Notice that w can
be a primary input or a primary output of the logic network.

Figure 2: Basic Transformation for Kernel Construction.

The computational kernel K is obtained from the original cir-
cuit A by applying a sequence of these elementary transforma-
tions, until a stopping criterion is satisfied. We denote with K*
the computational kernel K after 7 applications of the above
transformation. Initially, K° = 4; then, the i-th transforma-
tion yields a new circuit K* from the previous one Ki=!. The
pseudo-code of the iterative extraction procedure is shown in
Figure 3.

procedure Compute Kernel(4,F,U.,) {
1=0; K* =A;
do {
w = SelectNode(A4,Uy);
v = ChooseBestValue(4,w);
K = PropagateValues(K* 4,w,v);
it 4)
} while (!StopTest(K*,F))
return(K");

Figure 3: The Compute Kernel Algorithm.

The procedure receives, as inputs, the original circuit, A, the
cost function, F', which controls the stopping criterion, and the
utility function, Uy, which drives the node selection process,
and it returns the computational kernel, K*, obtained after 1
iterations of the do while loop.

It is easy to realize that the selection of the nodes in the network
to which the transformation is applied (procedure SelectNode
in the pseudo-code) heavily impacts the result of the kernel ex-
traction. The node selection strategy can thus be customized
for different cost functions to be optimized. As an example, in
Section 5 we present a heuristics for reducing the power dissi-
pated by the kernel under the constraint that K “covers” most
of the behaviors of the original circuit 4.

The computational kernel can be seen as a “dense” implemen-
tation of the circuit it has been extracted from. In other words,
K implements the core functions of the original circuit, and
because of its reduced complexity, it usually implements such
functions in a faster and more efficient way. In the next section,
we propose an innovative optimization paradigm that takes ad-
vantage of this fact.

4 Kernel-Based Optimization

The computational kernels of a sequential circuit, extracted as
discussed in Section 3, provide us with an extremely powerful
device to be used for various types of logic optimization.
Given a sequential circuit with the well-known topology of Fig-
ure 4-a, the paradigm we propose for improving its quality with
respect to a given cost function (e.g, power dissipation, timing)
is based on the architecture shown in Figure 4-b.

(b}

Figure 4: Sequential Circuit (a); Kernel-Based Architecture (b).

The essential elements of the architecture are the following: The
combinational portion of the original circuit (block CL), the
kernel (block K), the selector function {block S), the double-
state flip-flops (DSFF), and the output multiplexors (MUX).

766

The purpose of the selector function S is that of deciding what
logic block, between CL and K, will provide the output value
and the next-state in the following clock cycle. To take a de-
cision, S examines the values of the primary and present-state
inputs that will be fed to blocks CL and K in cyclen + 1. If
the output values in clock cycle n + 1 can be computed by the
kernel K, then S takes on the value 1. Otherwise, it takes on
the value 0. The value of S is fed to a flip-flop, whose output is
connected to the multiplexors that select which block produces
the output and the next-state. The optimized implementation
is functionally equivalent to the original one.

The sequential elements indicated as DSFFs are called dual-
state flip-flops, and they replace the ordinary flip-flops present in
the original design. A dual-state flip-flop is functionally equiv-
alent to the schematic of Figure 5, and it operates as follows:
When S = 1, flip-flop F is loaded with a new value coming from
the external data input, while flip-lop F; holds its state. The
opposite happens when S = 0. In this way, the state of either
the kernel or the original network can be kept unchanged (i.e.,
frozen in the dual-state flip-flops) while the other logic block is
being used to produce the output and the next state.

Clearly, Figure 5 only describes the functional behavior of a
dual-state flip-flop, whose actual implementation can be prop-
erly optimized to reduce the overhead with respect to the stan-
dard flip-flops used in the original sequential network.

|
|
]
-+ 0 Fl lt
!
| |
| |
1| Ly 1
| 1 F2 }
I
S |

Figure 5: Functional Model of a Dual-State Flip-Flop.

It can be observed in first place that, besides the automatic
generation of the kernel (this task is accomplished by procedure
Compute Kernel of Section 3), also the logic for the selector func-
tion S needs to be synthesized. Fortunately, the logic for S can
be obtained as a by-product of the kernel extraction process.
In other words, procedure Compute Kernel can be modified to
incorporate the automatic synthesis of S.

This is because the ON-set of the selection function, at the i-th
iteration of the kernel extraction loop, is defined as the set of
primary input and present-state conditions for which each pri-
mary and next-state output of K* is equal to the corresponding
primary and next-state output of CL (that is, K* can be used
in place of CL to compute the output and next-state values).
Thus, S; can be simply computed in an exact fashion by the
following equation:

N
Si(z,8) = H(p’a‘ = wj)

i=1

1)

where the product stands for logic conjunction, p;'» is the j-th
output of network K* (that is, an element of set (ru)), w; is
the j-th output of network CL (that is, an element of set (p,t)),
x are the primary inputs, and N is the number of primary and
next-state outputs.

Since binary decision diagrams (BDDs) [11] are used to repre-
sent both K and S, S; can be computed as long as it is possible
to construct its BDD. There may exist circuits for which the
BDD of S can not be constructed. In this case, we have to
resort to approximate methods. For performance reasons, such
methods must be customarily designed depending on the spe-
cific target optimization. In Section 5, we describe a solution
which is particularly suited to power minimization.

The revisited pseudo-code is shown in Figure 6. It should be
noticed that an extra input parameter is passed to the proce-
dure: The timing constraint T to be used in the synthesis of
S. This is because the speed of S must always be kept under
consideration, since its delay adds up to the critical delay of the
original sequential circuit.

procedure Compute Kernel_and_Select{A4,F,U.,T) {
i=0; K' = A
do {
w = SelectNode(A,Uy);
v = ChooseBestValue(A,w);
Kt = PropagateValucs(Ki,A,w,'u);
se= [T, (5 = ws)
BuildSelectionLogic(5;,T);
i+ 4)
} while (!StopTest(K*,S;,F))
return(K*,5;);

}

Figure 6: The Compute Kernel_ and Select Algorithm.

5 Application to Power Optimization

Research on logic-level power minimization techniques has al-
ways been very active [12]. Most of the optimization approaches
at the logic-level target combinational circuits, and the litera-
ture on the subject is vast.
on the other hand, only a few solutions have appeared to be
successful, namely, state re-encoding, re-timing, clock-gating,
and guarded-evaluation. For a detailed discussion of these tech-
niques the interested reader may refer to [13, 14].

In this section, we propose the application of the computational
kernel based paradigm discussed in Section 4 to solve the sequen-

Concerning sequential networks,

tial power optimization problem. In other words, we discuss how
the basic operations of algorithm Compute Kernel_ and.Select
can be implemented when the target of the optimization is a
low-power realization of the original circuit.

A few techniques similar to ours have been proposed in the re-
cent literature. Precomputation [15, 16] is an approach to power
minimization that relies on the idea of computing some of the
output values of a circuit through a simplified (and low power
consuming) logic running in parallel with the original circuit.
The technique works well for circuits with pipelined structure;
on the other hand, the extension to the case of sequential circuits
with feed-back proposed in [15] is not applicable in practice, as
shown by the data presented in {17, 18].

FSM decomposition for low power [19, 20, 21] can be seen as a
top-down kernel extraction procedure that starts from explicit
STG specifications (e.g., state tables). Although these tech-
niques reported sizable power reductions, they can be applied
only to small circuits for which the explicit STG description can
be manipulated in reasonable time and memory space. The ad-
vantage of our approach to kernel extraction is that it can be
applied to circuits for which not even the implicit representation
of the STG can be constructed. Kernel extraction for low power
is a specialization of the general algorithm of Figure 6.

767

5.1 Node and Value Selection

In order to perform the selection of the candidate node, w, pro-
cedure SelectNode within the algorithm of Figure 6 requires
a utility function Uy that estimates the savings that can be
achieved if w is replaced by either O or 1.
The function Uy we adopt in our method is an approximate one,
since we are interested in fast, yet reasonably accurate estimates
of the power savings. It is a combination of the expected power
savings on w (Xw) and the expected power savings on the fanin
and fanout (£w):

Uy = Xw + abw

where 0 < a < 1 is a scaling coefficient (by default, a = 1).

£w can be efficiently computed, given the transition probability
Tplw) and the load capacitance C12%¢ of node w, as xw = Tp[w]-
Cloed, On the other hand, ¢, can be determined by finding how
many gates will be elirninated from A by the transformation,
and summing the total power:

>

Vaw; eliminated

(2)

Powsgye = Tpld] - Cf""’d

(3)

The number of gates eliminated can be easily determined by
evaluating how many gates in the fanin and fanout cones have
their outputs fixed to some constant value.

Even though the approximate Uy, discussed above usually pro-
vides accurate enough estimates, for critical cases (e.g., portions
of logic which are always under stress, controllers), it may be
required to resort to exact calculations, at the price of an in-
creased run-time of the kernel extraction procedure. The exact
solution consists of evaluating the actual power savings resulting
by the substitution in the network, by running some power esti-
mation tool, such as symbolic simulation [22], or any available
commercial tool. This is clearly much more time and memory
demanding, and it is applicable for small circuits, since it would
be invoked for every new substitution. In the current implemen-
tation, it is possible to trigger symbolic simulation to evaluate
the exact power savings.

Once a candidate node w has been selected, there are two op-
tions for the selection of which value is the best to force on w
(procedure ChooseBestValue in Figure 6). For small to medium-
sized circuits, it may be feasible to force first 0 and then 1 on
the network 4, and then evaluate Uy using Equation 2 for each
of the two choices. The selected value v will be the one with the
highest value of Uy,.

For larger circuits, in which the propagation of a value can re-
quire a certain amount of time, it is better to estzmate the best
value to assign to w. This can be done as follows: The node w
will usually have a transition probability Tp[w] that is close to
0.5; this is because, under the assumption of temporally uncor-
related circuit inputs, the transition probability can be obtained
as:

(4)

where p,, is the signal probability of node w. The first term in
Equation 4 indicates the probability of a 1 — 0 transition occur-
ring on node w, while the second term represents the probability
of the other transition (0 — 1). This function has a maximum
at py = 0.5; therefore, values of the signal probability close to

Tplw] = pu(l — pu) + (1 — Puw)pw = 2puw(l — Pu)

0.5 imply a high transition probability. This means that, once w
has been selected, the value v to be assigned should be obtained
by the logic expression py, > 0.5. In other terms, w should be
assigned to 0 if py < 0.5, to 1 otherwise, that is, to the value
which is more likely to occur.

5.2 Stopping Criterion

The iterative construction of K and S will tend to yield increas-
ingly small S’s. Intuitively, this corresponds to lowering the
probability of using K instead of A to compute the outputs and
the next states. After some iterations within the do while loop,
this probability might become too small, reducing the fraction
of time in which K is selected. The process should then be
stopped.

An estimate of the power, Pow;, dissipated by the z-th version
of the architecture can be computed as:

Pow; = Pow(K';) - P(S;) 4+ Pow(A) - (1 - P(S;))+ Pow(S;) (5)

Equation 5 can be interpreted as follows: When S; = 1, the
kernel K is operating; thus, it dissipates Pow(K*) for a fraction
of time equal to P(S;). Conversely, when S; = 0, the original
circuit A is operating; thus, it dissipates Pow(A) for a fraction
of time equal to 1 — P(S;). Then, the condition to be checked
for terminating the iterations occurs when A; stops decreasing
from one iteration to the next one.

In order to prevent an early termination, in the implementation
of procedure StopTest we have added to the right-hand side of
Equation 5 a term, O;, representing an overhead value, that
may be adjusted iteration by iteration. In the first few itera-
tions, it should be negative, to force the first transformations.
Then, as 1 increases, it should tend to the value Powpspp +
Powpryx, where Powppsg is the incremental (with respect to
regular flip-flops) power dissipation of the dual-state flip-flops,
and Powasy x is the power dissipation of the output multiplex-
ors. Alternatively, the stopping condition may not be tested for
the first few iterations, to ensure that the K* is sufficiently sim-
pler than A, and it is then thereafter to make sure than P(5;)
does not become too small.

5.3 Synthesis of the Selection Logic

The selection logic S should be synthesized for power under tim-
ing constraints. In most cases, especially for large circuits, the
function § obtained by Equation 1 is too large to be synthesized
as is. In these cases, we use a sub-setting algorithm [7] that pro-
vides an implementation K™ of the selection logic whose ON-set
is smaller than that of K (and whose implementation is fast
(or small) enough), but with maximum probability. With sub-
setting, we sacrifice probability for performance and/or area.
Finally, one additional optimization can be obtained by observ-
ing that the circuit 4 can be optimized using S; as controlla-
bility don’t care set, to reduce the area overhead and to save
additional power. This is because, when S = 1, the functional-
ity implemented by 4 is already computed by K.

6 Experimental Results

We have implemented the procedure for the extraction of the
computational kernels of a sequential circuit and to build from
it the architecture of Figure 4 as an extension of SIS [23] using
CUDD [24] as the underlying BDD package. Experiments have
been run on a DEC AXP 1000/400 with 256 MB of memory.
The benchmarks we have used to check the effectiveness of the
kernel-based power optimization approach are ALL the large
Iscas’89 sequential circuits [25], including the addendum (that
is, a total of 15 examples). The circuits were initially optimized
for area using script.rugged (whenever possible), and mapped
for area with map -m0 -AFG onto a library containing two to
four-input NAND and NOR gates, inverters and buffers with
three different drive strengths, and a flip-flop.

768

Table 1 reports the data for the examples for which some power
savings have been obtained (10 cases). In particular, columns
In, Out, FF, Gates, and Delay report the characteristics of the
reference circuits. Column Power shows the power, in uW, of
the original circuit A (column Reference), and that of the kernel-
based architecture (column Optimized), as well as the obtained
savings (column Savings). Column P(5) tells the probability of
the selector function S to be 1, that is, the probability of kernel
K to be active. Column Area Overhead shows the area cost
of the modified architecture, expressed as a percentage of the
initial gate count. Similarly, column Delay Overhead shows the
performance penalty introduced by the use of the kernel-based
architecture. Finally, column CPU Time indicates the execu-
tion time, in seconds, required by the optimization procedure to
complete.

Power estimates within the kernel extraction procedure have
been computed using symbolic simulation, while those for the
initial and final circuits have been determined using the Irsim
switch-level simulator [26].

The results we have obtained are promising. An average power
savings of approximately 13.6% has been achieved, with a peak
of 29.3% on circuit s1512.

Five of the benchmarks in the suite did not produce acceptable
results. More specifically, the application of our technique to
examples 3330 and 59234 did not produce any noticeable power
improvement. For circuits 35932, 538417, and s38584, on the
other hand, the execution did not complete, due to the size of
the original network to be handled.

Concerning the timing of the optimized circuits, in spite of the
fact that the delay of the selector function S adds up to the
largest delay between CL and K, the penalty is limited (3.71%
on average). This is because CL is optimized using S as don't
care set, thus its delay usually reduces with respect to the orig-
inal circuit.

As expected, the area penalty is relevant (58.9% on average).
This is because the kernel-based approach we have proposed
suffers, in principle, from the same overhead (logic duplication)
that affects any type of parallel implementation.

7 Conclusions and Future Work

The computational kernels of a sequential circuit are blocks of
logic whose behavior mimics the steady-state behavior of the
original circuit. The computation of the kernel of a design spec-
ified through the state graph of the corresponding finite state
machine is feasible only when the state space is of limited size,
even though BDD-based, symbolic representation techniques are
adopted.

In this paper, we have presented a heuristic method for the
automatic extraction of approximate computational kernels di-
rectly from the gate-level description of a sequential design. The
solution is simulation based, and it is thus applicable to large
networks for which the STG can not be extracted and/or ma-
nipulated.

We have then proposed the exploitation of computational kernel
as a device for general-purpose logic optimization. The method
requires the modification of the original circuit according to an
architectural decomposition paradigm whose template is remi-
niscent of the mux-based scheme adopted in most parallel im-
plementations of logic-level descriptions.

We have proved the effectiveness of this optimization paradigm
by using it for reducing the power dissipated by a sequential
circuit; experimental results, obtained on standard benchmarks,
are very promising.

r Circuit | In | Out ! FF ' Gates | Delay Power [P(5) Area Delay CPU
| Reference | Optimized | Savings | Ouverhead | Overhead | Time i
$1269 18 10 37 468 50.42 1412.96 1339.02 | 5.23% | 0.45 69%, 3.34% 10
51423 17 5 74 602 73.58 2037.88 1473.64 | 27.68 % | 0.25 38% 0.87% 43
s1512 29 21 57 475 42.71 804.51 568.10 | 29.38 % | 0.93 36% 1.69% 85
83271 26 14 | 116 1045 35.21 3436.60 3209.33 6.61 % 0.44 79% 5.43% 132
$3384 43 26 | 183 1393 92.47 4651.68 4383.40 5.77% 0.26 85% 6.65% 127
54863 49 16 | 104 2022 86.67 5926.34 5618.15 5.20 % 0.99 81% 7.58% 321
s5378 35 49 164 1132 22.30 1891.85 1706.55 9.79 % 0.90 44% 1.61% 452
s6669 83 55 239 2703 | 163.59 8083.82 7304.13 0.64 % 0.98 63% 4.53% 398
s13207 | 31 | 121 | 669 2462 | 4450 3918.45 3230.56 | 17.56 % | 0.97 43% 2.13% 454
s15850 | 14 87 | 597 3417 72.73 4971.02 4022,97 | 19.07% | 0.99 51% 3.28% 795
[Ave. [1359% | 0.72 | 58.9% | 3.71% | 285.7 |

Table 1: Experimental Results.

We believe that the concept of computational kernel can be
exploited in several directions. Performance optimization is an
interesting future application of this technology. At this regard,
computational kernels can be seen as an extension of the ideas
presented in [27). Moreover, we are considering the possibility

of applying computational kernel extraction at higher levels of
abstraction.

References

(1

2]

(3]

(4]

6]

{7l

(8]

fo

{10]

[11]

f12]

[13]

G. D. Hachtel, E. Macii, A. Pardo, F. Somenzi, “Markovian
Analysis of Large Finite State Machines,” IEEE Transac-
tions on CAD, Vol. CAD-15, No. 12, pp. 1479-1493, Decem-
ber 1996.

G. D. Hachtel, F. Somenzi, Algorithms for Logic Synthesis
and Verification, Kluwer Academic Publishers, 1996.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, “Se-
quential Circuit Verification Using Symbolic Model Check-
ing,” DAC-27, pp. 46-51, Orlando, FL, June 1990.

O. Coudert, J. C. Madre, “A Unified Framework for the For-
mal Verification of Sequential Circuits,” ICCAD-90, pp. 126-
129, Santa Clara, CA, November 1990.

H. Touati, H. Savoj, B. Lin, R. K. Brayton, A. Sangiovanni-
Vincentelli, “Implicit Enumeration of Finite State Machines
Using BDDs,” ICCAD-90, pp. 130-133, Santa Clara, CA,
November 1990.

H. Cho, G. D. Hachtel, S. W. Jeong, B. Plessier, E. Schwarz,
F. Somenzi, “ATPG Aspects of FSM Verification,” ICCAD-
90, pp. 134-137, Santa Clara, CA, November 1990.

K. Ravi, F. Somenzi, “High-Density Reachability Analysis,”
ICCAD-95, pp. 154-158, San Jose, CA, November 1995.

H. Cho, G. D. Hachtel, E. Macii, B. Plessier, F. Somenzi,
“Algorithms for Approximate FSM Traversal Based on
State Space Decomposition,”, IEEE Transactions on CAD,
Vol. CAD-15, No. 12, pp. 1465-1478, December 1996.

G. De Micheli, Synthesis and Optimization of Digital Cir-
cuits, McGraw-Hill, 1994.

C-Y. Tsui, J. Monteiro, M. Pedram, S. Devadas, A. M. De-
spain, B. Lin, “Power Estimation Methods for Sequential
Logic Circuits,” IEEE Transactions on VLSI, Vol. VLSI-3,
No. 3, pp. 404-416, September 1995.

R. Bryant, “Graph-Based Algorithms for Boolean Function
Manipulation,” IEEE Transactions on Computers, Vol. C-
35, No. 8, pp. 79-85, August 1986.

M. Pedram, “Power Minimization in IC Design: Principles

and Applications,” AGM Trensactions on Design Automa-
tion of Electronic Systems, Vol. 1, No. 1, pp. 3-56, 1996.

W. Nebel and J. Mermet Editors, Low-Power Design in Deep
Sub-Micron Electronics, Kluwer Academic Publishers, 1997.

769

[14]

(15]

[16]

(7

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

L. Benini, G. De Micheli, Dynamic Power Management: De-
sign Techniques and CAD Tools. Kluwer Academic Publish-
ers, 1998,

M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, M. Pa-
paefthymiou, “Precomputation-Based Sequential Logic Opti-
mization for Low Power,” IEEE Transactions on VLSI Sys-
tems, Vol. VLSI-2, No. 4, pp. 426-436, 1994,

J. Monteiro, J. Rinderknecht, S. Devadas, A. Ghosh, “Opti-
mization of Combinational and Sequential Circuits for Low
Power Using Precomputation,” 1995 Chapel Hill Conference
on Advanced Research in VLSI, pp. 430-444, Chapel Hill,
NC, March 1995,

L. Benini, G. De Micheli, E. Macii, M. Poncino, R. Scarsi,
“Symbolic Synthesis of Clock-Gating Logic for Power
Optimization of Control-Oriented Synchronous Networks,”
EDTC-97, pp. 514-520, Paris, France, March 1997.

L. Benini, G. De Micheli, E. Macii, M. Poncino, R. Scarsi,
“Integrating Logic-Level Power Management Techniques,”
SASIMI-97, pp. 59-65, Osaka, Japan, December 1997.

S. H. Chow, Y. C. Ho, T. Hwang, C. L. Liu, “Lower Power
Realization of Finite State Machines - A Decomposition Ap-
proach,” ACM Transactions on Design Automation of Elec-
tronic Systems, Vol. 1, No. 3, pp. 315-340, July 1996.

L. Benini, P. Vuillod, C. Coelho, G. De Micheli, “Synthe-
sis of Low-Power Selectively-Clocked Systems from High-
Level Specification,” IS55-96, pp. 57-62, La Jolla, CA, Octo-
ber 1996.

L. Benini, F. Vermeulen, G. De Micheli, “Finite-State Ma-
chine Partitioning for Low Power,” ISCAS-98, Monterey, CA,
May 1998, To Appear.

J. Monteiro, A. Ghosh, S. Devadas, K. Keutzer, J. White,
“Estimation of Average Switching Activity in Combinational
Logic Circuits Using Symbolic Simulation,” IEEE Trans-
actions on CAD, Vol. CAD-16, No. 1, pp. 121-127, Jan-
uary 1997.

E. M. Sentovich, K. J. Singh, C. W. Moon, H. Savoj, R. K.
Brayton, A. Sangiovanni-Vincentelli, “Sequential Circuits De-
sign Using Synthesis and Optimization,” ICCD-92, pp. 328-
333, Cambridge, MA, October 1992.

F. Somenzi, CUDD: University of Colorado Decision Di-
agram Package, Release 2,1.2, Technical Report, Dept. of
ECE, University of Colorado, Boulder, CO, April 1997,

F. Brglez, D. Bryan, K. Kozminski, “Combinational Profiles
of Sequential Benchmark Circuits,” ISCAS-89, pp. 1929-1934,
Portland, OR, May 1989.

A. Salz, M. Horowitz, “IRSIM: An Incremental MOS Switch-
Level Simulator,” DAC-26, pp. 173-178, Las Vegas, NV,
June 1989.

L. Benini, E. Macii, M. Poncino, “Telescopic Units: Increas-
ing the Average Throughput of Pipelined Designs by Adap-
tive Latency Control”, DAC-34, pp. 22-27, Anaheim, CA,
June 1997.

