Reducing Switching Activity on Datapath Buses with
Control-Signal Gating

Hema Kapadia, Giovanni De Micheli

Stanford University, CA

Abstract

This paper presents a practical technique for saving power
dissipation in large datapaths by reducing unnecessary switch-
ing activity on wide buses. Control signals on a datapath mod-
ule are gated by the observability don’t care condition of the
bus driven by that module to stop unnecessary switching activity
on the bus. A methodology for automatic generation of gating
conditions and synthesis of gated control signals from the RTL
description of a design is presented. The technique has very low
overheads in terms of area, power, and designer effort. It was
applied to one of the integer execution units of a 64-bit super-
scalar RISC microprocessor. Experimental results of running
various application programs on the microprocessor show on
an average 26.6% reduction in dynamic switching power in the
integer execution unit, with no increase in path delays.

1. Introduction

Power dissipation continues to grow as an important chal-
lenge in deep submicron chip design. Low power operation is
important for system reliability, reducing cooling costs, and
improving battery life in portable devices. Achieving low aver-
age power dissipation in a complex chip calls for employing low
power techniques at all lzvels of design abstraction [1, 2].

A large fraction of the total area and power dissipation on a
chip today is typically due to clocks, memory and datapaths [3].
Power dissipation in a large datapath is dominated by the
dynamic switching power of heavily loaded wires of buses. Sig-
nificant power savings can be achieved on a chip by reducing
unnecessary switching activity on these buses. Dynamic power
management techniques have been proposed at various levels of
design abstraction [4-9] to detect and stop unnecessary switch-
ing activity on wires on a cycle-by-cycle basis.

This paper focuses on dynamic power management in datap-
aths at the register-transfer level. The technique presented here
reduces unnecessary switching activity on datapath buses by
selectively stopping propagation of switching activity through
modules driving them. The emphasis is on achieving significant
power savings without adding any area, delay or wiring com-
plexity in the datapath, at very low computational cost. This is
achieved by only using control signals to detect and stop unnec-
essary switching activity on datapath buses.

2. Related Work

Clock-gating is an effective dynamic power management
technique [4, 5]. It has been shown to save power by gating
clocks to large functional units on a complex chip [5]. The gat-
ing logic may introduce clock skew, which is a problem in high
performance designs.

Luca Benini
DEIS University of Bologna, Italy

treg_en

[Bus ISBus
Fa\ I
Figure 1 Ex;!mple Datapath

This is avoided in [5] by making the gating logic a part of the
clock generation circuitry. However, this technique does not
take advantage of situations when one part of a functional unit is
in use while other parts are unused. For example, Fig. 1 shows
part of a 64-bit datapath. When sum_en is 0, TBus and /Bus are
unused. If some other part of the datapath is computing useful
data, the clock to the entire datapath would be ungated, thereby
making TBus and /Bus switch unnecessarily. '

Even if clocks to the registers driving TBus and IBus were
gated with sum_en, RBus would switch unnecessarily if mux_sel
changed while sum_en was 0. TBus is unused when mux_sel is 1
and /Bus is unused when mux_sel is 0. Unnecessary switching
activity due to these conditions is not controllable by clock-gat-
ing. Control-signal gating presented here takes advantage of
these conditions to save power. Unnecessary switching activity
is reduced on IBus by gating ireg_en with (mux_sel | sum_en)
and on TBus by gating treg_en with (mux_sel | sum_en). Also,
mux_sel is held unchanged when sum_en is 0, to stop unneces-
sary switching on RBus.

Hold condition detection [6] finds intersections of individual
hold conditions of flip-flops to create groups of flip-flops with a
common clock-gating condition. It is aimed at stopping switch-
ing activity when the output of a flip-flop is going to be fed back
to its input. It is not useful when enabled flip-flops are used,
which is commonly the case in large datapaths. The technique in
[7] collects and analyzes simulation traces to group flip-flops for
clock-gating, however the grouping is trace-dependent. The gat-
ing condition needs to be determined manually, which is done
automatically in our approach.

Precomputation based methods [8] use a few bits of the input
bus of a module to disable unnecessary switching on the rest of
the bits. Logic duplication is required for multi-output func-
tions and multi-fanout buses, and extra wiring complexity is
added in the otherwise regular structure of the datapath to route
bits of buses to precomputation logic.

27.2.1

0-7803-4292-5/97/$10.00 © 1998 IEEE

589
IEEE 1998 CUSTOM INTEGRATED CIRCUITS CONFERENCE

Guarded evaluation [9] places enabled transparent latches at
inputs of modules that need to be selectively turned off, using
existing signals in the design as latch-enables. Automatic selec-
tion of the enable signals is based on logical implication, which
is computationally complex for large designs. The area over-
head of placing guard latches on wide buses is quite high.

Although precomputation and guarded evaluation are quite
effective on random logic and small datapaths, they have high
overheads in large datapaths. Control-signal gating does not add
any logic in the datapath, resulting in very low overheads. It
‘uses functional information available at RT-level to synthesize
gated control signals, giving high computational efficiency.

3. Control-Signal Gating '

The rationale of control-signal gating is that values driven on
buses that are not used by the environment should be frozen in a
quiescent state by stopping propagation of switching activity
through their drivers. This is achieved by making a module’s
inputs unobservable at its output, when the output is not going
to be observed at the primary outputs of the datapath. Thus, we
need to compute two types of Observability Don’t-care Condi-
tions (ODCs): i) ODCp -- the ODC of a bus at primary outputs
of the datapath and ii) ODCy -- the ODC of a module’s input
bus at its output. Computing and synthesizing these ODCs in
large datapaths would be very expensive in terms of computa-
tional and hardware costs. Control-signal gating simplifies these
ODCs by dropping parts that are dependent on datapath buses.

3.1. Computing low overhead ODCy,

Datapath modules fall into two categories: computational
modules and steering modules. Arithmetic and logic modules
that are not controlled by any inputs from control logic are com-
putational modules, e.g. adders, shifters, multipliers. Steering
modules steer one or none of input data buses to output, depend-
ing on the values of control signal inputs. Multiplexers, tri-state
drivers and registers are steering modules.

Ina computatmnal module, input buses are observable at the
output unless one of the inputs makes another unobservable. For

example, if one of the inputs to a multiplier is 0, the other input’

is not observable at the output. Making use of this unobservabil-
ity would require inserting new logic in the datapath, which
would have prohibitive area and power overheads. Hence, for
the purpose of control-signal gating, we will assume that inputs
of a2 computational module are completely observable at its out-
puts. Thus, the ODC)y; of all inputs of a computational module
is 0.

On the contrary, the ODCM of a data input of a steering mod-
ule is a simple function of its control inputs. When an input bus
is not being steered to the output, it is not observable at the out-
put. Fig. 2 summarizes the ODCy; of inputs of different steering
modules. A multiplexer input bus is unobservable at its output
when the corresponding select line is low. A tri-state input bus
is unobseryable at its output when the tri-state enable signal is
low. A reglster mput bus is unobservable at its output in clock
cycle T if the register enable signal is low in cycle T-1.

sel0 sell Multiplexer:
Moo uxout 0D Cyy (Muxin0) = 5eld
MuxInll, ODC,,(MuxInl) = sell
tri_en
Triln TriOut Tri-State Driver:
ODC,(Triln) = tri_en
reg_en
RegOut Register:
ODC,,(RegData) = reg_engm.yy

Figure 2. ODC) for various steering modules
The ODC), of steering module input buses can be used to
compute the ODCp of buses in a datapath.

3.2. Computing ODCp of a bus

Computing the ODC of a signal with multiple fanouts to
modules with multiple outputs requires computing ODCs along
each path and combining them. Combining the ODCs of a sig-
nal at a2 multi-fanout point is quite complex due to terms depen-
dent on the signal itself [10]. This is simplified in control-signal
gating because the ODC of a bus contains terms dependent on
control signals only. Thus, ODCs along different paths can be
combined simply by taking their intersection. This is a conser-
vative simplification that gives efficient computation of small
ODC expressions. In the worst case, the simplification may
result in 0 ODCp on a bus due to data-dependent control signals.
For a bus with N fanouts, if the ODCp of each fanout is known,
the ODCp of the bus is:

N
0ODC, (BUS) = (N ODCP(FANOUTI.))
i=1 @
For a module with N outputs, if the ODCp of each output is
known, the ODCp of an input bus is:
ODC,(IN) = ODC,, (IN) u(M oDcC (OUT))
i=1 05
Traversing a datapath from primary outputs to primary
inputs, the ODCp of all buses can be computed using equations
(1) and (2), and Fig. 2. Fig. 3 illustrate the computation of
ODCp of a multiple-fanout bus.

ODCp (Fanoutl) = ODCp(Sum) ODCP (Carry)
ODC,(Fanout0) = sel0+ODCp (MuxOut)
ODCp (DBus) = ODCp (Fanout0Q) ¢ ODCp (Fanoutl)
Figure 3 Computation of the ODCp of a bus

27.2.2

590

Reconvergent fanout on a bus introduces redundant terms in
the ODCp For example, if MuxOut in Fig. 3 was the second
input of the Adder, the ODCp of MuxQOut would be the same as
ODCp of Fanoutl, changing the ODCp of DBus to:

ODCp(DBus) ,___
= (selO+ODCP(Fanout1)] * ODCp (Fanoutl)

= ODCp(Fanoutl)

Thus, the computed ODCp should be optimized using a logic
synthesis tool to remove these redundant terms.

3.3. Synthesizing Gated Control Signals
The ODCy, of a data input of a steering module is the inverse
of one of the control inputs of that module (Fig. 2). Gating
every control input by the ODCp of the module’s output would
make the ODC), of every data input true, effectively stopping
-unnecessary propagation of switching activity through the mod-
ule. Table 1 summarizes the logic required for generating gated
control signals in different types of steering modules.
Table 1. Logic for Control-Signal Gating

Module Gated Control Signal
Tri-State | tri_en_gated = tri_en ¢ ODCy(TriOut)
Register |reg._en_gated = reg_ene ODCP(RegOMt)@(T_l)
Multi- if (ODCp(MuxOut) @ 1)) ,
plexer sel_gated@(T) = sel_ga[ed@(T‘l)
So, on flip-flops in the fan-in cone of select lines,
flop_en_gated = flop_ene ODCP(MuxOut)@(T_l)

In a register, the enable signal needs to be gated in cycle T-1
if the output’s ODCp is going to be true in cycle T. This is syn-
thesized by finding the fan-in cone of the output’s ODCp up to
flip-flops, and generating the ODCp one cycle early from inputs
of these flip-flops. Stopping the propagation of switching activ-
ity through a multiplexer requires two conditions: the select
lines should not switch, and the selected input should not
switch, Switching on a select line is stopped by applying clock-
gating or control-signal gating to flip-flops feeding into its fan-
in cone. The gating condition on these flip-flops is a one-cycle
early version of the ODCp of the multiplexer’s output. If the
fan-in cone of a select line has fanouts leaving the cone, some
control logic needs to be duplicated. The required duplication is
likely to be little since heavily loaded multiplexer select lines
are likely to have only a few levels of logic after flip-flop out-
puts in order to make timing.)

A multiplexer select line can not be gated if it depends on a
primary input of the chip. Also, the select lines should be gated
only if switching activity on multiplexer data inputs can also be
stopped. If a multiplexer data input is a primary input bus that
can not be gated, its select lines need not be gated.

Similarly, if the ODCp of a bus depends on primary inputs of
the chip, it would not be possible to find a one-cycle early ver-
sion of it. If such a bus is the output of a multiplexer or a regis-
ter, the control signals of that module can not be gated.

4, Implementation Methodology

The methodology for implementing control-signal gating
requires topological ordering of the datapath, and two traversals
of its steering modules in opposite topological order. We
assume that the design has been partitioned into datapath and
control units, and sequential feedback loops have been broken
at register inputs. The datapath netlist is topologically ordered
[10], treating the datapath as a DAG with modules being the
vertices, and buses and control signals being the edges.

4.1. First Pass

The first pass visits all steering modules in the topologically
ordered datapath from primary outputs to primary inputs. The
ODCp of the output bus of each steering module is computed
using the method of Section 3.2. If the output of a module is a
primary output of the datapath, its ODC is assumed to be zero
unless specified otherwise. The ODCp of a bus gets more com-
plex as the algorithm traverses towards primary inputs. It con-
tains OR and AND terms from all steering modules in the
fanout cone of the bus up to the primary outputs. This provides
opportunity for maximum removal of unnecessary switching
activity looking ahead over multiple clock cycles.

However, for very deep datapaths, timing analysis must be
performed after adding control-signal gating to make sure that
generation of the gating logic does not become a critical path. If
such a condition should arise for a bus, its ODCp computation
should be restricted to look at a smaller fanout cone, at the
expense of allowing some unnecessary switching activity.

4.2. Second Pass

The second pass traverses steering modules from primary
inputs to primary outputs. Depending on the steering module
visited, it synthesizes gated control signals using the ODCp of
its output computed in the first pass, and the method of
Section 3.3. Traversing from input to output allows checking
for the case when switching activity on a multiplexer input bus
can not be controlled.

Synthesizing the gating logic adds fanout to control signals
used to generate the ODCs. It also adds an extra gate in the path
of register and tri-state enables. Timing analysis should be per-
formed after adding the gating logic to make sure that these
control signals can make timing.

Any design database system and a synthesis tool can be used
to automate control-signal gating. Due to the simplifications
made in analyzing the datapath, these passes are computation-
ally very efficient.

5. Experimental Setup and Results

We used the protocol processor (PP) of the MAGIC chip
designed as a part of the Stanford FLASH multiprocessor
project {11] for our experiments. The chip was designed with
verilog RTL description, synthesized and laid out using Synop-
sys design compiler and LSI Design’s physical design tools. PP
is a two-way superscalar microprocessor with a RISC core, with
two integer execute units: AExecuteUnit and BExecuteUnit.

27.2.3

591

Table 2. Power Savings with Control-Signal Gating

Benchmark Runtime in Total Toggle Counts swi:fhing Dyn. Switching Power (mW) % Powier

clock- cycles | yj0a¢eq Gated Reduction Ungated Gated Reduction
Sumup 7312 1,926,966 1,543,013 19.9 3787.8 2998.8 20.8
Saxpy 10016 2,555,114 1,918,753 24.9 3715.5 27849 25.0
QuickSort 23388 6,732,918 4,237,245 37.1 43395 27919 357
Sparse 30710 13,124,823 8,381,713 36.1 6510.4 43125 33.8
BubbleSort 98680 44,851,554 33,971,783 243 6789.7 5283.0 222
ProtocolProc 212798 46,334,403 36,232,823 21.8 3010.3 2346.0 22.1

Control-signal gating was applied to the BExecuteUnit. The
BExecuteUnit unit consists of control and datapath sections.
The control section decodes instructions and generates signals
that steer data in the datapath, depending on the instruction
being executed. In the final chip layout, the area of the control
section is 0.37mm? with approximately 1.6K transistors, and of
the datapath is 3.3mm? with approximately 45K transistors. The
datapath is 64-bits wide, with 3 input and 2 output buses. The
datapath consists of 7 computational and 11 steering modules.
Among the steering modules, there are 3 registers for three input
buses, a multiplexer that selects one of two input buses to gener-
ate an internal bus, and a register and 6 tri-state drivers generat-
ing two output buses. Control-signal gating was automated with
Verilog-PLI routines. The ODC of primary outputs was
assumed to be O (unknown). Thus, gated control signals were
generated for the three input registers and the multiplexer.

Five integer programs and a cache-coherence protocol test
were run on the mapped RTL of the PP that was used for final
chip layout. The results are summarized in Table 2. Signal tog-
gle counts were collected on all nodes in the BExecuteUnit for
each benchmark run. Capacitive loading on each node was
extracted from the chip layout. Synopsys net report was used to
estimate the capacitance on the new nodes introduced by con-
trol-signal gating. Dynamic switching power was estimated by
calculating the switching capacitance of all nodes.

Table 2 shows 27.4% average reduction in signal switching
activity, resulting in 26.6% average reduction in dynamic
switching power. The switching activity after control-signal gat-
ing reflects the cumulative effect of increased switching activity
in the control section due to added gating logic, and reduced
switching activity in the datapath. The area of the control sec-
tion increased only by 5% after applying control-signal gating.
Thus the overhead of adding control-signal gating is minimal in
terms of both are and power.

The logic for the computation of ODCp of buses did not
affect any critical path timing. The enable signals of three input
registers had an extra NOR2 gate in their path. After careful
logic resynthesis we were able to keep the path delays of these
signals the same as they were before control-signal gating.

6. Conclusions
We have presented control-signal gating, a method to stop
unnecessary switching activity on datapath buses. Control-sig-

nal gating offers minimum area and power overheads, at very
low computational cost. It is a technique that can be easily used
by a designer to reduce unnecessary power dissipation in a data-
path without having to worry about adding clock skew. We
applied the technique to one of the integer execution units of a
superscalar microprocessor. Running benchmarks on the micro-
processor showed an average 26.6% reduction in dynamic
switching power in the execution unit, with only 5% increase in
area in the control section, and no reduction in speed.

Acknowledgments
We would like to thank Mark Horowitz for helpful discus-
sions and constructive suggestions. This work was sponsored in
part by NSF (NIP942119), Toshiba and ARPA (DABT63-94-C-

0054).

References

[1] M. Pedram, Power minimization in IC design: principles and applications,
ACM Trans. on Design Automation of Electronic Systems, Vol. 1, No. 1
(1996), pp. 3-56.

{21 T. Burd and R. Brodersen, Processor Design for Portable Systems, Journal
of VLSI Signal Processing, Vol. 13, No. 2/3, Aug./Sept. 96, pp. 203-22.

[3] T. Burd and B. Peters, A Power Analysis of a Microprocessor: A Study of
an Implementation of the MIPS R3000 Architecture, ERL Technical
Report, University of California, Berkeley, 1994.

[4] L. Benini et al., Symbolic Synthesis of Clock-Gating Logic for Power
Optimization of Control-Oriented Synchronous Networks, IEEE
European Design and Test Conference, March 1997, pp. 514-20.

[5] G. Gerosa et al., A 2.2W 80MHz Superscalar RISC Microprocessor, IEEE
Journal of Solid-State Circuits, vol. 29, no. 12, Dec. 1994, pp. 1440-54.

[6] F. Theeuwen and E. Seelen, Power reduction through clock gating by
symbolic manipulation, Symposium on Logic and Architecture Design,
Dec. 1996, pp. 184-191.

[71 M. Ohnishi et al., A Method of Redundant Clocking Detection and Power
Reduction at RT Level Design, International Symposium on Low Power
Design, 1997, pp. 131-36.

[8] M. Alidina et al., Precompuiation-Based Sequential Logic Oprimization
for Low Power, Proceedings of IEEE International Conference on
Computer Aided Design, Nov. 1994, pp. 74-81.

[9] V. Tiwari, S. Malik and P. Ashar, Guarded Evaluation: Pushing Power
Management to Logic Synthesis/Design, International Symposium on
Low Power Design, April, 1995, pp. 221-6.

[10] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-
Hill, 1994.

[11] J. Kuskin et al., The Stanford FLASH Multiprocessor, Proceedings of the
21st International Symposium on Computer Architecture, Chicago, IL,
April 1994, pp. 302-13.

27.2.4

592

