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Abstract—This paper presents an aggressive optimization tech-
nique targeting combinational logic circuits. Starting from an
initial implementation mapped on a given technology library, the
network is optimized by finding optimal replacements to clusters
of two or more cells at the same time. We leverage ageneralized
matching algorithm that finds symbolically all possible matching
assignments of library cells to a multioutput network specified
by a Boolean relation and automatically selects the minimum-
cost replacement. The remapping technique can be applied to
area minimization under delay constraints, power minimization
under delay constraints, and unconstrained delay minimization.

Our remapping tool is based on a fully symbolic algorithm
geared toward flexibility and robustness. The tool has been tested
on a large set of benchmark circuits. The quality of the results
proves the practical relevance of the technique. We obtain sizable
improvements in i) speed (6% in average, up to 20.7%), ii) area
under speed constraints (13.7% in average, up to 29.5%), and iii)
power under speed constraints (22.3% in average, up to 38.1%).

Index Terms—Boolean algebra, circuit optimization, circuit
synthesis, logic design.

I. INTRODUCTION

L OGIC synthesis and optimization are evolving in re-
sponse to the challenges of larger designs, tighter con-

straints, and aggressively scaled submicrometer technologies.
The classical two-phases logic-synthesis approach [8] based on
technology-independent optimization followed by technology-
dependent library binding has been augmented by a third
phase, often called remapping [9]. Remapping consists of a set
of local transformations applied to a gate-level mapped netlist.
Such transformations can leverage accurate back-annotation
from placement and routing to direct the optimization effort to-
ward the most critical regions of the netlist. Precisely targeted
transformations on mapped netlists are becoming more a need
than a choice for meeting design constraints in submicrometer
designs where the cost functions employed in the early phases
of logic synthesis are increasingly inaccurate.

In this paper, we describe a remapping approach for itera-
tive optimization of combinational logic networks. Multiple-
output subnetworks are iteratively selected and optimized
by replacing the original implementations with lower cost
and functionally compatible subnetworks. Our approach is
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based on the concept ofgeneralized matching(GM) [5],
a multiple-output Boolean matching technique that supports
concurrent matching of two or more single-output library
cells (or of one multiple-output cell) with a multioutput
Boolean function. Generalized matching extends the Boolean
relation-based approach to the technology-dependent part of
the synthesis flow. It is a well-known fact that multiple-
output technology-independent logic optimization based on
Boolean relations [1] (BR’s) is potentially more powerful (but
much more computationally intensive) than traditional single-
output optimization approaches such as the algebraic [2] or
don’t care-based approach [3], [4]. We propose a BR-based
remapping approach that is powerful but also computationally
efficient.

We move from the observation that speed is usually the
primary concern in logic synthesis. The timing budget for
combinational logic is obtained from architectural specifi-
cation. When speed is the primary objective, two logic-
optimization problems have practical relevance:unconstrained
timing optimizationandoptimization of a secondary cost func-
tion (area/power) under tight timing constraints. The solution
to the first problem is useful for the designer to test the
feasibility of the constraints. If the timing budget is exceeded
after unconstrained timing optimization, the designer must
redesign or repartition the specification. The second problem
is probably the most frequent in practice: the designer wants to
obtain the minimum-area or minimum-power implementation
that satisfies the timing constraint.

We target the incremental optimization of amapped netlist.
Our starting point is a netlist that has already been opti-
mized by traditional synthesis techniques [6] for maximum
speed with area recovery. Remapping is applied to either
increase speed or reduce area/power without decreasing speed.
Moreover, the remapping engine can take full advantage of
the presence of multioutput cells (such as full-adders) in
the technology library. Such cells are usually suboptimally
exploited in traditional logic-synthesis tools.

The main theoretical contribution of this work is the formu-
lation of a fully symbolic algorithm for finding the minimum-
cost replacement for a multioutput cluster of cells under tight
timing constraints. From the implementation point of view, we
have made several efforts to achieve efficiency and robustness,
obtaining satisfactory results. We demonstrate the robustness
of our approach by reporting results for all largest benchmarks
in the MCNC’91 [21] suite. We obtain sizable improvements
in i) speed (6% in average, up to 20.7%), ii) area under speed
constraints (13.7% in average, up to 29.5%), and iii) power
under speed constraints (22.3% in average, up to 38.1%).
Moreover, remapping is very effective on larger netlists.
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This paper is organized as follows. In Section II, we provide
basic background information and review the formulation of
generalized matching as a decision problem. In Section III,
we outline the optimization flow and describe the routines
for choosing the target regions and computing degrees of
freedom for optimization. In Section IV, we introduce the
new formulation of generalized matching as a constrained
optimization problem, which is the core theoretical contribu-
tion of this work. In Section V, we focus on unconstrained
speed optimization. Section VI presents experimental results.
Conclusions are drawn in Section VII.

II. BACKGROUND

We assume that the reader is familiar with Boolean func-
tions, discrete functions, binary decision diagram (BDD)-based
manipulation of Boolean functions and algebraic decision
diagram (ADD)-based manipulation of discrete functions (see
[7], [8], [10], and [19] for a review). We denote vectors and
matrices in bold, i.e., . We use the
symbols and to designate,
respectively, theconsensusand the smoothingof Boolean
function with respect to variable. Remember that the con-
sensus operation corresponds to universal quantification, while
smoothing corresponds to existential quantification. Consensus
(smoothing) with respect to an array of variables can be
computed by repeated application of single-variable consensus
(smoothing).

Consider Boolean functions that model a portion (or cluster)
of the circuit. They are calledcluster functions. We denote by

a generic multioutput cluster function.
We call pattern functiona combinational function modeling a
library cell, and we use to represent a generic single-output
pattern function.

When considering the minimization of multioutput Boolean
functions, the degrees of freedom provided by the environment
can be expressed by aBoolean relation[1]. If we call the
input space and the output space, a Boolean relationcan
be represented by itscharacteristic function :

such that if and only if is one of
the possible outputs of for the input .

Matching a cluster function with one (or more) pattern
functions means finding a way of assigning the inputs of
the cluster function to the inputs of the pattern function such
that the pattern function becomes a correct implementation of
the cluster function. Notice that this requirement is weaker
than functional equivalence. A pattern function is a correct
implementation if and only if it can replace the cluster func-
tion without changing the functionality of the circuitat the
primary outputs. Although several types of matching have
been defined, such as NPN-matching [11], in the following
sections we will use the above definition of matching based
on replaceability.

A. Generalized Matching

In [5], we introduced the concept ofgeneralized match-
ing. Generalized matching extends the Boolean relation-based
approach [1], [18] to the technology-dependent part of the

Fig. 1. A multioutput cluster function embedded in its neighborhood.

synthesis flow. GM has two key advantages with respect to tra-
ditional single-output Boolean matching techniques, namely, i)
expressing the degrees of freedom for matching with a Boolean
relation that is more powerful thandon’t cares [1] and ii)
concurrently matching multiple single-output cells. As a result,
GM finds matches thatcannot be foundwith any traditional
Boolean matching technique.

Let us consider a multioutput cluster functionwith
inputs and outputs embedded in a logic network. It is
represented in Fig. 1. We adopt a formalism similar to that
used by Watanabeet al. [18]. We call (with dimension )
and (with dimension ) the arrays of Boolean variables
at the inputs and the outputs of the network that embeds
the cluster function . The functionality of such network is
represented by the Boolean function . We call it the
neighborhoodof . The inputs of the cluster function can be
seen as a function of the inputs . The function
describes the behavior of the outputswhen the outputs of
the cluster functions are seen as additional primary inputs.

From , , and , we obtain three characteristic functions

(1)

(2)

(3)

These characteristic functions enable the computation of a
Boolean relation representing the complete set ofcompatible
functionsof , i.e., functions that can implement without
changing the input–output behavior of. Watanabeet al.
showed that the characteristic function of the Boolean
relation can be obtained with the following formula [18]:

(4)

Equation (4) allows us to find all functions that, when
composed with and , produce exactly function .1 There
are generally many functions with this property. These func-
tions are represented by a Boolean relation, andis the
characteristic function of such relation.

1Roughly speaking, (4) expresses the inclusion of the intersection of the
characteristic equations forp(x) andq(o; x) into the characteristic equation
of h(x), enforced for every value ofx andz.
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Fig. 2. Quotient function of the target library.

The GM problem consists in finding all possible sets of
library cells that can implement one of the functions

represented by . To accomplish this task, we define the
concept ofquotient function for our technology library
[5]. The pictorial representation of the quotient function is
shown in Fig. 2 for a simple library with cells, ,

, and .
In the figure, the blocks , , , and represent

virtual multiplexers, with control inputs .
The first three multiplexers control the input pin assignments.
By changing the control inputs, we can control how the exter-
nal inputs are connected to the pins of the cells. Multiplexer

controls cell selection: it selects which cell is connected
to the output. Roughly speaking, the quotient function rep-
resents all possible functions that can be implemented by a
technology library (refer to [5] for a detailed explanation).

Example 1: Referring to Fig. 2, we consider a simple li-
brary containing three cells. A value of control variables
uniquely identifies a cell and its input assignment. For instance,

selects cell , with the top-
most pin connected to input , the second pin from the top
connected to input , and the bottom pin connected to input

. Note that input polarity assignments can be represented as
well, with the introduction of one control variable for each
virtual multiplexer [5].

To perform generalized matching, we need to check if an-
output cluster function can be replaced by library cells.
For the sake of simplicity of description, we restrict
even though our method is fully general. Remember that the
cluster function and its degrees of freedom are represented
by a Boolean relation . We can express GM with a
Boolean formula [5]

(5)

Where is the Boolean relation for the cluster,is the quo-
tient function. Notice that for each output, we have a different
quotient function with distinct sets of control variables, and
hence . This is because each output ofcan be
matched by a different cell with different input assignments.

is called thematching functionand can in principle be
computed by simply implementing (5) with standard BDD op-
erators. The ON-set of denotes all possible assignments
of the cluster to two library cells with the property that the new
implementation of the cluster function can replace the old one
without changing the behavior observed at the output of. In
other words, (5) allows us to computeall cell selections and
input assignments compatible with [5].

Unfortunately, the generality of (5) has a cost in terms
of computational complexity. In practice, only very small
instances of GM can be solved in a reasonable time by
a straightforward implementation of the computations ex-
pressed by (5). Several theoretical insights and algorithmic
optimizations will be introduced in the following sections
with the main purpose of extending the practical usefulness
of GM. Roughly speaking, two strategies will be exploited
to manage complexity, namely, decomposition and bounding.
With decomposition, the solution of a complete GM instance
will be split in several simpler instances. The final solution
can be computed as the intersection of the solutions for
the simpler instances. With bounding, the search space for
candidate solutions will be restricted by rapidly eliminating
regions that cannot contain optimal solutions.

Concluding the section, notice that both traditional Boolean
matching and generalized matching have been formulated as
decision problems, where the solution consists of finding a
yesor no answer. Such decision problems arise sometimes in
practice, for example, when checking the equivalence of two
logic circuits with unknown input assignment [12]. However,
variations of the matching problem, namely,minimum-cost
matchingandminimum-cost constrained matchinghave much
wider practical relevance.

III. T HE REMAPPING APPROACH

In the recent past, numerous logic-synthesis tools have been
developed in academia and industry. Most implementations
follow a two-phase approach. In the first phase,technology-
independent optimizationsare performed: the initial descrip-
tion (written in a generic hardware description language)
is optimized using transformations and cost functions that
do not depend on the particular technology library chosen
for the final implementation. Then, in the second phase,
technology-dependent optimizations are applied as the generic
logic description is mapped to the technology library. This step
is often calledlibrary binding.

Recently, the two-phase synthesis flow has been augmented
by a third phase. Several algorithms have been developed that
operate on a mapped netlist and attempt to further optimize it
[13]–[15]. We call remappingthe postprocessing step. Some
remapping approaches [16] focus on changing the connectivity
of the netlist in such a way that some gates either become re-
dundant (and can be removed) or become suboptimal (and can
be replaced). Remapping transformations based on changes of
the network connectivity are often calledrewiring.

We adopt a remapping approach. Starting from an optimized
and mapped netlist, we apply our optimization engine to
specific regions of the mapped netlist where local improve-
ments are more likely. The high-level flow of the remapping
procedure is shown in Fig. 3. First, the initial mapped network
is analyzed. Power dissipation, arrival times, required times,
and slacks are computed for all nodes. This information
drives the selection of the target regions for remapping.
Clusters of cells in the target regions are constructed and
remapping is attempted. The degrees of freedom extracted
by examining the portion of the logic network around the
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Fig. 3. High-level flow of the remapping procedure.

cluster (i.e., the neighborhood) are exploited. Cluster selection
and neighborhood construction are described in Sections III-
A and III-B, respectively. The core remapping task is based
on an efficient implementation of minimum-cost-constrained
generalized matching, which is described in Section IV. The
procedure is iterated until convergence.

The choice of the remapping approach is dictated by practi-
cal reasons. Current technology mapping tools are robust and
efficient. We leverage their capabilities to obtain an initial
optimized implementation, then we apply our powerful but
computationally demanding optimization engine to portions
of the circuit where traditional mapping algorithms do not
produce optimal results. The advantages of this choice are: i) it
merges seamlessly with preexisting tools and design flows and
ii) it allows us to put more effort in local optimizations, since
we perform a reduced number of them. The main drawback is
that our technique performs only incremental improvements;
thus, if the starting point is a local optimum very far from the
global optimum, we may not be able to move out of it.

A good choice of the target regions in the mapped netlist is
paramount for the success of the remapping strategy. Different
choice criteria are applied depending on the nature of the
cost function that we want to optimize. Power and area are
extensivecost functions, i.e., they depend on the entire circuit,
while speed is anintensivecost function, i.e., it is determined
only by a critical portion of the circuit (the slowest paths).
When we optimize an extensive cost measure, we want to
distribute the optimization effort on the entire netlist, while
the optimization of an intensive cost function can be better
achieved by focusing only on the critical portion.

A. Target-Region Selection

In this subsection, we describe a target-selection strategy
tailored for optimization of extensive cost functions (area and
power). Our approach to the optimization of intensive cost
functions (speed) is described in Section V. We focus on
multiple fanout points(MFP’s). There are two main reasons
for this choice. First, traditional library binding algorithms

Fig. 4. Sliding window algorithm for cluster function selection.

follow a cone-basedparadigm [17]. A very efficient search
of the optimum mapping is performed on fanout-free regions
of the circuit, but the search stops when MFP’s are reached.
As a result, the final implementation consists of highly opti-
mized fanout-free regions connected by multiple fanout points.
Roughly speaking, we target the loss of optimality caused
by the interruption of the cone-based search when a MFP is
reached.

Second, since our optimization strategy is based on the
computation of a Boolean relation expressing the degrees of
freedom for the implementation of a multiple-output subnet-
work, we are more likely to find degrees of freedom when
the output functions of the subnetwork share some support
variables. This is generally true when two or more gates driven
by a MFP are considered as candidates for optimization.

The enumeration of the MFP’s is done by traversing the
network in a backwardbreadth-firstfashion starting from the
output and moving toward the inputs. The pseudocode of the
algorithm for selection of candidate networks for remapping
is shown in Fig. 4. Several corner cases and limit conditions
are not shown for the sake of simplicity.

The outermost loop implements the backward breadth-
first traversal. Whenever a MFP is reached, its fanout gates
are inserted in listfo list . The first inner loop selects
multioutput clusters consisting of set of elements info list .
The second inner loop selects clusters that include the gate
with multiple fanout and one or more of its fanout gates. In the
simplified pseudocode, two-output clusters are selected. The
actual implementation can generate multioutput clusters with
any number of outputs. In practice, three outputs is usually the
maximum for efficiency reasons because the complexity of the
computations involved in matching rapidly increases with the
number of cluster outputs, and the number of clusters that can
be generated is ( ) (where is the number of
cluster outputs and is the number of fanout stems).

For each candidate cluster generated by the internal loops,
the functionComputeBRelOptimize is called. It computes
minimum-cost constrained matching and is the core procedure
in the algorithm. It will be analyzed in the following section.
It returns best match if a match has been found that
improves the cost and satisfies the constraints. If this is the
case, the original network is modified accordingly by function
replace .
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ProcedureReMapMFPis usually applied several times to the
target network. A single pass is not enough for getting the best
results. For instance, when we operate a replacement, we may
create new multiple fanout points. Additionally, incremental
modifications of the network may cause changes in the degrees
of freedom available in the neighborhood of the optimization
point and enable further improvement. The main reason for
performing a backward traversal is that replacements can
create new MFP’s on the inputs of the clusters being replaced.
Moving backward, we traverse the newly created MFP’s in
the same pass, and we accelerate convergence (convergence
is reached when a call ofReMapMFPdoes not decrease the
cost function).

In practice, convergence is reached in two or three passes.
Even if convergence is rapid, we implemented several op-
timizations to reduce the run time in successive iterations.
For instance, MFP’s whose neighborhood is not changed in
iteration are skipped in iteration . The formal definition
of neighborhood will be given in the next subsection.

The algorithm in Fig. 4 constructs candidate clusters starting
from MFP’s. Once a cluster is created, the functionCom-
puteBRelOptimize is called. The two main tasks of the
function are the following.

• Build the Boolean relation that represents the degrees of
freedom for matching created by the cluster’s neighbor-
hood.

• Perform minimum-cost matching and guarantee that tim-
ing constraints are not violated.

In the next subsection, we describe how the first task is carried
out, while the second task is described in Section IV.

B. Building the Boolean Relation

Boolean relation can be computed using (4) once the
neighborhood is specified. Ideally, we would like to compute

by considering as the entire logic network, from primary
inputs to primary outputs. This choice would give us the maxi-
mum degrees of freedom for the implementation of the cluster
function [18]. Unfortunately, this is computationally infeasible
except for the smallest networks. Thus, the neighborhood has
to be a small subset of the logic network, like a “bubble”
around the cluster function. Notice that GM relies on finding
a Boolean relation that gives the most degrees of freedom to
the chosen cluster. Intuitively, we want to establish a relation
between the outputs of that gives more degrees of freedom
than computing separately theirdon’t cares.

We consider two-output cluster functions for the sake of ex-
planation. The neighborhood construction algorithm is shown
in Fig. 4. Our purpose is to compute Boolean relations express-
ing many degrees of freedom. Thus, we look for nodes in the
fanout cone and fanin cone of both outputs of. Intuitively, a
common fanout node within the neighborhood is an indication
that functionality at the neighborhood outputs is controlled
by the interaction of both outputs. Similarly, a common fanin
node implies that there is some sharing of information among
the inputs of . If fanin and fanout cones of the components
of are disjoint, represents the same degrees of freedom
that can be expressed bydon’t cares.

Since we consider clusters starting from MFP’s, at least one
common fanin exists. To build the neighborhood, we explore
the transitive fanout and fanin of the cluster. We control com-
plexity by limiting the search to a given depth. The algorithm
generating the neighborhood is shown in Fig. 5. Its inputs are
the cluster function (clusterF in the pseudocode) and
the maximum depth of exploration (parameterdepth ). We
call and the outputs ofclusterF . First, we mark
the fanout cones of and . We take the intersection of
the fanout cones (setintersec ) and get the paths from
and to nodes inintersec . All nodes in such paths are
collected inpathnodes . From pathnodes , we create a
new set,outnodes , by extendingpathnodes with their
fanout nodes. They correspond to the part of the neighborhood
in the fanout of the cluster. A similar procedure is applied to
the fanin cones, and the setinnodes is produced. They are
the fanin part of the neighborhood.

Theexternalnodes ofoutnodes are picked up to produce
xnodes (input nodes) andznodes (output nodes). The input
nodes ofinnodes are put inxnodes . We do not need the
output nodes ofinnodes because they are not affected by any
change of the cluster. The neighborhood is defined as the union
of xnodes and znodes . The rationale of this algorithm
is to include in the neighborhood the maximum number of
reconvergence regions containing(constrained by the depth
of the exploration). Including such regions in the neighborhood
increases the probability that expresses degrees of freedom
that cannot be captured bydon’t cares. It may be observed that
the same result is achieved by a straightforward algorithm that
computes the neighborhood by simply traversing the transitive
fanin and fanout of with depthdepth . Experimentally, we
observed that the straightforward approach is not practical
because the neighborhood gets very large even for small depths
and the computation for becomes too expensive.

Example 2: We show on Fig. 6 how the algorithm works.
The picture represents a portion of a logic network, the vertices
being logic gates and the arrows the connections between
them. We start from a two-node cluster, marked in black in the
top-left part of the Fig. 6. The parameterdepth is set to two.
To build the neighborhood, we first select the reconvergent
nodes in the transitive fanout and fanin of the clusters (with
depth 2) from the cluster. These nodes are marked in black
on the top right. The nodes on paths connecting the cluster
with reconvergent nodes are marked in black on the bottom
left. Finally, we take the “envelope” of these nodes to get the
neighborhood. The neighborhood is the set of nodes marked
in black in the bottom-right part of Fig. 6.

Given the neighborhood, the Boolean relationis obtained
by (4). We build the BDD’s of the Boolean relations, , and

by traversing the neighborhood. We apply the corresponding
BDD’s operators and universal quantification to compute.
Note that depends only on a few BDD variables, namely, the
variables for the inputs and the outputs of the cluster; therefore,
the resulting BDD of the Boolean relation is very small.
However, the overall complexity depends on the computation
of the relation . To build the relation , we need to build
the BDD’s of each neighborhood outputwith respect to the
inputs and compute their conjunction. This operation can be
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Fig. 5. Algorithm for neighborhood construction.

Fig. 6. Building the neighborhood of a cluster.

computationally infeasible if are primary outputs and are
primary inputs. The algorithm of Fig. 5 has been designed to
minimize the complexity of the computation of, and at the
same time to obtain a final expressing useful degrees of
freedom.

IV. M INIMUM -COST CONSTRAINED GM

Generalized matching is formulated and solved in
Section II-A as a decision problem. In this section, we
first describe an efficient algorithm for the computation of the
matching function . We introduce apruning procedure
for speeding up the computations involved in (5). Then, we
extend GM from a simple decision algorithm to a complete
constrained symbolic optimization procedure. We describe
the symbolic computation of cost functions and constraints,
and we introduce aboundingprocedure for further improving
the efficiency of symbolic optimization.

A. Pruning

The main practical problem in the computation of
by (5) is that, although the BDD representation of
is generally very compact, the same is not true for the
intermediate results of the computation in (5). Experimentally,
we observed that BDD blowup was very common while
computing the conjunction of with the quotient functions
and while computing the quantifications. We can express the
final result, but there is a peak BDD size to overcome. To avoid
going up to this peak, we partition the problem. We compute
the matching function for each output separately, and use the
partitioned solutions to reduce the size of the BDD’s in (5)
before universal quantification. Notice that the proceduredoes
not compromise the global optimality of the final solution.
This claim will be clarified in the following discussion.

Again, we discuss the case of two outputs for the sake of
simplicity (although the approach is general). The matching
function of output can be computed with the following
formula:

(6)

The same formula holds for output (changing indexes from
1 to 2). Computing and separately can be much easier
than computing because the BDD’s have fewer support
variables, and only one conjunction has to be computed before
quantification. This observation is confirmed in practice. The
computation of and requires much less memory than
the computation of .

It is easy to see that and are less constrained
than : and . expresses
all possible matches for output , assuming that can be
implemented by an arbitrary function of the inputs. In general,



954 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 10, OCTOBER 1998

the ON-set of contains solutions that are not valid:
all matches of that are admissible only when is
not representable by belong to the ON-set
of but are in the OFF-set of . We can use the
and as conservative bounds for pruning the search space
of because we know that if a value is not in the
ON-set ofboth and , it will be in the OFF-set of ,
and we do not need to take it into account when matching.

The simplest way to exploit this property is to compute
the restriction [10] of and with respect
to and , respectively, and then compute
with (5). In other words, we can replace in (5) with

defined as follows:

if
don’t care otherwise.

(7)

The same can be done for . In practice, we augmented
the basic algorithm by introducingreencodingof the control
variables with a reduced set of new control variables. The
number of new control variables is equal to ,
where is the number of minterms in the
ON-set of . With the new encoding2

and have typically a much more compact BDD
representation, and (5) can be efficiently computed. We do
not describe the reencoding algorithm in detail because it is
quite complex and not essential for the understanding of the
complete algorithm.

By computing and we prune the search space, and
the computation of is much faster. Notice that we do not
make any approximation here. still gives us all possible
assignments for the cluster. The bound is conservative, and the
matching function is computed exactly. This method can be
used for more than two input clusters. In practice, the method
breaks down when (6) cannot be computed with the available
memory resources.

B. Cost Function and Constraints

Although we have a way to compute all possible legal
replacements for , we want get the minimum-cost matches
satisfying the timing constraints. Hence, we need to apply a
cost function to and find at least one assignment
minimizing it. Moreover, we need to enforce the satisfaction
of the constraints.

The most straightforward approach is the explicit enu-
meration of the ON-set of . For each minterm (that
corresponds to a valid replacement), the cost function (power
or area) is computed and the timing constraints are checked.
The minimum-cost solution satisfying the constraints is then
selected. Unfortunately, the enumerative approach is exces-
sively slow. Generally, has a large number of minterms
whose enumeration would take an unreasonable amount of
time.

To overcome this limitation, we solve the minimum-cost
constrained GM problem in a symbolic fashion. We em-
ploy ADD’s [19] to build an abstract representation of cost

2The cardinality of the ON-set ofM1 (M2) is generally much smaller
than the total number of values ofc; thus, the number of variables needed to
encode it is generally smaller than the number of control variablesc.

Fig. 7. ADD cost function for area for four variables.

functions and constraints. ADD’s are appropriate because
they represent discrete functions in a compact way, and they
interface seamlessly with BDD’s (they have the same structure,
the only difference being that leaves can have any value).

To compute minimum-cost matching, we build the ADD for
the cost function with the same support variables as the BDD
for . A path in the ADD leads to a leaf containing the
cost of the cell identified by the values of control variables
encountered on the path. Once the ADD of the cost function
is built, we can compute theproduct with the BDD of the
matching function and select the minterm pointing to the
minimum value of it (product and minimum selection are
standard ADD operators). A similar line of reasoning holds
for constraints, with the only difference that the constraint
ADD is used to prune from the ON-set of all solutions that
violate the constraint.

1) Area Cost: Since the area of a cell is not affected by
the input assignment, the support of the ADD representing the
area cost, , contains only variables controlling the cell
selection in the quotient function. The cost function for area
can be computed once and for all. Its number of nodes is very
small, bounded by (if no two cells have the same
area, the ADD reduces to a binary tree). All ADD operators
involved in the construction of the symbolic representation of
the cost function and its minimization over the ON-set of
have complexity . The number of nodes in
the BDD of the matching function is , while is
the number of nodes in the ADD of the cost function. Since
usually both and are small [at most on the order
of 100 BDD nodes for ], the computation of the area
cost is very fast compared to an enumeration of the minterms
of .

Example 3: Consider a library NAND2, AND2, NAND3,
AND3 with area costs, respectively,1, 2, 3, 4 . The ADD

of the area cost function for this library is represented in
Fig. 7. The ELSE edges are represented by dashed arrows,
while THEN edges are represented by solid arrows. The
control variables for cell selection are and . For instance,

selects theNAND3 gate. In the ADD of the cost function,
we see how the path with and leads to the cost of
the NAND3, i.e., three. Assume that the matching function is

. Taking the minimum of the product
, we obtain the value three, and the valueof

the control variables for which is minimized is
.

2) Power Cost: The computation of the power ADD is
much more involved than that of the area ADD because
power consumption depends on both cell assignment and
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input assignment. In this work, we consider only the power
due to output switching activity (also known asexternal
power or switching power). This is motivated by two facts.
First, our model of the power consumed within the cells
(internal power) is quite complex, and it would unnecessarily
complicate the explanation of the basic technique. Second,
there is no agreement in the literature on what the best internal
power model is. For instance, ours is completely different
from the one presented in [22]. On the contrary, there is an
agreement on how to compute the external power. Moreover,
switching power is usually the most important contribution.

External power at a nodeof a Boolean network is given by

(8)

where is the transition probability of node, is
the capacitance at node, is the supply voltage, and
is a constant factor.

Consider a cluster with two outputs. The two outputs are
bound by the Boolean relation . A target library function
can be placed at one of the outputsif it satisfies .
The same holds for the other output. We want to analyze the
gain in power of the replacement at one of the outputsof
the cluster. External power can change at the nodebecause
the transition probability depends on the function at.
Observe that the variation is possible because, by exploiting
the degrees of freedom expressed by, we may modify the
function at , and consequently the transition probability. The
capacitance is independent of the function at output
because it depends only on the fanouts of, which are not
modified by matching.

The computation of the transition probability is done sym-
bolically as follows. Output node is represented by the
function . We call and two consecutive input
patterns, their response at the output being and

. The transition probability of , , is the probability
that switches; therefore, it is . Consider now two
consecutive input patternsand . If the responses to these
patterns and are different, we observe a transition at
the outputs. This event contributes to . It happens
with a probability . The formula for the transition
probability is the sum of all such events at the inputs. We
obtain the following formula:

(9)

If we assume spatial independence of the inputs and we
neglect high-order temporal correlations (i.e., correlations be-
tween patterns with more than one cycle-time difference), the
probability of two consecutive input vectors is the
product of the probability of each bit sequence of the vector

(10)

where

(11)

and where is the probability of the sequence . These
values are expressed below with the static probabilityof

(a) (b)

Fig. 8. (a) Table of the transitions for a two-inputAND. (b) Table of the
probabilities of each transition pair.

the signal and the transition probability :

Example 4: Consider a two-inputAND gate. The truth table
in Fig. 8(a) shows the pairs of values for all the pairs

. The rows represent one value of the inputs , and
the columns a following value . For example, if we
apply the pattern 00 and then 11 to theAND gate, the response
is 01. In this example, the input static probabilities are
(0.3, 0.5), and transition probabilities are (0.2, 0.5). The
probabilities for are

In the same way, we obtain, for ,
.

In Fig. 8(b), we have represented the matrix of the proba-
bilities of two consecutive input patterns. The indexing of the
matrix is the same as the truth table; the rows representand
the columns . We see that, for example, the probability of
the pair of inputs (01, 10) is 0.02.

In the truth table [Fig. 8(a)], we see six points where
switches. To obtain the transition probability, we sum these
six points weighted by the matrix [Fig. 8(b)]:

.
The consequence of the transition probability change is the

modification of power consumption at and at the fanout
nodes of . If the transition probability changes at, its
fanout nodes will have a new transition probability. However,
we know from Section II-A that the output nodesof the
neighborhood have the same behavior regardless of the match.
Therefore, they have a constant transition probability and,
consequently, all the nodes in their fanout have a constant
probability for this given match. So the impact in the fanout
nodes does not go further than. The impact of the change on
the fanout nodes has to be taken in consideration, but it has
only a limited scope in the circuit, namely, the nodes inside
the neighborhood. This issue is discussed in the Appendix. For
now, we assume that changes in transition activity ofdo not
sensibly affect the transition activity even for nodes within the
neighborhood.

We analyzed the impact of a replacement at the outputs of
the cluster. However, external power is modified at the inputs
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(a) (b)

Fig. 9. (a) Assignment offi1; i2g with AND2 and (b) assignment offi2; i1g
with NAND2.

as well. Consider, one of the inputs. The power variation at
the input is not due to the transition probability because this
one may change only at the gate output. It is caused instead
by the variations of the load at the input when we change
cell and pin assignment during remapping. The load at input

can be expressed as

(12)

where is the input capacitance of the cell connected
to and to input . [If is not connected to the cell at

, .] is a constant, but and
depend on the cell selection and the pin assignments.

Example 5: Consider a single output cluster and two
candidate matches. The input probabilities of are,
respectively, and , as in
Example 4. The first match connectswith an AND2 gate
to and . The input capacitances are one and two, as
shown in Fig. 9(a) The input power of this choice is

.
The second choice connectswith a NAND2 gate to

and . The input capacitances are two and three, as shown
in Fig. 9(b). The input power of this choice is

.
Obviously, the first match is better than the second one. The

cost function will tend to find the lower cost pin permutation
for a given cell and find the cells that have a low input
capacitance.

To evaluate the power cost, we need to compute the input
capacitance and the output transition probability for each cell
and pin assignment. Power cost is a function of variables.
For each minterm of the Boolean space of, we compute a
power value. As we have shown before, we need to find the
output transition probability for any cell configuration and the
capacitance at each input for any input assignment.

For a particular value of the control variables ,
the restriction of the quotient function represents
a Boolean function of the inputs alone: it is the function
implemented by the library cell and the input pin assignment
expressed by . For such a function, we can compute.
Thus, we can compute [as defined in (8)] for any possible
value of in a symbolic fashion using ADD’s

(13)

with being the ADD computing the probabilities of
and the BDD of the quotient function.

represents how the transition probability of outputchanges
as a function of the control variables (that select different
implementations for ).

Fig. 10. ADD of the capacitance ati1 for any selection.

The second part of the cost function is to compute the
capacitance. The ADD formulation has the same form as (12),
but and are ADD’s function of . The ADD of the
capacitance is then . To
compute , we need to build an ADD with the leaves
containing the input capacitances of the pin selected by each
ADD path.

Example 6: Consider again the cellsAND2 andNAND2 of
Example 5. To simplify, we consider a cluster with one output
and only two inputs . We need three control variables:

controlling where (i.e., on which input) pin of the cells
is connected, controlling the connection of pin, and
making the library cell selection. We consider that inputhas
no other fanout in the circuit. The ADD of the capacitance at
input is represented on Fig. 10. When , , and

, cell NAND2 is selected ( ), pin is connected
to input , and pin is not connected to input . Hence, the
total capacitive load on is three (the load of pin of the
NAND cell).

The ADD of the power cost function is given by the
following equation:

(14)
The first sum of the equation is the weighted switching activity
at the outputs of the cluster, and the second sum represents the
power consumed at the inputs of the cluster.

3) Timing Constraint: Similarly to power, timing depends
on input assignment as well as on cell assignment. Before
describing the ADD-based representation, we describe how
timing constraints are computed. For each cluster output,
arrival time and required time are computed. We can replace
a cluster by an alternative implementation if the new arrival
times atall cluster outputs do not exceed the required times.
For timing constraints, we use the critical path of the circuit
as the maximum delay that can exist from the primary inputs
to the primary outputs. From this constraint, we compute the
arrival and required times for all nodes.

We use themapped delay modelas in [6]. Consider a gate
with input pins shown in Fig. 11.

The pins are connected with inputs . We
assume that pin is connected to input . The arrival time
at the output of the gate is

(15)
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Fig. 11. Delay computation for a gate.

is the effective output resistance of the gate, is the
effective load capacitance at the output, andis the pin-
dependent intrinsic delay of the gate. Finally, is the arrival
time at input . It is a function of both and because it
depends on the pin of gateand the fanin gate driving
input

(16)

is the effective output resistance of the fanin gate , is
the part of depending on previous stages (and the intrinsic
delay of the fanin gate), is the load capacitance of the
fanin gate that does not depend on, and is the input
load capacitance of pin .

Observe that the arrival time at the output of a gate
depends on the input assignment. If we change the assignment
of pins to inputs, the arrival time may change for two reasons.

• The arrival time at the inputs changes.

• The intrinsic delay changes because it is pin dependent
as well.

Remember that in the quotient function , input assign-
ments are set by the control variables; hence,for a quotient
function is a function of the control variables. For a cluster
output that we want to match, we build the ADD of
the arrival time. It represents the arrival time at the output
for any input and cell assignment. A value of the control
variables selects a path in that leads to a leaf containing
the value of the arrival time at the output when the cell and
input assignment corresponding to are chosen.

Similarly to power, the computation of is complicated
by the fact that we are concurrently matching a multioutput
cluster function using multiple quotient functions. The com-
plication arises when we compute the arrival time at the
inputs of the cluster. Remember that depends on the
output resistance and the load capacitance. The gates in the
fanin of the cluster are loaded with a capacitance that depends
on how the pins of gates in the cluster are connected to them.
In symbols, , where

, , and are constants, while is an ADD
representing how the load capacitance on inputchanges with
the input assignments of the cells in the quotient functions.

It is important to notice that depends on the entire
. If we are matching a two-output cluster, is an ADD

whose support includes both and [the control variables
of quotient functions and in (5)]. The computation of
the arrival time at each output of the cluster is done with the
following symbolic formula:

(17)

(a) (b)

Fig. 12. Symbolic representation of timing constraints.

where , , and are ADD’s in the control variables and
all operators involved in the computation are standard ADD
operators. The leaves of contain all possible arrival times
for the output.

Example 7: Consider the situation shown in Fig. 12. We
want to compute the ADD’s for the two outputs of the
cluster of Fig. 12(a). We make several simplifying assumptions
for the sake of clarity. First, we assume that and

for all inputs. The driving resistances have the
same value for all inputs , and the load on and

is null. Second, we assume that can be matched only
by cell and can be matched only by cell . The input
loads and intrinsic propagation delays for the cells are shown
in Fig. 12(a). Input load values are displayed close to the
input pins of the cells. Intrinsic delays are close to the arrows
representing propagation paths. Moreover, we assume that
can be connected only to inputs and , while we can
connect the input pins of to and . The connection
of both pins of a cell to the same input is not allowed.

With these simplifying assumptions, we just need two
control variables to express the degrees of freedom in the input
assignments. Control variable controls the connection of :

means that pin is connected with input and pin
is connected with input . The opposite connection is chosen
when . Similarly, when , pin is connected with
input and pin is connected with input .

Assume, for example, that and . The
arrival times at the inputs are ,

, and
. For output , the arrival time is

; this is one leaf of the ADD
representing the arrival time at for every

combination of control variables. The complete ADD is shown
in Fig. 12(b).

Once the ADD of the arrival times has been built, it
can be used to prune the ON-set of the matching function.
All assignments of that lead to leaves with value of the
arrival time larger than the required time violate the timing
constraint and are discarded from the ON-set of. If timing
is minimization target (as opposed to constraint), the minimum
delay matching solution is easily found by selecting the
minimum leaf in the ADD obtained by restricting to the
ON-set of .
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Fig. 13. Bound on the partial solutions.

C. Bounding

Our minimum-cost constrained matching algorithm merges
GM with cost minimization and constraint enforcement. We
exploit the existence of a network implementation (since we
are remapping) and of constraints to obtainboundson the cost
function and tight constraints. In this way, we drastically prune
the search space and further increase computational efficiency
without giving up optimality.

It is not necessary to include in the quotient function cells
and assignments for which we are certain that the global
costs will be higher than that of the original implementation.
Additionally, it is useless to express assignments that would
violate the timing constraints. These assignments can be
suppressed when building the quotient function.

Let us consider area minimization under delay constraints
first. When computing and , some library
cells are not even included because their area is too large.
The area of a cell included in the quotient function must be

, where is the area of the current
implementation of and is a lower bound to the area of
any cell in the library. If a library cell has area larger than

, it is not a viable candidate for replacing any cell
in the original target cluster because the new implementation
will have area larger than or equal to , which is
larger than .

After and have been computed, we can use both
area and timing to further reduce the solution space that has
to be explored by (5). We call the minimum area
of any match in . All matches in such that area

can be pruned because the total area
of a solution involving them is certainly larger than . The
same reasoning can be done for , , and .

Example 8: Consider the example in Fig. 13. The graph
shows the cost of all solutions in . The -axis corresponds
to the solutions, and the-axis to the area cost. The cost
2.5 is the original cost of the cluster (for both outputs)
before remapping. We assume that the minimum cost for

(not shown) is one. We can prune all solutions in
that have a higher cost than without loss of
optimality because these solutions will lead to a higher cost
than the original implementation of the cluster. The gray area
corresponds to the solutions that we can discard. We keep only
the solutions of in the black area.

For timing constraints, the line of reasoning is similar but
more involved. Observe that delays depend on input loads;
therefore, when we concurrently match two or more cells, we
need to take into account the load that the cells causes on the
fanin gates. We call the delay for a match in
(i.e., a cell implementing ), assuming that the load caused by
the cell implementing is the minimum among all matches in

. If exceeds the timing constraint, the match can
be pruned. The same reasoning holds for and .

Notice that both timing and area bounds are conservative
and do not prune any match that can improve the current
mapping of the cluster. Roughly speaking, we use area and
timing to prune solutions in ( ) that could not be optimal
even if they were coupled with the best possible match in
( ). The bounds are very useful in further decreasing the
number of candidate matches for and the efficiency of the
computation of (5).

1) Power-Based Bounding:When performing constrained
power minimization, power bounds must be computed. Power-
based bounding is conceptually the same as area-based bound-
ing, but its implementation is more involved. To suppress
assignments that have a cost higher than the original imple-
mentation, we compute a power bound for each cell. This
bound is theminimum possible costthat this cell has in any
implementation in the cluster. If the bound is higher than the
original cost in power, we discard the cell.

To compute the bound, we have to analyze two factors: the
probability of transition at the outputs and the capacitance at
the inputs. The value of the probability of transition is not
completely free at the outputs. The outputs are bound by the
Boolean relation . This relation defines arangeon the
transition probability at one of the outputs. Like in (13),
we express theminimumtransition probability at as

(18)

The bound at output is obtained by changing the index 1
to 2.

Given two consecutive input patternsand , the formula
inside the outer parenthesis expresses thatswitches regard-
less of the target function, as long as it satisfies the Boolean
relation. The Boolean relation gives such degrees of freedom
that could switch or not switch under thesame input
patterns, depending on the choice of the target function. To
get the minimum transition probability given by the Boolean
relation, we express that may switch under two given input
patterns (first term), and under these same patterns, there is no
representation where it couldnot switch (second term).

This value makes a bound on the transition probability at
the outputs, regardless of the cell representatives.

Example 9: Boolean relation is displayed in the truth table
on Fig. 14. A valid representative for is . But the
function may also be a representative. We assume
that the input probabilities are and

. The transition probability at using
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Fig. 14. Boolean relation for a cluster with three inputs and two outputs.

is 0.375, and using is 0.5. We see how the transition may be
different for according to the representative. For example,
under the two consecutive input patterns (001, 100),may
stay at one or switch. The bound on the transition activity is
reached here for . With this implementation, the
transition activity is 0.218, as computed with (18). No cell
representation can yield a lower transition activity at.

The bound takes into account the input capacitance as well.
Without considering the functionality of the cell, we want to
express a lower bound on the power consumed to drive the
inputs of any cell in the library. We assume that for each cell in
the library, the functionality that can be obtained by shorting
two inputs of the cell is already more efficiently implemented
by another cell with less inputs. Consider a cellwith inputs
capacitances sorted indecreasingorder . If
cell pins could be connected with any cluster input, regardless
of functionality, the minimum-power connection would be

, where are
the transition probabilities of the inputs sorted inincreasing
order. This is theminimum possiblepower consumed at the
inputs of this cell for any input permutation.

We add to this bound the minimum power at both outputs
as computed in (18). We do not know what is the other
cell selected for the cluster, and therefore what is the power
consumed at its inputs. So we sum to the bound the best
case, usually an inverter because it has only one connection,
and its power contribution is very low. If this bound is
larger than the original power value, i.e., the power of the
original implementation, we can discard the cell. We see here
that the effectiveness of the bound depends highly on the
quality of the original implementation. However, if the original
implementation is of bad quality, we can use a tighter value
as the original value in a first pass, get a suboptimal solution,
and run again by releasing the tighter value.

The algorithm for computing the power bound is represented
in Fig. 15. We first compute (inother pow) the minimum
power contribution at the outputs and at the inputs for ca-
pacitances of cells going out of the cluster. Then,
for each cell, we compute the minimum power that we can
find at the inputs of this cell,min pow in . We first sort
the capacitances, thensum products computes the sum

as described above. We add
to the minimum power for a cell the minimum power that we
can find at the input of the other cell composing the cluster.
The latter is the minimum capacitance found in the library
times the next transition probability in the order defined.
We then compare this bound to the power of the original

Fig. 15. Algorithm for computing the bound on library cells.

Fig. 16. Algorithm of the matching step.

implementation,orig pow. If the bound is higher than the
original implementation, we can discard the cell.

Notice that this bound is very conservative because we
do not want to compromise the optimality of the solution.
Fortunately, it gives the opportunity for discarding on average
38% of the cells in the library, at a very low computational
cost. This result is important because it improves the overall
run time of the algorithm.

The cost ofEliminateExpensiveCells is mostly due
to the computation ofget min tp , which is itself in the
order of the size of the Boolean relationbddBR. Since the
BDD representation of this relation is very small (the BDD has
approximately ten variables), the overall cost of the procedure
is small.

D. The Complete Matching Algorithm

Having described all subtasks involved in performing
minimum-cost constrained matching, we conclude our
analysis by describing the complete matching algorithm. The
pseudocode of the minimum-area constrained GM algorithm
is shown in Fig. 16. The minimum-power version of the
algorithm has similar structure.
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The algorithm first finds the neighborhood of the cluster
function and computes the Boolean relationbdd rel , as
seen in Section III. Then the quotient functions are con-
structed disregarding the library cells whose cost cannot im-
prove the current solution, as seen in Section IV-C. The
single-output matching functions are then computed bycom-
pute matching function and pruned using area bounds
and timing constraints, as discussed in Section IV. The quo-
tient functions are then compressed using the conservative
bounds, and the new, smallerbdd red quot are used for
performing full generalized matching on the reduced search
space.

The resulting matching function is then pruned using timing
constraints: in functiontiming constr , all solutions vio-
lating the constraint are eliminated. Finally, the cost function
is applied and the subset of the ON-set of containing
minimum-cost solutions is obtained. The matching algorithm
then “decodes” one of the minimum solutions and returns
the cells and the input assignments for replacement. NIL
is returned if there are no solutions improving the current
mapping of the cluster.

Several performance-enhancing features complicate the al-
gorithm. What is shown in Fig. 16 is a simplified version. For
example, caching of previous ADD and BDD computations
is heavily exploited (not only the simple caching mechanisms
provided by BDD packages), an advanced algorithm has been
implemented for the compression of after bounding,
and several corner conditions are flagged to speed up the
computation of trivial cases.

V. TIMING OPTIMIZATION

The speed of a circuit is an intensive quantity. In timing
optimization, the goal is to minimize the critical path of the
circuit. Thus, we need to consider only the gates that are in
the critical path. The simplest optimization strategy is to build
clusters with sets of gates in the critical path (i.e.,critical
gates). However, we want to consider also gates that are not
in the critical path. In this case, what ideally we would like
to do is to “borrow” some delay from noncritical gates that
have some delay slack.

A good search strategy is to define clusters including at
least one critical gate and one or more noncritical ones. The
cost function tries to minimize the delay of the gate(s) in the
clusters that are on the critical path while satisfying the timing
constraints on the other gates (i.e., ensuring that the noncritical
gates do not become critical).

The algorithm for traversal and cluster generation is briefly
outlined. We first mark all critical gates. Then, for each
multiple fanout point among either the inputs or the outputs
of critical gates, we construct clusters as in Section III and we
apply GM. Last, we construct all possible clusters containing
pairs of critical gates and apply GM.

After each successful matching (i.e., a matching that reduces
the delay for a gate on the critical path), we do not recompute
the critical path, but we move to other critical nodes. The
critical path is recomputed after all critical gates have been
traversed. If at least one successful replacement has been

performed, we continue the optimization on the new critical
path. Otherwise, remapping terminates.

Since the total number of clusters generated (and of at-
tempted GM’s) in one pass on the critical path is usually not
very large, we can afford to attempt aggressive optimization:
the size of the neighborhood for extracting Boolean relation

is increased, and clusters with more than two outputs can
be attempted.

During generalized matching, we use only the bound ob-
tained from the delay of the initial implementation. There
is no other bound on the quotient function like for area or
power (where we could bound on constraints and cost) because
we do not have any secondary cost function. Fortunately,
computation times are not degraded because i) we perform
a smaller number of matches and ii) the netlists we start with
are already optimized for speed; hence, the delay bounds are
usually tight.

The goal of timing optimization is to increase the maxi-
mum slack at the outputs of the cluster. The flow of timing
optimization can be summarized as follows: we first compute
the arrival times of each output with the procedure employed
in the previous section for the computation of timing con-
straints. Slacks are computed by subtracting arrival times to
required times. The computation is performed symbolically
using ADD’s. Given the ADD of the minimum output
slacks as a function of the inputs and cell assignments, the
maximum speed assignments are the values ofthat lead to
the maximum leaf of .

VI. RESULTS

We have implemented a postmapping optimization tool
based on generalized matching. The tool reads a mapped
circuit described inblif (or slif ) and a library file and runs
the optimization. Several user-controlled parameters can be
specified. The depth of the neighborhood can range from zero
to infinity. Specifying a depth of zero reduces the neighbor-
hood to the cluster, while depth of infinity means that the entire
logic network is taken as neighborhood. The latter choice is
of course only conceivable for small circuits.

The number of outputs of a cluster can be also con-
trolled. We made experiments with up to four outputs. The
number of inputs of a cluster can be controlled as well.
Usually they are assumed to be the inputs of the cells imple-
menting the cluster in the original mapped netlist. However,
additional input can be added taken from nodes in the neigh-
borhood. With this simple modification, we can exploit the
power of generalized matching to perform local rewiring.

We can also change the cluster selection algorithm to
select arbitrary sets of nodes as clusters. Experimentally,
we observed that this is much less effective than starting
from multiple fanout points, mainly because traditional logic
optimization is already effective on fanout-free cones.

A generic cost function has to be a function returning an
ADD whose support are the control variables and leaves are
the cost values. Of course, a new bounding function may be
integrated with the new cost function. All the experimental
statements in this paper rely on the fact that we can easily
tune cost functions and bounds.
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Memory optimization is the primary concern in the imple-
mentation. The tool employs theCudd BDD package [20],
which provides a rich set of operators on BDD’s and ADD’s
and powerful memory management and caching features.
We set up a memory limit of 1 000 000 BDD and ADD
nodes. When this limit is reached, the matching function exits
with the valueNIL and the traversal continues. When the
BDD’s exceed the memory limit, the program simply frees
the memory and moves on.

Extensive tests demonstrated that bounding is necessary
and effective. Without any bounding, the memory threshold is
often reached when the number of inputs of the cluster is larger
than eight. With bounding, we are below the threshold for up to
12 inputs. The compression of the matching functions using
single-output matching as a conservative bound is probably
the most useful algorithmic optimization. The size of the
uncompressed quotient functions makes it very difficult even
to match two-output clusters, but the algorithm using separate
matching and compression greatly increases the percentage of
matchings that can be successfully carried out.

By using the aforementioned optimization, two-output
matching can always be carried out, whereas three-output
and four-output matching succeed in 60 and 40% of the cases,
respectively. Obviously, for clusters with four or more outputs,
the gain brought by extending the size of the cluster is lost
because of the frequent memory blowup. To improve the
chances of success for three or four outputs, we implemented
tighter bounds that allow further compression of the quotient
functions but imply the loss of some potentially advantageous
matchings. We do not describe the implementation of such
aggressive bounds.

To further improve efficiency, we use special caching of the
intermediate results. We cache the quotient function and, in the
cases where the matching fails, the intermediate BDD’s of the
neighborhood. This caching speeds up the overall matching
and marginally affects memory consumption. Caching is useful
to speed up both the network traversal and the matching itself.
Traversal is faster because cases were GM is not productive are
not retried. Matching is faster because several partial results
are often found in cache and can be reused.

The BDD variable ordering has been set after extensive
experimentation. We use a fixed variable order that minimizes
the BDD peak size, regardless the intermediate results size.
The order is the following. The control variables of the input
multiplexers in the quotient function pin are at the bottom,
preceded by the input variables, the output variables, and
the library selection variables. Different orders lead to BDD
blowup with high probability. Automatic reordering is not a
good solution because it can destroy the good ordering to
reduce the size of intermediate results and it often cannot
recover a good ordering when the peak in BDD size is reached.

Our goal was to be able to show a practical realization
of the remapping procedure. Therefore, we implemented the
algorithm targeting robustness and conservatively set the pa-
rameters to avoid failure even in corner cases and produce
results in a reasonable amount of time. Needless to say, with
this choice we gave up some optimality.

TABLE I
RESULTS ON MCNC BENCHMARKS

We have experimented our tool with a set of combinational
MCNC’91 benchmarks [12] including all largest ones. The
benchmarks were first optimized with Berkeley’s Sequential
Interactive Synthesis (SIS) system [6] for minimum delay with
area recovery, with scriptscript.delay followed by the
mapping commandmap -n 1 -AFG .

We used a library based on an industrial technology file,
with 75 cells, with up to five inputs. All two-input functions
are available, as well asNAND andNOR gates with higher fanin.
Someand-or-invert, or-and-invertand multiplexer gates are
included. Two different sizes are provided for each two-input
cell. Three sizes are available only for inverter and buffer.
The library is rich in functionality but relatively poor in sizing
options. This choice was made for stressing the capability of
GM for finding new functional matches more than choosing
good resizing options (specifically targeted tools are available
for this task).

Our tool was run with the same parameter settings on
all benchmarks in an effort to demonstrate robustness and
generality. We ran the matching algorithm on clusters of two
outputs, with the neighborhood search limited to a depth of
three. The number of inputs of the cluster was limited to
ten. Although our technique is ideally suited for matching
multioutput cells, typical libraries do not include many such
cells. Hence, we decided to study the impact of our technique
for a library containing only single-output cells. The quality of
the results should increase if a library with many multioutput
cells is employed.

We show in Table I the results on all the MCNC benchmarks
for speed, area, and power optimization. The starting point was
the same for all optimizations, namely, the circuits mapped by
SIS. The table gives for each benchmark the number of gates,
the percentage gain, and the run time in minutes (on SPARC20
with 256 Mb of memory) for each kind of optimization. The
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TABLE II
TRADEOFFS IN OPTIMIZATIONS

last line gives the average gain for each optimization. In the
average, the gain is weighted by the size of the circuit.

We observe an average gain of 6% in speed, 13.7% in area,
and more than 22.3% in power. For area and power optimiza-
tion, the critical path of the circuit has been constrained to
remain the same as the original circuit: no tradeoff has been
allowed between the delay constraint and the (area/power) cost
function.

When looking at the results on a benchmark-by-benchmark
basis, we observe that the quality of the optimization achieved
is consistent when the cost function is changed. This phe-
nomenon can be explained by the fact that some benchmarks
have many MFP’s and reconvergent fanout cones. Both these
characteristics increase the effectiveness of our optimization
tool. Notice also that very good improvements are obtained
for the largest benchmarks. We conjecture that the global
optimization of SIS is less efficient for large benchmarks, and
remapping can recover a big fraction of the optimality loss.

The run times of the remapping tool are shorter (but on the
same order) than those spent by SIS in technology-independent
and technology-dependent optimization. Most of the time is
spent in building the matching function and in universal
quantification of the variables. The average time of a single
match is on the order of the tenth of a second with this
machine configuration. The percentage of successful matches,
i.e., matches that find a better solution, range from 5 to 10%.

Table II provides detailed information on the tradeoff in-
volved in the optimization process. The first column contains
the benchmark name. The second and third columns give
the percentage change (positive if gain, negative if loss) in
area and power, respectively, when doing unconstrained delay
optimization. The fourth column gives the percentage change
in power for area optimization (no change is allowed in speed).

TABLE III
RESULTS FORMULTIPLE-OUTPUT CELL MATCHING

The last column gives the change in area when power is
targeted (again, speed is the constraint and no tradeoffs are
allowed with it).

We observe that delay optimization leaves area and power
almost unchanged. This result is intuitive, since delay opti-
mization focuses only on the critical path, which is usually a
small fraction of the entire circuits. Only two benchmarks have
an increase in area or power, and for these two benchmarks,
the delay is only marginally reduced. We observe also that,
in general, area is not traded off for power and vice versa.
In general, area decreases when doing power optimization,
and power decreases when doing area optimization. This is
expected, since power is in first approximation the product
between area and switching activity; hence, it is related to
area.

One last set of experiments was run to estimate the potential
of GM for matching multiple-output cells. Industrial libraries
do not usually include many multiple-output cells; hence, we
built two test libraries with the following characteristics. The
first library includes two-output cells with two or three inputs.
These cells are functionally equivalent to pairs of single-output
cells with one or two inputs that share one input. The second
library contains two-output cells with five to three inputs,
which are functionally equivalent to pairs of single-output cells
with three or less inputs that share one input. Each multiple-
output cell is assumed to occupy 20% less area than the total
area occupied by the two equivalent single-output cells. The
area reduction represents the expected savings achievable by
careful layout of two merged cells.

Remapping was performed with the new libraries. Results
are summarized in Table III. Column 2 reports the percentage
area savings obtained with the first library with respect to the
minimum-area implementation of Table I. Column 3 reports
the savings obtained using the second library. Apparently,
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our tool is capable of fruitfully exploiting multiple-output
cells. On the other hand, the first library contained 50% more
cells than the original one, while the second library contained
approximately twice the number of cells as the original one.
This is a significant overhead if cells have to be hand designed
one by one. If this is the case, the additional area savings
may not be sufficient to justify the investments required to
develop the library. In summary, our results indicate that GM
can make good use of multiple-output cells, but the advantages
are incremental.

VII. CONCLUSIONS

In this paper, we proposed a remapping approach that
exploits the power of Boolean relations to optimize a mapped
netlist under tight constraints. Our main objective is to build
a powerful, robust, and efficient optimization tool that can be
applied to large circuits. We have presented the theoretical
foundation of our approach and several algorithmic improve-
ments that are needed to achieve the targeted robustness and
speed.

The core remapping engine is based on generalized
matching, a Boolean matching technique that enables
concurrent mapping of multiple-output logic networks
specified by Boolean relations, a problem that has no
previously known solution. We have extended basic GM
to deal with cost function minimization and constraint
satisfaction, and we proposed an efficient algorithm for the
exact solution of the extended GM problem.

We tested the effectiveness of our approach on a large
set of benchmarks. The results show that our optimization
tool can reduce the area by more than 13.7% in average
or reduce power by more than 22.3% without any speed
penalty. Unconstrained speed optimization is effective as well
(more than 6% average speed improvement is achieved). The
optimization is performed starting from mapped circuits that
have been optimized using traditional technology-independent
and technology-dependent techniques.

APPENDIX

POWER-ESTIMATION ENGINE

Power estimation is obviously a prerequisite for power
optimization. Unfortunately, there is no complete agreement
in the literature on what type of power-estimation engine
should be used during logic optimization for driving the choice
of transformations and checking the final results. There is
some consensus on using zero-delay power estimates during
optimization. Although glitch power is neglected, it has been
observed that zero-delay estimates provide reliablerelative
power information. In other words, they can be used to choose
among alternative implementations.

On the contrary, the choice of which approach is to be used
to obtain zero-delay estimates is still a controversial issue.
Two classes of methods have been proposed. Probabilistic
methods avoid multiple simulations by propagating probability
values in one single pass through the network [24]–[26].
Statistical methods rely on traditional simulation and define
stopping criteria based on sampling theory to decide when the

average power estimates are within a user-specified interval
of confidence [28]. While there is no dispute in recognizing
the better accuracy of statistical method, the most discordant
claims have been made about efficiency issues.

We take an intermediate position based on the observation
that probabilistic methods are not robust enough to deal
with general and large networks, but they are substantially
faster than statistical methods on small circuits. Our power-
estimation engine is based on a hybrid approach. We use a
statistical technique to obtain accurate power estimates on the
entire network, then we employ fast local estimates based on
a probabilistic method in the inner optimization loop.

Power estimation is needed during two phases of the remap-
ping process. First, it is needed for computing the signal
probabilities and transition activities for the entire network.
Second, it is required to test the validity of the local remap-
pings performed during optimization. In Section IV-B2, we
computed the power cost function assuming that the inputs
of the cluster were uncorrelated and a change in the transi-
tion activity of the cluster outputs does not have significant
consequences in the fanout gates within the neighborhood.
Neither of these assumptions is verified in the general case;
consequently, we need to check a remapping with more
accurate power estimation. We call this stepresimulation.

The computation of signal probabilities and transition activ-
ities for the entire network is performed using a Monte Carlo
approach [28] based on bit-parallel simulation (BPS) [27].
The efficiency of BPS is high: we could simulate thousands
of patterns for our largest benchmarks in a few seconds.
Simulation time grows linearly with network size. Patterns
or, alternatively, probabilities and transition activities can be
specified for the inputs. The Monte Carlo stopping criterion
can be overridden by the user, and full simulation of a pattern
file can be performed.

Resimulation was implemented using BDD-based proba-
bilistic techniques. Remember that the functionality of the
network is unchanged outside the neighborhood of a clus-
ter when a remapping has been performed. Hence, we can
resimulate the neighborhood alone to check that the power
saved in the remapping is not swamped by the effect of
remapping on fanout gates within the neighborhood. Since
the neighborhood is a small fraction of the entire network,
BDD-based probabilistic power estimation is performed in a
very short time [24]. It is important to notice that resimulation
does not take into account the correlation at the inputs of the
neighborhood; thus, it is not as accurate a global simulation in
estimating the effects of a remapping (but it is much faster).

After implementing the resimulation engine, our experi-
ments revealed that the estimated power savings computed
by the cost function were extremely close to those given by
resimulation. This was a surprising discovery, since it has been
claimed that local modifications may have effects on the power
of the transitive fanouts [29]. Suspecting a bug in our resimula-
tions, we actually ran a set of computationally expensive tests.
We applied remapping to several benchmarks, and after each
successful cell replacement, we simulatedthe entire network
using BPS. The surprising results are shown in Fig. 17. The-
axis shows the power differences ( ), while the
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Fig. 17. Power cost function versus simulation.

-axis shows the cumulative number of matches. Matches are
ordered for increasing differences. Two curves are plotted: the
power differences predicted by the cost function and those
actually measured by full BPS simulation. The reader can
observe that there is almost perfect agreement. This plot was
obtained performing a large number of remappings, and it is
consistent across our benchmarks.

It appears that the cost function is very accurate in esti-
mating power savings and losses, and resimulation is actually
not needed. Although it is implemented and functional, it
was not used in our runs. Nevertheless, to protect ourselves
against pathological cases, we perform global BPS simulation
every few remappings (usually ten). If power is increased, the
remappings can be undone. We conjecture that this event is
extremely rare: it never happened in our tests.
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