948 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 10, OCTOBER 1998

lterative Remapping for Logic Circuits

Luca Benini,Member, IEEE Patrick Vuillod, and Giovanni De Micheliellow, IEEE

_Abstract—This paper presents an aggressive optimization tech- based on the concept ajeneralized matchingGM) [5],
nique targeting combinational logic circuits. Starting from an g multiple-output Boolean matching technique that supports

initial implementation mapped on a given technology library, the - 50 rent matching of two or more single-output library
network is optimized by finding optimal replacements to clusters

of two or more cells at the same time. We leverage generalized CellS (or of one multiple-output cell) with a multioutput
matching algorithm that finds symbolically all possible matching Boolean function. Generalized matching extends the Boolean

assignments of library cells to a multioutput network specified relation-based approach to the technology-dependent part of
by a Boolean relation and automatically selects the minimum- he synthesis flow. It is a well-known fact that multiple-

cost replacement. The remapping technique can be applied to r . S
area minimization under delay constraints, power minimization output technology-independent logic optimization based on

under delay constraints, and unconstrained delay minimization. Boolean relations [1] (BR'S) i_S poteptially more p_Olwel’fU'.(bUt
Our remapping tool is based on a fully symbolic algorithm much more computationally intensive) than traditional single-

geared toward flexibility and robustness. The tool has been tested output optimization approaches such as the algebraic [2] or
on a large set of benchmark circuits. The quality of the results §ynt carebased approach [3], [4]. We propose a BR-based

proves the practical relevance of the technique. We obtain sizable . . .
improvements in i) speed (6% in average, up to 20.7%), i) area '€MapPpINg approach that is powerful but also computationally

under speed constraints (13.7% in average, up to 29.5%), and iii) efficient.
power under speed constraints (22.3% in average, up to 38.1%). We move from the observation that speed is usually the
Index Terms—Boolean algebra, circuit optimization, circuit Primary concern in logic synthesis. The timing budget for
synthesis, logic design. combinational logic is obtained from architectural specifi-
cation. When speed is the primary objective, two logic-
optimization problems have practical relevanaeconstrained
timing optimizationand optimization of a secondary cost func-
OGIC synthesis and optimization are evolving in retion (area/power) under tight timing constraintShe solution
sponse to the challenges of larger designs, tighter ca@- the first problem is useful for the designer to test the
straints, and aggressively scaled submicrometer technologiegsibility of the constraints. If the timing budget is exceeded
The classical two-phases logic-synthesis approach [8] basedsiér unconstrained timing optimization, the designer must
technology-independent optimization followed by technologyedesign or repartition the specification. The second problem
dependent library binding has been augmented by a thjgdyrobably the most frequent in practice: the designer wants to
phase, often called remapping [9]. Remapping consists of a ggtain the minimum-area or minimum-power implementation
of local transformations applied to a gate-level mapped netlighat satisfies the timing constraint.
Such transformations can leverage accurate back-annotatiogye target the incremental optimization ofveapped netlist
from placement and routing to direct the optimization effort tqq starting point is a netlist that has already been opti-
ward the most critical regions of the netlist. Precisely targetggieq by traditional synthesis techniques [6] for maximum
transformations on mapped netlists are becoming more a n@gdled with area recovery. Remapping is applied to either
than a choice for meeting design constraints in submicromejggrease speed or reduce area/power without decreasing speed.
designs where the cost functions employed in the early phagg§reover, the remapping engine can take full advantage of
of logic synthesis are increasingly inaccurate. the presence of multioutput cells (such as full-adders) in

_In this paper, we describe a remapping approach for iteia technology library. Such cells are usually suboptimally
tive optimization of combinational logic networks. MUIt'ple'exploited in traditional logic-synthesis tools

output subnetworks are iteratively selected and optimizedrye main theoretical contribution of this work is the formu-

by replacing the original implementations with lower Coﬁ_ration of a fully symbolic algorithm for finding the minimum-

and functionally compatible subnetworks. Our approach (g replacement for a multioutput cluster of cells under tight

timing constraints. From the implementation point of view, we
Manuscript received December 10, 1997; revised April 24, 1998. Thj

work was supported by the National Science Foundation under Contract M’%—ivef made ngeral efforts to achieve efficiency and robustness,
9421129. obtaining satisfactory results. We demonstrate the robustness
L. Benini is with the Dipartimento di Informatica, Elettronica e Sistemisticagf our approach by reporting results for all largest benchmarks
Universita di Bologna, Bologna 40136 ltaly. in the MCNC'91 [21 ite. We obtain sizable i t
P. Vuillod was with the Computer Systems Laboratory, Stanford Universit}l} {1€ _ [21] suite. We obtain sizable improvements
Stanford, CA 94305 USA. He is now with Synopsys EPIC Tools Group, Gierdd i) speed (6% in average, up to 20.7%), ii) area under speed

I. INTRODUCTION

38610 France. _constraints (13.7% in average, up to 29.5%), and iii) power
G. De Micheli is with the Computer Systems Laboratory, Stanford Univer- d d traint 2230 | to 38.1%
Publisher Item Identifier S 0278-0070(98)08483-8. Moreover, remapping is very effective on larger netlists.

0278-0070/98$10.001 1998 IEEE

BENINI et al: ITERATIVE REMAPPING 949

This paper is organized as follows. In Section I, we provide
basic background information and review the formulation of
generalized matching as a decision problem. In Section lll,
we outline the optimization flow and describe the routines
for choosing the target regions and computing degrees of
freedom for optimization. In Section IV, we introduce the
new formulation of generalized matching as a constrained
optimization problem, which is the core theoretical contribu- ﬁ//
tion of this work. In Section V, we focus on unconstrained h(x)
speed optimization. Section VI presents experimental resultg. 1. A multioutput cluster function embedded in its neighborhood.
Conclusions are drawn in Section VII.

synthesis flow. GM has two key advantages with respect to tra-
Il. BACKGROUND ditional single-output Boolean matching techniques, namely, i)
We assume that the reader is familiar with Boolean funexpressing the degrees of freedom for matching with a Boolean
tions, discrete functions, binary decision diagram (BDD)-bas#elation that is more powerful thadon’t cares[1] and ii)
manipulation of Boolean functions and algebraic decisigtpncurrently matching multiple single-output cells. As a result,
diagram (ADD)-based manipulation of discrete functions (sé&M finds matches thatannot be foundvith any traditional
[7], [8], [10], and [19] for a review). We denote vectors andBoolean matching technique.
matrices in bold, i.e.x = [r1, z2, ---, ,]*. We use the Let us consider a multioutput cluster functidnwith N;
symbolsV, f = f. - f. and3J.f = f. + f. to designate, inputs andN, outputs embedded in a logic network. It is
respectively, theconsensusand the smoothingof Boolean represented in Fig. 1. We adopt a formalism similar to that
function f with respect to variable. Remember that the con-used by Watanabet al. [18]. We callx (with dimension/V,,)
sensus operation corresponds to universal quantification, wréled z (with dimensionV.) the arrays of Boolean variables
smoothing corresponds to existential quantification. Consendlisthe inputs and the outputs of the network that embeds
(smoothing) with respect to an array of variables can e cluster functionf. The functionality of such network is
computed by repeated application of single-variable consensagresented by the Boolean functidr(x). We call it the
(smoothing). neighborhoodof f. The inputs of the cluster function can be
Consider Boolean functions that model a portion (or clustesfen as a functiop(x) of the inputsx. The functiong(o, x)
of the circuit. They are calledluster functionsWe denote by describes the behavior of the outputsvhen the outputs of
f = [f1, fo, -, fn]* a generic multioutput cluster function.the cluster functions are seen as additional primary inputs.
We calll pattern functiona combinational function modeling a Fromh, p, andq, we obtain three characteristic functions
IFI)Z:?gnC?“ﬁ S_r;dnwe usg to represent a generic single-output .
unction. —
When considering the minimization of multioutput Boolean Hx,z) = 1131 hi(x) @2 @)
functions, the degrees of freedom provided by the environment N,
can be expressed byBoolean relation[1]. If we call X the P(x,i) = H P(X) B i @)
input space and@ the output space, a Boolean relatiircan pyier}
be represented by itsharacteristic functiont: X x Y — N.
{1, 0} su'ch thatt'(x, y) = 1 if and only ify € Y is one of Qo, x, z) = H g;(0, X) @ 2;. A3)
the possible outputs dR for the inputx € X. i
Matching a cluster function with one (or more) pattern
functions means finding a way of assigning the inputs dfhese characteristic functions enable the computation of a
the cluster function to the inputs of the pattern function sudbolean relation representing the complete setwhpatible
that the pattern function becomes a correct implementationfgnctionsof f, i.e., functions that can implemetit without
the cluster function. Notice that this requirement is weakéhanging the input-output behavior &f Watanabeet al.
than functional equivalence. A pattern function is a correshowed that the characteristic functiohi of the Boolean
implementation if and only if it can replace the cluster fund€lation can be obtained with the following formula [18]:
tion without changing the functionality of the circudtt the . .
primary outputs Although several types of matching have F(i, 0) =Vx,a[(P(x, 1) - Qlo, x, 2)) = H(x, 2)]. (4)
been defined, such as NPN-matching [11], in the following
sections we will use the above definition of matching bas%
on replaceability.

uation (4) allows us to find all functionf that, when
mposed withp and q, produce exactly functiom.! There
are generally many functions with this property. These func-
tions are represented by a Boolean relation, &nds the

A. Generalized Matching characteristic function of such relation.

In [5], we introduced the concept afeneralized match- | . .) .)
. lized tching extends the Boolean relation-ba d?oughly speaking, (4) expresses the inclusion of the intersection of the
ing. Generalized matching Wracteristic equations fe(x) andg¢(o, x) into the characteristic equation
approach [1], [18] to the technology-dependent part of th@hi(x), enforced for every value of andz.

950 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 10, OCTOBER 1998

CoCy Unfortunately, the generality of (5) has a cost in terms
- | of computational complexity. In practice, only very small
CoC1CsC3C,4Cs r g, instances of GM can be solved in a reasonable time by
i H—Lf | a straightforward implementation of the computations ex-
i; “‘L’l H M I_L pressed by (5). Several theoretical insights and algorithmic
2] g, o optimizations will be introduced in the following sections
L with the main purpose of extending the practical usefulness
M3 g, of GM. Roughly speaking, two strategies will be exploited
to manage complexity, namely, decomposition and bounding.
Fig. 2. Quotient function of the target library. With decomposition, the solution of a complete GM instance

will be split in several simpler instances. The final solution
The GM problem consists in finding all possible sets gfan be computed as the intersection of the solutions for
n library cells that can implement one of the functionhe simpler instances. With bounding, the search space for
represented bwf‘ To accomp“sh this task, we define thézandidate solutions will be restricted by rapldly eliminating
concept ofquotient functionL(i, ¢) for our technology library regions that cannot contain optimal solutions.

[5]. The pictorial representation of the quotient function is Concluding the section, notice that both traditional Boolean
shown in Fig. 2 for a simple library wittV;;, = 3 cells, g;, Matching and generalized matching have been formulated as

g2, and gs. decision problems, where the solution consists of finding a
In the figure, the blocks$/1, M2, M3, andM,,, represent Yesor no answer. Such decision problems arise sometimes in
virtual multiplexers, with control inpute = [¢g, ca, - - -, ¢7]7. practice, for example, when checking the equivalence of two

The first three multiplexers control the input pin assignment@gic circuits with unknown input assignment [12]. However,
By changing the control inputs, we can control how the exteyariations of the matching problem, namelyinimum-cost
nal inputs are connected to the pins of the cells. Multiplex&atchingand minimum-cost constrained matchihgve much
M, controls cell selection: it selects which cell is connectedider practical relevance.
to the output. Roughly speaking, the quotient function rep-
resents all possible functions that can be implemented by a
technology library (refer to [5] for a detailed explanation).
Example 1: Referring to Fig. 2, we consider a simple li- In the recent past, numerous logic-synthesis tools have been
brary containing three cells. A valug of control variables: developed in academia and industry. Most implementations
uniquely identifies a cell and its input assignment. For instandellow a two-phase approach. In the first phatsshnology-
c* =[0,0,0,1,1,0,0, 0]Y selects cellg;, with the top- independent optimizationsre performed: the initial descrip-
most pin connected to input, the second pin from the toption (written in a generic hardware description language)
connected to input,, and the bottom pin connected to inputs optimized using transformations and cost functions that
3. Note that input polarity assignments can be representeddas not depend on the particular technology library chosen
well, with the introduction of one control variable for eacHor the final implementation. Then, in the second phase,
virtual multiplexer [5]. technology-dependent optimizations are applied as the generic
To perform generalized matching, we need to check iian logic description is mapped to the technology library. This step
output cluster functiof (i) can be replaced by library cells. is often calledlibrary binding.
For the sake of simplicity of description, we restrict= 2 Recently, the two-phase synthesis flow has been augmented
even though our method is fully general. Remember that thg a third phase. Several algorithms have been developed that
cluster function and its degrees of freedom are representggerate on a mapped netlist and attempt to further optimize it
by a Boolean relationF(i, o). We can express GM with a[13]-[15]. We callremappingthe postprocessing step. Some
Boolean formula [5] remapping approaches [16] focus on changing the connectivity
. . — . — of the netlist in such a way that some gates either become re-
M(c) = Vi do(F(i, 0) - (L(i, c1) @ 01)(L(i, c2) B 02)). (5) dundant (and can be remo)(/ed) or becogme suboptimal (and can
Where F is the Boolean relation for the clustert,is the quo- be replaced). Remapping transformations based on changes of
tient function. Notice that for each output, we have a differetite network connectivity are often calleewiring.
quotient function with distinct sets of control variables, and We adopt a remapping approach. Starting from an optimized
hencec = [c, c2]. This is because each output bican be and mapped netlist, we apply our optimization engine to
matched by a different cell with different input assignmentspecific regions of the mapped netlist where local improve-
M (c) is called thematching functiorand can in principle be ments are more likely. The high-level flow of the remapping
computed by simply implementing (5) with standard BDD opprocedure is shown in Fig. 3. First, the initial mapped network
erators. The ON-set a¥/(c) denotes all possible assignmentss analyzed. Power dissipation, arrival times, required times,
of the cluster to two library cells with the property that the newnd slacks are computed for all nodes. This information
implementation of the cluster function can replace the old oeives the selection of the target regions for remapping.
without changing the behavior observed at the outpdi.dh Clusters of cells in the target regions are constructed and
other words, (5) allows us to compuddl cell selections and remapping is attempted. The degrees of freedom extracted
input assignments compatible with [5]. by examining the portion of the logic network around the

I1l. THE REMAPPING APPROACH

BENINI et al: ITERATIVE REMAPPING 951

ReMapMFP (Network)

Timing/Power analysis foreach (node € BackBFirstTrav (Network)) {
if (node is MFP) {
No mare 1 fo_list = fanout (node);
improvement] M . foreach (node_1, node 2 € fo_list) {
Select target region clusterF = [node_1, node 2];
l No more if (bestmatch = ComputeBRelOptimize (clusterF, Network)) {
clusters replace (clusterF, bestmatch, Network);
[Build candidate cluster Elim. suboptimal cells } }
l l foreach (node 1 € fo.list) {
clusterF = [node_1, nodel;
Neighborhood construction Compute M(c) if (best_match = ComputeBRelOptimize (clusterF, Network))
1 replace (clusterF, best_match, Network);
| .
Min. Cost Constrained Match [:> Build Cost & Constraint }
1 1 Fig. 4. Sliding window algorithm for cluster function selection.
Prune and Minimize
- Replacement test

follow a cone-basedparadigm [17]. A very efficient search

Return optimized network of the optimum mapping is performed on fanout-free regions
_ _ _ of the circuit, but the search stops when MFP’s are reached.
Fig. 3. High-level flow of the remapping procedure. As a result, the final implementation consists of highly opti-

mized fanout-free regions connected by multiple fanout points.

cluster (i.e., the neighborhood) are exploited. Cluster selectiBoughly speaking, we target the loss of optimality caused
and neighborhood construction are described in Sections By the interruption of the cone-based search when a MFP is
A and lII-B, respectively. The core remapping task is basedached.
on an efficient implementation of minimum-cost-constrained Second, since our optimization strategy is based on the
generalized matching, which is described in Section IV. Trmputation of a Boolean relation expressing the degrees of
procedure is iterated until convergence. freedom for the implementation of a multiple-output subnet-

The choice of the remapping approach is dictated by practiork, we are more likely to find degrees of freedom when
cal reasons. Current technology mapping tools are robust @ahd output functions of the subnetwork share some support
efficient. We leverage their capabilities to obtain an initiatariables. This is generally true when two or more gates driven
optimized implementation, then we apply our powerful buty a MFP are considered as candidates for optimization.
computationally demanding optimization engine to portions The enumeration of the MFP’s is done by traversing the
of the circuit where traditional mapping algorithms do noatetwork in a backwardbreadth-firstfashion starting from the
produce optimal results. The advantages of this choice are: ipiitput and moving toward the inputs. The pseudocode of the
merges seamlessly with preexisting tools and design flows agigorithm for selection of candidate networks for remapping
ii) it allows us to put more effort in local optimizations, sinces shown in Fig. 4. Several corner cases and limit conditions
we perform a reduced number of them. The main drawbackage not shown for the sake of simplicity.
that our technique performs only incremental improvements;The outermost loop implements the backward breadth-
thus, if the starting point is a local optimum very far from theirst traversal. Whenever a MFP is reached, its fanout gates
global optimum, we may not be able to move out of it. are inserted in listfo _list . The first inner loop selects

A good choice of the target regions in the mapped netlist igultioutput clusters consisting of set of elementfoin list
paramount for the success of the remapping strategy. Differgife second inner loop selects clusters that include the gate
choice criteria are applied depending on the nature of tgth multiple fanout and one or more of its fanout gates. In the
cost function that we want to optimize. Power and area aggnplified pseudocode, two-output clusters are selected. The
extensivecost functions, i.e., they depend on the entire circuiictual implementation can generate multioutput clusters with
while speed is aimtensivecost function, i.e., it is determined any number of outputs. In practice, three outputs is usually the
only by a critical portion of the circuit (the slowest paths)maximum for efficiency reasons because the complexity of the
When we optimize an extensive cost measure, we want d8mpytations involved in matching rapidly increases with the

distribute the optimization effort on the entire netlist, whilg,ymper of cluster outputs, and the number of clusters that can
the optimization of an intensive cost function can be bettge generated i©(|FO[) (Where ney is the number of

achieved by focusing only on the critical portion. cluster outputs an$l’O| is the number of fanout stems).
)) For each candidate cluster generated by the internal loops,
A. Target-Region Selection the functionComputeBRelOptimize s called. It computes

In this subsection, we describe a target-selection strategynimum-cost constrained matching and is the core procedure
tailored for optimization of extensive cost functions (area arid the algorithm. It will be analyzed in the following section.
power). Our approach to the optimization of intensive co#t returns best _match if a match has been found that
functions (speed) is described in Section V. We focus amproves the cost and satisfies the constraints. If this is the
multiple fanout pointYMFP’s). There are two main reasonsase, the original network is modified accordingly by function
for this choice. First, traditional library binding algorithmsreplace

952 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 10, OCTOBER 1998

Procedur&reMapMFRs usually applied several times to the Since we consider clusters starting from MFP’s, at least one
target network. A single pass is not enough for getting the bestmmon fanin exists. To build the neighborhood, we explore
results. For instance, when we operate a replacement, we rtfag transitive fanout and fanin of the cluster. We control com-
create new multiple fanout points. Additionally, incrementgdlexity by limiting the search to a given depth. The algorithm
modifications of the network may cause changes in the degreeserating the neighborhood is shown in Fig. 5. Its inputs are
of freedom available in the neighborhood of the optimizatiothe cluster functionf (clusterF in the pseudocode) and
point and enable further improvement. The main reason fibre maximum depth of exploration (paramet@pth). We
performing a backward traversal is that replacements ceall o; and o, the outputs ofclusterF . First, we mark
create new MFP’s on the inputs of the clusters being replacéide fanout cones of; and o,. We take the intersection of
Moving backward, we traverse the newly created MFP’s ithe fanout cones (sémtersec) and get the paths from;
the same pass, and we accelerate convergeme/érgence and o, to nodes inintersec . All nodes in such paths are
is reached when a call dReMapMFPdoes not decrease thecollected inpathnodes . From pathnodes , we create a
cost function). new set,outnodes , by extendingpathnodes with their

In practice, convergence is reached in two or three passkesout nodes. They correspond to the part of the neighborhood
Even if convergence is rapid, we implemented several ojprthe fanout of the cluster. A similar procedure is applied to
timizations to reduce the run time in successive iterationge fanin cones, and the senodes is produced. They are
For instance, MFP’s whose neighborhood is not changedthe fanin part of the neighborhood.
iterationn are skipped in iteration+- 1. The formal definition =~ The externalnodes ofoutnodes are picked up to produce
of neighborhood will be given in the next subsection. xnodes (input nodes) andnodes (output nodes). The input

The algorithm in Fig. 4 constructs candidate clusters startingdes ofinnodes are put inxnodes . We do not need the
from MFP’s. Once a cluster is created, the functi©om- output nodes ofinodes because they are not affected by any
puteBRelOptimize is called. The two main tasks of thechange of the cluster. The neighborhood is defined as the union
function are the following. of xnodes and znodes . The rationale of this algorithm

+ Build the Boolean relation that represents the degreesisfto include in the neighborhood the maximum number of
freedom for matching created by the cluster’s neighbofeconvergence regions containifigconstrained by the depth
hood. of the exploration). Including such regions in the neighborhood

« Perform minimum-cost matching and guarantee that tifpcreases the probability tha expresses degrees of freedom
ing constraints are not violated. that cannot be captured lopn't cares It may be observed that

In the next subsection, we describe how the first task is carritgc? same result is achieved by a straightforward algorithm that

out, while the second task is described in Section IV. computes the ne|ghbo.rhood by simply traver§|ng the transitive
fanin and fanout of with depthdepth . Experimentally, we

o) observed that the straightforward approach is not practical

B. Building the Boolean Relation because the neighborhood gets very large even for small depths
Boolean relation” can be computed using (4) once th@nd the computation faF becomes too expensive.
neighborhood is specified. Ideally, we would like to compute Example 2: We show on Fig. 6 how the algorithm works.
F by considering a% the entire logic network, from primary The picture represents a portion of a logic network, the vertices
inputs to primary outputs. This choice would give us the maxieing logic gates and the arrows the connections between
mum degrees of freedom for the implementation of the clustdrem. We start from a two-node cluster, marked in black in the
function [18]. Unfortunately, this is computationally infeasibldop-left part of the Fig. 6. The parametgepth is set to two.
except for the smallest networks. Thus, the neighborhood Hés build the neighborhood, we first select the reconvergent
to be a small subset of the logic network, like a “bubblefodes in the transitive fanout and fanin of the clusters (with
around the cluster function. Notice that GM relies on findingepth 2) from the cluster. These nodes are marked in black
a Boolean relation that gives the most degrees of freedomaw the top right. The nodes on paths connecting the cluster
the chosen cluster. Intuitively, we want to establish a relatiovith reconvergent nodes are marked in black on the bottom
between the outputs df that gives more degrees of freedonieft. Finally, we take the “envelope” of these nodes to get the
than computing separately thelon't cares neighborhood. The neighborhood is the set of nodes marked
We consider two-output cluster functions for the sake of ek black in the bottom-right part of Fig. 6.

planation. The neighborhood construction algorithm is shown Given the neighborhood, the Boolean relatigns obtained
in Fig. 4. Our purpose is to compute Boolean relations expressr (4). We build the BDD'’s of the Boolean relatiofs H, and
ing many degrees of freedom. Thus, we look for nodes in tldgby traversing the neighborhood. We apply the corresponding
fanout cone and fanin cone of both outputsfofntuitively, a BDD’s operators and universal quantification to comp#te
common fanout node within the neighborhood is an indicatiddote that* depends only on a few BDD variables, namely, the
that functionality at the neighborhood outputs is controlledariables for the inputs and the outputs of the cluster; therefore,
by the interaction of both outputs. Similarly, a common fanithe resulting BDD of the Boolean relatiaf” is very small.
node implies that there is some sharing of information amomtpwever, the overall complexity depends on the computation
the inputs off. If fanin and fanout cones of the componentsf the relationH. To build the relationH, we need to build
of f are disjoint,.F represents the same degrees of freedotine BDD's of each neighborhood outpytwith respect to the
that can be expressed lopn't cares inputs and compute their conjunction. This operation can be

BENINI et al: ITERATIVE REMAPPING 953

ComputeNeighborhood (clusterF, depth)
/* 1. Moving forwards for building outnodes */
coneoutl = make fanout._cone (0;, depth);
coneout? make _fanout_cone (02, depth);
intersec get_intersec (coneoutl, coneout2);
/* pathnodes are the nodes on the reconvergent paths */
pathnodes = NIL;
foreach (node € intersec) pathnodes = pathnodes U path (01, node) U path (02, node);
/* outnodes are the envelope of path nodes */
outnodes = pathnodes;
foreach (node € pathnodes) outnodes = outnodes (U (fanout (node));
/* Take only the erxternal nodes of outnodes */
znodes = NIL;
foreach (node € outnodes)
if (fanout (nodes) ¢ outnodes)
znodes = znodes U node;

/* 2. Move backwards for building innodes */
coneinl = make.fanin cone (01, depth);
conein2 = make fanin cone (02, depth);
intersec = get_intersec (coneinl, conein2);
/ * pathnodes are the nodes on the reconvergent paths x/
pathnodes = NIL;
foreach (node & intersec) pathnodes = pathnodes U path (01, node) U path (02, node);
/* innodes are the envelope of path nodes */
innodes = pathnodes;
foreach (node € pathnodes) innodes = innodes U (fanin (node));
/* Take only the erzternal nodes of innodes and outnodes */
xnodes = NIL;
foreach (node € (innodes !J outnodes))

if (fanin (node) ¢ (innodes U outnodes))

xnodes = xnodes U node;

neighbozhood = (xnodes, znodes);
return (neighborhood);

Fig. 5. Algorithm for neighborhood construction.

Fig. 6. Building the neighborhood of a cluster.

A. Pruning

The main practical problem in the computation &f(c)
by (5) is that, although the BDD representation &f(c)
is generally very compact, the same is not true for the
intermediate results of the computation in (5). Experimentally,
we observed that BDD blowup was very common while
computing the conjunction of with the quotient functions

and while computing the quantifications. We can express the
@

A

final result, but there is a peak BDD size to overcome. To avoid
going up to this peak, we partition the problem. We compute
the matching function for each output separately, and use the
partitioned solutions to reduce the size of the BDD’s in (5)
before universal quantification. Notice that the procedioes

not compromise the global optimality of the final solution.
This claim will be clarified in the following discussion.
computationally infeasible i are primary outputs angl are Again, we discuss the case of two outputs for the sake of
primary inputs. The algorithm of Fig. 5 has been designed &mplicity (although the approach is general). The matching
minimize the complexity of the computation &f, and at the fynction of outputo; can be computed with the following
same time to obtain a finaF expressing useful degrees okgrmula:

freedom.
Mi(e1) = Vi Jo(F(i, 0) - (L(i, €1) B 01)). (6)

IV. MINIMUM -COST CONSTRAINED GM The same formula holds for output (changing indexes from

Generalized matching is formulated and solved ifto 2). Computingl/; and M. separately can be much easier
Section lI-A as a decision problem. In this section, wtan computinglM because the BDD’s have fewer support
first describe an efficient algorithm for the computation of theariables, and only one conjunction has to be computed before
matching functionM (c). We introduce gpruning procedure quantification. This observation is confirmed in practice. The
for speeding up the computations involved in (5). Then, weomputation ofA7; and M, requires much less memory than
extend GM from a simple decision algorithm to a completdhe computation ofd/.
constrained symbolic optimization procedure. We describelt is easy to see that/; (¢) and M:(c) are less constrained
the symbolic computation of cost functions and constrainthan M(c): M; > M and M, > M. M;(c) expresses
and we introduce &oundingprocedure for further improving all possible matches for output, assuming thabs can be
the efficiency of symbolic optimization. implemented by an arbitrary function of the inputs. In general,

|

954 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 10, OCTOBER 1998

the ON-set ofM; (M) contains solutions that are not valid:

all matches off; (f2) that are admissible only whefa (f1) is

not representable b¥(i, c3) (L(i, ¢1)) belong to the ON-set

of My (Ms) but are in the OFF-set a¥/. We can use thé/;

and M. as conservative bounds for pruning the search space

of M(c) because we know that if a valug is not in the

ON-set ofboth Af; and Ms, it will be in the OFF-set ofdM,

and we do not need to take it into account when matchihg
The simplest way to exploit this property is to comput&ig. 7. ADD cost function for area for four variables.

the restriction [10] of L(i, ¢;) and L(i, co) with respect

to Mi(c1) and Ma(c2), respectively, and then compufd functions and constraints. ADD's are appropriate because

with (5). In other words, we can repladg(i, c;) in (5) with they represent discrete functions in a compact way, and they

Lyes(i, c1) defined as follows: interface seamlessly with BDD's (they have the same structure,
Los(i, o) = L, c1), if Mi(er) =1 - the only diﬁerengg being that Ieave.s can hav_e any value).
restl: €1 =\ gon't care otherwise. To compute minimum-cost matching, we build the ADD for

the cost function with the same support variables as the BDD

The same can be done fo(i, c2). In practice, we augmentedfor M (c). A path in the ADD leads to a leaf containing the
the basic algorithm by introducingeencodingof the control cost of the cell identified by the values of control variables
variablesc with a reduced set of new control variablesThe encountered on the path. Once the ADD of the cost function
number of new control variables is equal l@g, Nimint, 1], is built, we can compute thproduct with the BDD of the
where Nyint, 1 (Nmint,2) is the number of minterms in the matching function and select the minterm pointing to the
ON-set of M, (Ma). With the new encoding L., (i, v;) minimum value of it (product and minimum selection are
and L..,(i, v,) have typically a much more compact BDDstandard ADD operators). A similar line of reasoning holds
representation, and (5) can be efficiently computed. We @& constraints, with the only difference that the constraint
not describe the reencoding algorithm in detail because it ApD is used to prune from the ON-set 81 all solutions that
quite complex and not essential for the understanding of thlate the constraint.
complete algorithm. 1) Area Cost: Since the area of a cell is not affected by

By computingM; and M> we prune the search space, anghe input assignment, the support of the ADD representing the
the computation oft/(c) is much faster. Notice that we do notarea cost,A(c), contains only variables controlling the cell
make any approximation heré{(c) still gives us all possible selection in the quotient function. The cost function for area
assignments for the cluster. The bound is conservative, and gag be computed once and for all. Its number of nodes is very
matching function is computed exactly. This method can kgnall, bounded by x | N/ (if no two cells have the same
used for more than two input clusters. In practice, the meth@gea, the ADD reduces to a binary tree). All ADD operators
breaks down when (6) cannot be computed with the availalfolved in the construction of the symbolic representation of

memory resources. the cost function and its minimization over the ON-set\df
have complexityO(|M(c)| - |A(c)|). The number of nodes in
B. Cost Function and Constraints the BDD of the matching function igV/(c)|, while |A(c)| is

replacements fof, we want get the minimum-cost matcheg!Sually bothA/(c)| and|A(c)| are small [at most on the order
satisfying the timing constraints. Hence, we need to apply® 100 BDD nodes fofM(c)|], the computation of the area
cost function toM(c) and find at least one assignmesit COStis very fast compared to an enumeration of the minterms
minimizing it. Moreover, we need to enforce the satisfactiodf /-))

of the constraints. Example 3: Consider a library, = {NAND2, AND2, NAND3,

The most straightforward approach is the explicit end®tND3} with area costs, respectivelyl, 2, 3, 4. The ADD
meration of the ON-set ofi/(c). For each minterm (that A(c) of the area cost function for this library is represented in
corresponds to a valid replacement), the cost function (powfdg: 7- The ELSE edges are represented by dashed arrows,
or area) is computed and the timing constraints are checkiile THEN edges are represented by solid arrows. The
The minimum-cost solution satisfying the constraints is theiPntrol variables for cell selection arg andcg. For instance,
selected. Unfortunately, the enumerative approach is excés Selects thelanD3 gate. In the ADD of the cost function,
sively slow. Generally}M (c) has a large number of mintermsWe see how the path witks and c; leads to the cost of
whose enumeration would take an unreasonable amountt¥ NAND3, i.e., three. Assume that the matching function is
time. M(c) = cocyeadsdyescs. Taking the minimum of the product

To overcome this limitation, we solve the minimum-costi(c) - M(c), we obtain the value three, and the valtfeof
constrained GM problem in a symbolic fashion. We enfhe control variables for whicbi(c) - M(c) is minimized is

. . /L /
ploy ADD’s [19] to build an abstract representation of cost’ = C0C1C203CC5C6C7 _ _

2 - .) 2) Power Cost: The computation of the power ADD is

The cardinality of the ON-set oM (M>) is generally much smaller h . ived th h f th b
than the total number of values of thus, the number of variables needed td"Uch more 'nVO_Ve than that of the area A[_)D ecause
encode it is generally smaller than the number of control variahles power consumption depends on both cell assignment and

BENINI et al: ITERATIVE REMAPPING 955

input assignment. In this work, we consider only the power i it
due to output §witching act!vity (alsp known aternal 1,4 00 01 11 10 1,4, 00 01 11 10
power or switching powey. This is motivated b_y two facts. 00 | 00 00 01 00 00 | 15 15 0z 0z
First, our model of the power consumed within the cells

. 01 (00 00 01 00 01| .15 .15 .02 .02
(internal poweyj is quite complex, and it would unnecessarily

complicate the explanation of the basic technique. Second, **[° 10 11 10 11 .02 02 .05 .05
there is no agreement in the literature on what the best internal 10|00 00 01 00 10 .02 .02 .05 .05
power model is. For instance, ours is completely different @ ()

from the one presented in [22]. On the contrary, there is an ,_ _
Fig. 8. (a) Table of the transitions for a two-inputp. (b) Table of the
agreement on how to compute the external power. Moreovgllgbabi”tieS of each transition par.
switching power is usually the most important contribution.
External power at a nodeof a Boolean network is given by) N -
the signal: and the transition probability’;:

V2
Pext(0) = KP;(0)C(0) % (8) P, P;
P10 =~ pll—Ps_?
where F,(o) is the transition probability of node, C(o) is P, P,
the capacitance at nodg V,, is the supply voltage, an& Por = & poo =1 — P, 5

is a constant factor.])

Consider a cluster with two outputs. The two outputs are Example 4: Consider a two-inpuND gate. The truth table
bound by the Boolean relatiof. A target library function in Fig. 8(a) shows the pairs of valugs, ™) fo.r all the pairs
can be placed at one of the outputsf it satisfies (i, o). (i i*). The rows represent one value of the inpitsz), and
The same holds for the other output. We want to analyze tH¢ columns a following valugiyif). For example, if we
gain in power of the replacement at one of the outputsft aPPly the pattern 00 and then 11 to twep gate, the response
the cluster. External power can change at the notecause 1S 01. In this example, the input static probabiliti€s are
the transition probabilityP, (o) depends on the function at (0-3, 0.5), and transition probabilities; are (0.2, 0.5). The
Observe that the variation is possible because, by exploitiRgpbabilities for (i1, i) are
the degrees of freedom expressed.Bywe may modify the pio = 0.2/2 = 0.1 pii=0.3—0.2/2 =02
function ato, and consequently the transition probability. The
capacitanceC(o) is independent of the function at outpaut
because it depends only on the fanoutsopfwhich are not
modified by mat.chlng. N - Por = poo = 0.25.

The computation of the transition 'probablllty is done sym-- |, Fig. 8(b), we have represented the matrix of the proba-
bolically as follows. Output node is represented by the jjisies of two consecutive input patterns. The indexing of the
function o = f(i). We calli andi* two consecutive INPUt a4riy s the same as the truth table; the rows repreisant
patterns, their response at the output being f(i) ando™ = 0 cojymnsi+. We see that, for example, the probability of
f(it). The transition probability o6, P,(0), is the probability the pair of inputs (01, 10) is 0.02.
thato swi_tchgs; therefore, it i®(o # oT). Consider now two |, the truth table [Fig. 8(a)], we see six points where
consecutive input patterrisandi*. If the responses to thesegyitches. To obtain the transition probability, we sum these
patternso and 0T are different, we observe a transition akiy points weighted by the matrix [Fig. 8(b)P; (o) = 0.025+
the outputs. This event contributes B{o # o). It happens 0.025 + 0.025 + 0.025 + 0.05 + 0.05 = 0.2.
with a probability P(i, i*). The formula for the transition — rpq consequence of the transition probability change is the
probability is the sum of all such events at the inputs. W ,qification of power consumption at and at the fanout
obtain the following formula: nodes ofo. If the transition probability changes at its

Plo#o%) =35+ (f) ® F(iT))P(i, it). (9) fanout nodes will haye a new transition probability. However,
we know from Section II-A that the output nodesof the

If we assume spatial independence of the inputs and Weighborhood have the same behavior regardless of the match.
neglect high-order temporal correlations (i.e., correlations beherefore, they have a constant transition probability and,
tween patterns with more than one cycle-time difference), te@nsequently, all the nodes in their fanout have a constant
probability of two consecutive input vectom(i, i*) is the probability for this given match. So the impact in the fanout
product of the probability of each bit sequence of the vectofodes does not go further thanThe impact of the change on

<oy P the fanout nodes has to be taken in consideration, but it has
P(l’ !) o H p(L’ ‘) (10) only a limited scope in the circuit, namely, the nodes inside

po1=02/2=01 ppo=1-—03-02/2=06.

In the same way, we obtain, fdfis, i3), pio = p11 =

¢ € tnputs the neighborhood. This issue is discussed in the Appendix. For
where now, we assume that changes in transition activity db not
s T =t =T sensibly affect the transition activity even for nodes within the
i, 17) =it + 44 + 41 + 41 11 .
P()) P11 P1o Po1 Poo (11) neighborhood.

and wherep,; is the probability of the sequenas. These = We analyzed the impact of a replacement at the outputs of
values are expressed below with the static probabifityof the cluster. However, external power is modified at the inputs

956 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 10, OCTOBER 1998

1

a iz a
| 1};— & | 2%-_ & b- 135 ! &l AND2 @\\\rﬂ\inz library celt
bb Pl 2ZP ; N BN
2z 33 v 151 N))' N pin b
a b . . @
(@ (b) = 0 \\ W~ \\ i \\
Fig. 9. (a) Assignment ofi1, i} with AND2 and (b) assignment dfiz, ¢ } & O - - - -
with NAND?2. b

Fig. 10. ADD of the capacitance at for any selection.

pina

as well. Considet, one of the input$. The power variation at

the input is not due to the transition probability because this

one may change only at the gate output. It is caused insteadhe second part of the cost function is to compute the

by the variations of the load'(¢) at the input when we changecapacitance. The ADD formulation has the same form as (12),

cell and pin assignment during remapping. The load at inppitit C} and C? are ADD’s function ofc. The ADD of the

i can be expressed as capacitance is the;(c) = Ci(c) + C2(c) + C¢ter. To
computeC;(c), we need to build an ADD with the leaves

(12) containing the input capacitances of the pin selected by each

éDD path.

Example 6: Consider again the cellsNp2 andNAND2 of
Example 5. To simplify, we consider a cluster with one output
and only two inputg{iy, i¢2}. We need three control variables:
c1 controlling where (i.e., on which input) pia of the cells
is connectedg, controlling the connection of pim, and cs
making the library cell selection. We consider that infaubas
no other fanout in the circuit. The ADD of the capacitance at

Ci) = 7™ + G} + CF

whereC} (C?) is the input capacitance of the cell connecte
to o1 (02) and to inputé. [If ¢ is not connected to the cell at
01 (02), C} =0 (C? = 0).] Cther is a constant, bu€} and
C? depend on the cell selection and the pin assignments.
Example 5: Consider a single output cluster and two
candidate matches. The input probabilities {of, i} are,
respectively, P, = (0.3,0.5) and P, = (0.2, 0.5), as in
Example 4. The first match connectswith an AND2 gate | = X
to ¢, andi,. The input capacitances are one and two, d3Put@ is represented on Fig. 10. Whep =0, ¢; = 1, and

shown in Fig. 9(a) The input power of this choicels (i) = ¢3 = 0» Cell NAND2 is selected (s = 0), pin b is connected
02+14+05%2 = 1.2. to input<;, and pina is not connected to input. Hence, the

The second choice conneciswith a NAND2 gate tois total capacitive load on; is three (the load of pib of the

andi,. The input capacitances are two and three, as shof¥iNP cell). o
in Fig. 9(b). The input power of this choice Bex (i) = The ADD of the power cost function is given by the

02%3+05%2 = 1.6. following equation:

Obviously, the first match is better than the second one. The .
cost function will tend to find the lower cost pin permutation P(¢) = > Pi(c,0)Clo)+ > Pi(i)(Ci(c)).
for a given cell and find the cells that have a low input o€0utputs i € Inputs 14

capacitance.) L . . o
'|RO evaluate the power cost, we need to compute the inp;me first sum of the equation is the weighted switching activity

capacitance and the output transition probability for each c&fi the outputs of the cluster, and the second sum represents the

and pin assignment. Power cost is a function of variables POWer consumed at the inputs of the cluster.
For each minterm of the Boolean spacecofwe compute a 3) Timing C_:onstralnt: Similarly to power, tm_nng depends
power value. As we have shown before, we need to find tR8 INPut assignment as well as on cell assignment. Before

output transition probability for any cell configuration and thdescribing the ADD-based representation, we describe how
capacitance at each input for any input assignment. timing constraints are computed. For each cluster output,
For a particular value of the control variables = c* arrival time and required time are computed. We can replace

the restriction of the quotient functiod(i, c*) represents & cluster by an alternative implementation if the new arrival
a Boolean function of the inputs alone: it is the function times atall cluster outputs do not exceed the required times.
implemented by the library cell and the input pin assignmehfr timing constraints, we use the critical path of the circuit
expressed by*. For such a function, we can compufg. @s the maximum delay that can exist from the primary inputs
Thus, we can comput®, [as defined in (8)] for any possible t0 the primary outputs. From this constraint, we compute the

value ofc in a symbolic fashion using ADD’s arrival and required times for all nodes.
We use themapped delay models in [6]. Consider a gate

Pi(c, 0) =3 i+ ((L(G, e)) @ L(iT, ¢))P(i,it) (13) ¢ with input pinsy = [y, %2, -- -, ¥a]T shown in Fig. 11.
The pins are connected with inpuits= [4;, ia, - -, i,]7. We
with P(i, it) being the ADD computing the probabilities of3ssume that pim; is connected to input;. The arrival time
(i,i") and L the BDD of the quotient functionFi(c, o) at the output of the gate is
represents how the transition probability of outputhanges
as a function of the control variables (that select different tae = max (tur, +a x Cr, + B:). (15)
implementations fomw). i=1,2,-,n°

BENINI et al: ITERATIVE REMAPPING 957

g | P g
e
" 1yl _ /’%b 2
R y2 B g’— // 0
i . o=
L 5L |
. £, 02
Fig. 11. Delay computation for a gate. L \\ ?
S
« is the effective output resistance of the gaf&, is the \Vd &, 32*
effective load capacitance at the output, afidis the pin- Pl
dependent intrinsic delay of the gate. Finatly,, is the arrival @ ®)

time at inputé;. It is a function of bothi; andy; because it
depends on the pin of gateand the fanin gatgr;; driving
input ¢

Fig. 12. Symbolic representation of timing constraints.

wherel,,,,, o, and/ are ADD’s in the control variables and
tarr; = Ki + 17:(Cother; + Cin,)- (16) all operators involved in the computation are standard ADD
operators. The leaves @, contain all possible arrival times
7 1S the effective output resistance of the fanin gate;, K; is for the output.
the part oft,,,, depending on previous stages (and the intrinsic Example 7: Consider the situation shown in Fig. 12. We
delay of the fanin gate)’e.; is the load capacitance of thewant to compute the ADD’,..(c) for the two outputs of the
fanin gate that does not depend gnand Cj,, is the input cluster of Fig. 12(a). We make several simplifying assumptions
load capacitance of pinp;. for the sake of clarity. First, we assume that = 0 and
Observe that the arrival time at the output of a gate C,,.,, = 0 for all inputs. The driving resistances have the
depends on the input assignment. If we change the assignmgithe value for all inputs; = 1, and the load orv; and
of pins to inputs, the arrival time may change for two reasons, is null. Second, we assume th#t can be matched only

* The arrival time at the inputs,,,, changes. by cell g1 and f» can be matched only by cej. The input
« The intrinsic delay3; changes because it is pin dependef@ds and intrinsic propagation delays for the cells are shown
as well. in Fig. 12(a). Input load values are displayed close to the

Remember that in the quotient functidsfi, c), input assign- input pins_ of the ceIIs._Intrinsic delays are close to the arrows
ments are set by the control variables; hemge for a quotient '€Presenting propagation paths. Moreover, we assumeihat
function is a function of the control variables. For a clustéf@n Pe connected only to inpuis and 43, while we can
output that we want to match, we build the ADD,.(c) of connect Fhe input pins of; to i gnd 2. The connection
the arrival time. It represents the arrival time at the outp@f POth pins of a cell to the same input is not allowed.
for any input and cell assignment. A vale# of the control ~ With these simplifying assumptions, we just need two
variables selects a path iy, (c) that leads to a leaf containingcon_tm' variables to express the degrees of freedom in the input
the value of the arrival time at the output when the cell arffSignments. Control variabig controls the connection @
input assignment corresponding ¢b are chosen. c1 = 0 means that pim is connected with input, and pind
Similarly to power, the computation &,.. is complicated S connected V\.Ilth_ inputz. The opposite connection is chqsen
by the fact that we are concurrently matching a multioutp¥thenci = 1. Similarly, whenc, = 0, pin ¢ is connected with
cluster function using multiple quotient functions. The comPut ¢z and pind is connected with inputs.
plication arises when we compute the arrival tirg, at the ~ Assume, for example, that, = 0 and ¢; = 0. The
inputs i; of the cluster. Remember that.., depends on the arrival times at the inputs ar..., (0, 0) = Cin, (0, 0) = 1,
output resistance and the load capacitance. The gates in fhe.(0, 0) = Cin,(0,0) = 2+ 3 = 5, and 15,11, (0, 0) =
fanin of the cluster are loaded with a capacitance that deperfds (0, 0) = 4. For outputoy, the arrival time isZ;... (0, 0) =
on how the pins of gates in the cluster are connected to themnx{(3 + 1), (2 + 5)} = 7; this is one leaf of the ADD
In symbols, T, (€) = K; + Ri(Cotper,i + Ci(c)), where T.(c1, c2) representing the arrival time at; for every
K;, R;, and Coqer, ; are constants, whil€;(c) is an ADD combination of control variables. The complete ADD is shown
representing how the load capacitance on inphanges with in Fig. 12(b).
the input assignments of the cells in the quotient functions. Once the ADD of the arrival times has been built, it
It is important to notice thafl},,, depends on the entirecan be used to prune the ON-set of the matching function.
c. If we are matching a two-output clustéf,,,, is an ADD All assignments ofc that lead to leaves with value of the
whose support includes both andc, [the control variables arrival time larger than the required time violate the timing
of quotient functionsL; and L, in (5)]. The computation of constraint and are discarded from the ON-sef\ff If timing
the arrival time at each output of the cluster is done with the minimization target (as opposed to constraint), the minimum
following symbolic formula: delay matching solution is easily found by selecting the
. minimum leaf in the ADD obtained by restricting to the
Toa(c) = miax(Tarri(c) + afc) x Cp + f(c)) a7 ON-set of M.

958 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 10, OCTOBER 1998

For timing constraints, the line of reasoning is similar but
more involved. Observe that delays depend on input loads;
therefore, when we concurrently match two or more cells, we

need to take into account the load that the cells causes on the

I minimum cost of M2 fanin gates. We calDpouma,2 the delay for a match i/,

; (i.e., a cell implementing), assuming that the load caused by
the cell implementingf; is the minimum among all matches in
M. If Dpound, 2 €Xceeds the timing constraint, the match can
be pruned. The same reasoning holds8r and Dpoynd, 1-

Notice that both timing and area bounds are conservative
solutions of M1 and do not prune any match that can improve the current
mapping of the cluster. Roughly speaking, we use area and
timing to prune solutions id4; (A45) that could not be optimal
even if they were coupled with the best possible match/in
C. Bounding (My). The bounds are very useful in further decreasing the

Our minimum-cost constrained matching algorithm merg&&/MmPer of candidate matches if and the efficiency of the

GM with cost minimization and constraint enforcement. Weemputation of (5). _ _ ,
exploit the existence of a network implementation (since we 1) Power-Based Boundinghen performing constrained

are remapping) and of constraints to obtagundson the cost power minimization, power bounds must be computed. Power-

function and tight constraints. In this way, we drastically prunl%aseOI bounding is conceptually the same as area-based bound-

the search space and further increase computational eﬁicieﬁls%_ k:]%zel;{’]stslrtrllqpalterl’?:n;agogosl? hm%r:r 'trll\;%lvteh% Jr(.) 'i:?pr:"neslse
without giving up optimality. '9 v 9 iginal imp

It is not necessary to include in the quotient function celsentat'on’ we compute a power bound for each cell. This

and assignments for which we are certain that the Ioba?und 's theminimum possible coshat this cell has in any
9 9 implementation in the cluster. If the bound is higher than the

costs will be higher than that of the original implementation, .". : .
Additionally, it is useless to express assignments that wou%Iglnal cost in power, we discard the cell.
k To compute the bound, we have to analyze two factors: the

violate the timing cpn_stralnts. Thgse assgnments can El%bability of transition at the outputs and the capacitance at
suppressed when bundmgl the.qugtlent function. . the inputs. The value of the probability of transition is not

. Let us consider area rp|n|m|zat|on ynder delay CantraméBmpletely free at the outputs. The outputs are bound by the
first. When computl_ngL(1, c1) and L(, CQ_)’ some library Boolean relation’(, o). This relation defines eangeon the
cells are not even included because their area is too Iargr%nsition probability at one of the outputs. Like in (13),

The area of a cell included in the quotient function must kg, express theninimumtransition probability ab; as
A < Aga — Avan, Where A,q is the area of the current

implementation of and Ay is a lower bound to the area of P min(01)

any cell in the library. If a library cell has ared& larger than =i [(307 o Flo, i)j:(oJr’ i+) (01 £ Of))

Aqla — AN, itis not a viable candidate for replacing any cell A (,3 \ Flo i)]__(0+ i+) (01 _ o+))]P(i i)
in the original target cluster because the new implementation oo ’ ’ L e
will have area larger than or equal t + Ayn, Which is (18)

larger thanAcia. The bound at output, is obtained by changing the index 1
After M, and M> have been computed, we can use botfy »

area and timing to further reduce the solution space that ha%i'ven two consecutive input patterb@ndit, the formula

to be explored by (5). We caltyiy,: the minimum area jnsige the outer parenthesis expresses éhawitches regard-

of any match inM,. All matches in M, such that area gss of the target function, as long as it satisfies the Boolean

Az 2 Aqa — Amin,1 can be pruned because the total arg@jation. The Boolean relation gives such degrees of freedom

of a solution involving them is certainly larger thafq. The hat o1 could switch or not switch under theame input

same reasoning can be done fak, A;, and An, 2. patterns, depending on the choice of the target function. To
Example 8: Consider the example in Fig. 13. The graplyet the minimum transition probability given by the Boolean

shows the cost of all solutions ii/;. The z-axis corresponds relation, we express that may switch under two given input

to the solutions, and thg-axis to the area cost. The cospatterns (first term), and under these same patterns, there is no

2.5 is the original cost of the cluster (for both outputsfepresentation where it coultbt switch (second term).

before remapping. We assume that the minimum cost forThis value makes a bound on the transition probability at

M (not shown) is one. We can prune all solutionsy the outputs, regardless of the cell representatives.

that have a higher cost thah5 — 1 = 1.5 without loss of ~ Example 9: Boolean relation is displayed in the truth table

optimality because these solutions will lead to a higher cosh Fig. 14. A valid representative fof is g; = ,4-. But the

than the original implementation of the cluster. The gray aréanction g» = 71 may also be a representative. We assume

corresponds to the solutions that we can discard. We keep otilgt the input probabilities aré?, = {0.5, 0.5, 0.5} and

the solutions of; in the black area. P, = {0.5, 0.5, 0.5}. The transition probability at; usingg;

cost

Fig. 13. Bound on the partial solutions.

BENINI et al: ITERATIVE REMAPPING 959

i1inis 0102 Elix:;nateﬁxpen:];;;(;;lols (clusterF, bddBR)
other_pow = ;
000 {10,01, 00} /* Adds the minimum power at the outputs */
001 {11} foreach (o € outputs (clusterF))
other_pow += getmin_tp (bddBR, o) * cap (o);
010 {11} P & P ?
/* Adds the power contribution of C°t"¢™
011 {11} foreach (i € inputs (clusterF))
100 {10’01700} other pow += get_cap other (i, clusterF)*get node tp(i);
101 {11 01} sorted_tps = sort_increasing (input_tps);
’ foreach (cell € library) {
110 {10, 01, 00} min_pow = other_pow;
sorted _caps = sort_decrsasing (cell_cap);
111 01,00 € P

min_pow.in = sum_products (sorted_tps, sorted_caps, &next_tp);
/* min_input_cap is the smallest input capacitance in the library */

Fig. 14. Boolean relation for a cluster with three inputs and two outputs.

min_pow = min_pow_in + min_input cap (library) * sorted tps[next_tpl;
if (min_pow > orig_pow)
eliminate cell (cell);
}

is 0.375, and using is 0.5. We see how the transition may be
different for 0; according to the representative. For examplé&ig. 15. Algorithm for computing the bound on library cells.
under the two consecutive input patterns (001, 169)may

stay at one or switch. The bound on the transition activity d§yputesre10ptinize(clusterF, Network)

reached here fODl _ W With this implementation, the neighborhood = ComputeNeighborhood{clusterF, Network)

bdd_rel = make boolean relation (neighborhood, clusterF)

transition activity is 0.218, as computed with (18). No cellc = compute control variables according size of c1us(terF>
. . oy .. d_ = _ ient f ion_with._: b d

representation can yield a lower transition activityoat o e of matehine saeon® por omtmat of e e

The bound takes into account the input capacitance as weffreach (o € outputs (clusterF)) _

. bddm_onlyf{o] = compute matching function (o, bdd.quot);
Without considering the functionality of the cell, we want tO /« bounding with area and timing comstraints */

5 reach (o € outputs (clusterF))
express a lower _bound_ on the power consumed to drive t_hfébdujnly[o] P ound atth aran (clusterF, bddmonly(]):
inputs of any cell in the library. We assume that for each cell in vadn_on1yle] = bound.vith tining.constraint (clusterF, bdd.monly)
the library, the functionality that can be obtained by shorting ¥ {ya¢» onialel == N1t)
two inputs of the cell is a|ready more efﬁcienﬂy imp|emented} bdd.xed.quot{0] = compress._quotient function (bdd.quot, bddm_only[ol)
by another cell with less inputs. Consider a gellvith iNnpUtS taam = compute matching function (clusterF, bdd_red.quot[l)
I (i . bddm = timing _comnstr (bdd.m)

capaqtances sorted decreasmgprder{cl, 02,_ , Cub If i pest — ek bont aes (b, add.area)
cell pins could be connected with any cluster input, regardless 1 the case of one the thres function fails:
of functionality, the minimum-power connection would belp m2fh: oF vielation of <he vining. of no best ares

than the current implementation */

C1P+CoPo+C5Pas+- -+, where{P,y, Py, ---, P} are ifrisi:;b“&“n;:_ NIL)
the transition probabilities of the inputs sortedifftreasing /s puts the bdd best in ‘readable’’ form, i.e. returns in bestmatch
order. This is theminimum possiblgpower consumed at the g::tf;:jcg“j":;;;‘:efb*:’stP;’i‘ni‘;’;‘:C(S;;’j:e:;h" than a bdd +/
inputs of this cell for any input permutation. return (best match);

We add to this bound the minimum power at both outputg; 16 aigorithm of the matching step.
as computed in (18). We do not know what is the other
cell selected for the cluster, and therefore what is the power o
consumed at its inputs. So we sum to the bound the b&®plementationorig _pow. If the bound is higher than the
case, usually an inverter because it has only one connectiBfiginal implementation, we can discard the cell.
and its power contribution is very low. If this bound is Notice that this bound is very conservative because we
larger than the original power value, i.e., the power of tHg® Not want to compromise the optimality of the solution.
original implementation, we can discard the cell. We see her@rtunately, it gives the opportunity for discarding on average
that the effectiveness of the bound depends highly on tR8% Of the cells in the library, at a very low computational
quality of the original implementation. However, if the originafOSt- This result is important because it improves the overall
implementation is of bad quality, we can use a tighter valfn time of the algorithm. .
as the original value in a first pass, get a suboptimal solution, 1€ cost ofEliminateExpensiveCells ~ is mostly due
and run again by releasing the tighter value. to the computation ofjet _min _tp , which is itself in the

The algorithm for computing the power bound is represent@§der of the size of the Boolean relatididBR. Since the
in Fig. 15. We first compute (imther _pow) the minimum BDD representation of this relation is very small (the BDD has

power contribution at the outputs and at the inputs for Capproximately ten variables), the overall cost of the procedure

pacitancesC°™*r of cells going out of the cluster. Then,’S small

for each cell, we compute the minimum power that we can

find at the inputs of this cellmin _pow_in . We first sort _)

the capacitances, thesum_products computes the sum D- The Complete Matching Algorithm

C1 Py + CoFyy + C3P5 + -- - as described above. We add Having described all subtasks involved in performing

to the minimum power for a cell the minimum power that weninimum-cost constrained matching, we conclude our
can find at the input of the other cell composing the clusteanalysis by describing the complete matching algorithm. The
The latter is the minimum capacitance found in the librangseudocode of the minimum-area constrained GM algorithm
times the next transition probability in the order defineds shown in Fig. 16. The minimum-power version of the

We then compare this bound to the power of the originalgorithm has similar structure.

960 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 10, OCTOBER 1998

The algorithm first finds the neighborhood of the clustgrerformed, we continue the optimization on the new critical
function and computes the Boolean relatibdd _rel , as path. Otherwise, remapping terminates.
seen in Section lll. Then the quotient functions are con- Since the total number of clusters generated (and of at-
structed disregarding the library cells whose cost cannot inrempted GM’s) in one pass on the critical path is usually not
prove the current solution, as seen in Section IV-C. Theery large, we can afford to attempt aggressive optimization:
single-output matching functions are then computeadttny- the size of the neighborhood for extracting Boolean relation
pute _matching _function and pruned using area boundsF is increased, and clusters with more than two outputs can
and timing constraints, as discussed in Section IV. The quoe attempted.
tient functions are then compressed using the conservativéDuring generalized matching, we use only the bound ob-
bounds, and the new, smallbdd _red _quot are used for tained from the delay of the initial implementation. There
performing full generalized matching on the reduced searhno other bound on the quotient function like for area or
space. power (where we could bound on constraints and cost) because

The resulting matching function is then pruned using timinge do not have any secondary cost function. Fortunately,
constraints: in functiortiming _constr , all solutions vio- computation times are not degraded because i) we perform
lating the constraint are eliminated. Finally, the cost functiom smaller number of matches and ii) the netlists we start with
is applied and the subset of the ON-set/Mf(c) containing are already optimized for speed; hence, the delay bounds are
minimum-cost solutions is obtained. The matching algorithosually tight.
then “decodes” one of the minimum solutions and returns The goal of timing optimization is to increase the maxi-
the cells and the input assignments for replacement. Nihhum slack at the outputs of the cluster. The flow of timing
is returned if there are no solutions improving the curremiptimization can be summarized as follows: we first compute
mapping of the cluster. the arrival times of each output with the procedure employed

Several performance-enhancing features complicate theial-the previous section for the computation of timing con-
gorithm. What is shown in Fig. 16 is a simplified version. Fostraints. Slacks are computed by subtracting arrival times to
example, caching of previous ADD and BDD computationsquired times. The computation is performed symbolically
is heavily exploited (not only the simple caching mechanismsing ADD’s. Given the ADDS L(c) of the minimum output
provided by BDD packages), an advanced algorithm has bedacks as a function of the inputs and cell assignments, the
implemented for the compression 8f (c) after bounding, maximum speed assignments are the values tfat lead to
and several corner conditions are flagged to speed up the maximum leaf ofSL(c).

computation of trivial cases.
VI. RESULTS

We have implemented a postmapping optimization tool
based on generalized matching. The tool reads a mapped
The speed of a circuit is an intensive quantity. In timingircuit described irblif ~ (or slif) and a library file and runs
optimization, the goal is to minimize the critical path of thehe optimization. Several user-controlled parameters can be
circuit. Thus, we need to consider only the gates that are specified. The depth of the neighborhood can range from zero
the critical path. The simplest optimization strategy is to builth infinity. Specifying a depth of zero reduces the neighbor-
clusters with sets of gates in the critical path (i€rtical hood to the cluster, while depth of infinity means that the entire
gate9. However, we want to consider also gates that are rlogic network is taken as neighborhood. The latter choice is

in the critical path. In this case, what ideally we would likeof course only conceivable for small circuits.
to do is to “borrow” some delay from noncritical gates that The number of outputsV, of a cluster can be also con-
have some delay slack. trolled. We made experiments with up to four outputs. The

A good search strategy is to define clusters including atimber of inputs¥; of a cluster can be controlled as well.
least one critical gate and one or more noncritical ones. Thisually they are assumed to be the inputs of the cells imple-
cost function tries to minimize the delay of the gate(s) in thmenting the cluster in the original mapped netlist. However,
clusters that are on the critical path while satisfying the timingdditional input can be added taken from nodes in the neigh-
constraints on the other gates (i.e., ensuring that the noncritibarhood. With this simple modification, we can exploit the
gates do not become critical). power of generalized matching to perform local rewiring.

The algorithm for traversal and cluster generation is briefly We can also change the cluster selection algorithm to
outlined. We first mark all critical gates. Then, for eackelect arbitrary sets of nodes as clusters. Experimentally,
multiple fanout point among either the inputs or the outputse observed that this is much less effective than starting
of critical gates, we construct clusters as in Section Il and wem multiple fanout points, mainly because traditional logic
apply GM. Last, we construct all possible clusters containirgptimization is already effective on fanout-free cones.
pairs of critical gates and apply GM. A generic cost function has to be a function returning an

After each successful matching (i.e., a matching that reduc®®D whose support are the control variables and leaves are
the delay for a gate on the critical path), we do not recomputee cost values. Of course, a new bounding function may be
the critical path, but we move to other critical nodes. Thiategrated with the new cost function. All the experimental
critical path is recomputed after all critical gates have beatatements in this paper rely on the fact that we can easily
traversed. If at least one successful replacement has baere cost functions and bounds.

V. TIMING OPTIMIZATION

BENINI et al: ITERATIVE REMAPPING 961

Memory optimization is the primary concern in the imple- TABLE |
mentation. The tool employs th@udd BDD package [20], RESULTS ON MCNC BENCHMARKS
which provides a rich set of operators on BDD's and ADD’S "Bench | gates n spec% -0 R T
and powerful memory management and caching features—z; P T3 e T e
We set up a memory limit of 1000000 BDD and ADD b9 110 7.04 5 6.95 7 1550 | 5
T . . . terml 179 0.47 12 8.42 27 14.12 26
nodes. When this limit is reached, the matching function exits ¢432 181 269 1 6.60 14 1335 | a7
i i 9symml 204 3.72 17 9.18 18 21.80 12
with ,the valueNIL and the t.rayersal contlnues..When the v o o . el se pbodll
BDD’s exceed the memory limit, the program simply frees x4 364 1.36 5 4.29 10 1598 | 10
C499 365 20.76 31 25.96 69 32.04 10
the mempry and moves on. . . C880 377 6.34 45 6.59 29 12.42 | 64
Extensive tests demonstrated that bounding is necessarg1908 508 548 | 46 14.68 | 88 15.88 | 54
. . . . C1355 524 6.48 89 16.97 15 15.77 53
and effective. Without any bounding, the memory threshold iSoo 1arge | 573 192 21 5.31 37 1603 | 27
often reached when the number of inputs of the cluster is larger Xi ggi’ ;(1)‘; ;(1) ?g‘l’ g(l] iigg gg
. . . IO . . .
than eight. With bounding, we are below the threshold for up to apexs 691 384 | 33 419 | 24 13.63 | 30
H : : : : alu4 697 6.66 72 8.58 45 16.15 149
12 inputs. The compression of the maFchmg funcyons using ¢ 774 578 04 o 47) o153 | 20
single-output matching as a conservative bound is probably vda 781 || 10.59 | 41 21.25 | 104 || 34.78 | 108
- . s . 4 . 4 . .
the most useful algorithmic optimization. The size of the PsoicaN I | G B | Rt IS GO [IS
uncompressed quotient functions makes it very difficult even dalu 966 1.96 24 7.30 | 76 20.28 + 75
. . k2 1212 4.88 45 6.04 117 10.33 142
to match two-output clusters, but the algorithm using separatecssao 1344 5.54 92 11.15 | 142 || 1920 | 156
i i i air 1480 3.70 64 5.88 96 18.48 74
match!ng and compression greatly increases the percentage fax | 2050 | S50 1 2 | 33 1 o0 e | e
matchings that can be successfully carried out. des 3621 || 5.06 | 241 505 | 289 | 12.54 | 495
H : F : C7552 3716 9.45 306 29.55 417 38.14 268
By using the aforementloned optimization, two-output Seoocc | Ja7s il 093 | 341 || 2470 | ss7 || 3185 | 279
matching can always be carried out, whereas three-outpufTotal 6.05 13.71 22.39

and four-output matching succeed in 60 and 40% of the cases,

respectively. Obviously, for clusters with four or more outputs,)) o
the gain brought by extending the size of the cluster is lost We have experimented our tool with a set of combinational

because of the frequent memory blowup. To improve thCNC’gl benchma_rks [12_] i_ncluding all Iarges’t Ones. Th_e
chances of success for three or four outputs, we implemen ednchrrw_arks were 1_‘|rst optimized with Berl_<e_|eys Sequenpal
tighter bounds that allow further compression of the quotiemter"’wt've Synthesis (SIS) system [6] for minimum delay with

functions but imply the loss of some potentially advantageoagea recovery, with scripicript.delay followed by the

. . . . apping commandnap -n 1 -AFG.
:gﬁf::;?fé \t;\cl)ir?;s not describe the implementation of Sugil]We used a library based on an industrial technology file,

with 75 cells, with up to five inputs. All two-input functions

To further improve efficiency, we use special caching of there available, as well a®aND andNOR gates with higher fanin.

intermediate results. We cache the quotient function and, in @Smeand-or-invert, or-and-inverand multiplexer gates are

ca;es where the ”.‘atCh'”g fails, the intermediate BDD's of t.tl]r?cluded. Two different sizes are provided for each two-input
nelghborhood. This caching speeds up.the °Ver'f‘” match| I. Three sizes are available only for inverter and buffer.
and marginally affects memory consumption. Caching IS USEHY o library is rich in functionality but relatively poor in sizing

to speed up both the network traversal and the matching |ts%l tions. This choice was made for stressing the capability of
Traversal is faster because cases were GM is not productive aig ¢, finding new functional matches more than choosing

not retried. Matc_hing is faster because several partial res“é@od resizing options (specifically targeted tools are available
are often found in cache and can be reused. for this task).
The BDD variable ordering has been set after extensiveq 1 tool was run with the same parameter settings on

experimentation. We use a fixed variable order that minimizg§ penchmarks in an effort to demonstrate robustness and
the BDD peak size, regardless the intermediate results siggnerality. We ran the matching algorithm on clusters of two
The order is the following. The control variables of the inpu,tputs, with the neighborhood search limited to a depth of
multiplexers in the quotient function pin are at the bottonjhree. The number of inputs of the cluster was limited to
preceded by the input variables, the output variables, afgh Although our technique is ideally suited for matching
the library selection variables. Different orders lead to BDIhyltioutput cells, typical libraries do not include many such
blowup with high probability. Automatic reordering is not &cells. Hence, we decided to study the impact of our technique
good solution because it can destroy the good ordering fi a library containing only single-output cells. The quality of
reduce the size of intermediate results and it often cannge results should increase if a library with many multioutput
recover a good ordering when the peak in BDD size is reacheglls is employed.

Our goal was to be able to show a practical realization We show in Table | the results on all the MCNC benchmarks
of the remapping procedure. Therefore, we implemented tfeg speed, area, and power optimization. The starting point was
algorithm targeting robustness and conservatively set the pide same for all optimizations, namely, the circuits mapped by
rameters to avoid failure even in corner cases and produ8ks. The table gives for each benchmark the number of gates,
results in a reasonable amount of time. Needless to say, witle percentage gain, and the run time in minutes (on SPARC20
this choice we gave up some optimality. with 256 Mb of memory) for each kind of optimization. The

962 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 10, OCTOBER 1998

TABLE 1l TABLE 11l

TRADEOFFS IN OPTIMIZATIONS RESULTS FORMULTIPLE-OUTPUT CELL MATCHING

Bench timing opt area opt power opt Bench area (< 3 inp.) | area (< 5 inp.)
power area power area z4ml 3.21 3.85
z4ml 2.22 3.30 11.50 0.40 b9 0.0 2.62
b9 3.28 4.57 5.38 4.01 terml 1.82 2.72
terml 0.14 0.51 5.28 2.08 C432 0.0 2.06
C432 0.71 -0.48 -5.46 2.89 9symml 0.0 5.34
9symml -0.84 0.40 10.48 5.04 alu2 0.0 4.21
alu2 1.35 2.69 9.63 6.27 x4 0.21 2.30
x4 -0.09 -0.00 11.66 2.27 C499 1.85 5.53
C499 5.85 13.59 12.81 12.68 C880 0.0 2.91
C880 0.60 1.06 -7.25 2.74 C1908 2.81 4.19
C1908 0.54 3.57 -5.67 3.34 C1355 4.30 5.14
C1355 4.06 5.06 12.14 10.78 too_large 1.02 1.34
too_large 0.18 0.41 3.91 1.03 x3 1.51 2.39
x3 0.07 0.07 0.34 1.14 rot 1.11 2.04
rot 0.27 0.35 1.72 3.90 apex6 0.0 1.72
apex6 0.35 0.17 1.68 0.62 alu4 0.0 4.57
alu4 1.36 2.39 6.29 4.74 frg2 1.35 4.75
frg2 0.87 1.28 17.18 4.41 vda 3.61 5.26
vda 0.65 2.15 25.39 12.22 t481 1.61 2.71
t481 0.76 2.40 10.15 5.03 C2670 0.0 5.46
C2670 0.39 0.36 -1.82 3.76 dalu 1.79 3.65
dalu 0.14 0.12 9.22 2.36 k2 2.0 2.53
k2 0.40 1.55 -1.95 -2.00 C3540 2.08 3.47
C3540 1.50 2.38 6.35 4.54 pair 1.57 3.03
pair 0.30 0.84 2.32 1.22 C5315 1.13 2.31
C5315 0.37 0.69 -9.80 0.92 des 1.02 1.98
des 0.29 1.02 4.98 2.20 C7552 4.93 6.38
C7552 0.69 0.94 27.67 20.19 C6288 4.33 6.60
C6288 6.70 7.27 17.53 14.73 Total 1.50 3.70

Total 1.60 2.32 9.70 7.05

The last column gives the change in area when power is
last line gives the average gain for each optimization. In thgrgeted (again, speed is the constraint and no tradeoffs are
average, the gain is weighted by the size of the circuit. zllowed with it).

We observe an average gain of 6% in speed, 13.7% in areaye observe that delay optimization leaves area and power
and more than 22.3% in power. For area and power optimiZzamost unchanged. This result is intuitive, since delay opti-
tion, the critical path of the circuit has been constrained {@jzation focuses only on the critical path, which is usually a
remain the same as the original circuit: no tradeoff has begmall fraction of the entire circuits. Only two benchmarks have
allowed between the delay constraint and the (area/power) cgstincrease in area or power, and for these two benchmarks,
function. the delay is only marginally reduced. We observe also that,

When looking at the results on a benchmark-by-benchmark general, area is not traded off for power and vice versa.
basis, we observe that the quality of the optimization achievgg general, area decreases when doing power optimization,
is consistent when the cost function is changed. This phgnd power decreases when doing area optimization. This is
nomenon can be explained by the fact that some benchmaglkpected, since power is in first approximation the product
have many MFP’s and reconvergent fanout cones. Both theg@ween area and switching activity; hence, it is related to
characteristics increase the effectiveness of our optimizatigrea.
tool. Notice also that very good improvements are obtainedOne last set of experiments was run to estimate the potential
for the largest benchmarks. We conjecture that the glohsfl GM for matching multiple-output cells. Industrial libraries
optimization of SIS is less efficient for large benchmarks, amb not usually include many multiple-output cells; hence, we
remapping can recover a big fraction of the optimality loss.built two test libraries with the following characteristics. The

The run times of the remapping tool are shorter (but on thigst library includes two-output cells with two or three inputs.
same order) than those spent by SIS in technology-independenése cells are functionally equivalent to pairs of single-output
and technology-dependent optimization. Most of the time &lls with one or two inputs that share one input. The second
spent in building the matching function and in universdibrary contains two-output cells with five to three inputs,
quantification of the variables. The average time of a singlhich are functionally equivalent to pairs of single-output cells
match is on the order of the tenth of a second with thigith three or less inputs that share one input. Each multiple-
machine configuration. The percentage of successful matchmstput cell is assumed to occupy 20% less area than the total
i.e., matches that find a better solution, range from 5 to 10%rea occupied by the two equivalent single-output cells. The

Table Il provides detailed information on the tradeoff inarea reduction represents the expected savings achievable by
volved in the optimization process. The first column contairtareful layout of two merged cells.
the benchmark name. The second and third columns giveRemapping was performed with the new libraries. Results
the percentage change (positive if gain, negative if loss) &me summarized in Table Ill. Column 2 reports the percentage
area and power, respectively, when doing unconstrained detaga savings obtained with the first library with respect to the
optimization. The fourth column gives the percentage changenimum-area implementation of Table I. Column 3 reports
in power for area optimization (no change is allowed in speedhe savings obtained using the second library. Apparently,

BENINI et al: ITERATIVE REMAPPING 963

our tool is capable of fruitfully exploiting multiple-output average power estimates are within a user-specified interval
cells. On the other hand, the first library contained 50% mood confidence [28]. While there is no dispute in recognizing
cells than the original one, while the second library containglde better accuracy of statistical method, the most discordant
approximately twice the number of cells as the original onelaims have been made about efficiency issues.
This is a significant overhead if cells have to be hand designedVe take an intermediate position based on the observation
one by one. If this is the case, the additional area savinggt probabilistic methods are not robust enough to deal
may not be sufficient to justify the investments required twith general and large networks, but they are substantially
develop the library. In summary, our results indicate that GRaster than statistical methods on small circuits. Our power-
can make good use of multiple-output cells, but the advantagesgimation engine is based on a hybrid approach. We use a
are incremental. statistical technique to obtain accurate power estimates on the
entire network, then we employ fast local estimates based on
VII. CONCLUSIONS a probabilistic method in the inner optimization loop.

Power estimation is needed during two phases of the remap-

Xlnl ;Plsthpap?,:/, rwi E;’)roros:? Iatir?]m?pplntgijm?zppro?r::h ¢ ?Lng process. First, it is needed for computing the signal
EXPIOILS the pOWer of Boolean retations o op € @ MabPPeYopabilities and transition activities for the entire network.

netlist under tight constraints. Our main objective is to buil econd, it is required to test the validity of the local remap-

a powerful, robust, and efficient optimization tool that can beIngs performed during optimization. In Section IV-B2, we

applied to large circuits. We have presented the theoret'%%lmputed the power cost function assuming that the inputs

foundation of our approach and several algorithmic 'MPrOV&: e cluster were uncorrelated and a change in the transi-

21eenetz that are needed to achieve the targeted rObUStnesst|"?13nndactivity of the cluster outputs does not have significant
peed. consequences in the fanout gates within the neighborhood.

The core remapping engine is based on generahzﬁ%ither of these assumptions is verified in the general case;

matching, a Boolean matching technique that enables X .
consequently, we need to check a remapping with more

concurrent mapping of multiple-output logic networks L .) .
specified by Boolean relations a broblem. that has rz;icc):curate power estimation. We call this stepimulation
Fr)eviousl Iz/nown solution. We ’havep extended basic G The computation of signal probabilities and transition activ-
P y. .' L : Ii{lles for the entire network is performed using a Monte Carlo
to deal with cost function minimization and constrain . . !

. . - : approach [28] based on bit-parallel simulation (BPS) [27].
satisfaction, and we proposed an efficient algorithm for thIeﬁe efficiency of BPS is high: we could simulate thousands

exact solution of the extended GM problem. .
: of patterns for our largest benchmarks in a few seconds.
We tested the effectiveness of our approach on a large :
imulation time grows linearly with network size. Patterns

set of benchmarks. The results show that our optimizatiof alternatively, probabilities and transition activities can be

or
ecified for the inputs. The Monte Carlo stopping criterion

tool can reduce the area by more than 13.7% in averaggé
or reduce power by more than 22.3% without any speé . . :
Cﬁm be overridden by the user, and full simulation of a pattern
e can be performed.
i be perf d

o . . .
(more than 6% average speed improvement is achieved). Resimulation was implemented using BDD-based proba-

optimization is performed starting from mapped circuits th"?rl)tllistic technigues. Remember that the functionality of the

have been optimized using trad|t|9nal technology-lndepend%rgtwork is unchanged outside the neighborhood of a clus-
and technology-dependent techniques.

ter when a remapping has been performed. Hence, we can
resimulate the neighborhood alone to check that the power
APPENDIX saved in the remapping is not swamped by the effect of
POWER-ESTIMATION ENGINE remapping on fanout gates within the neighborhood. Since
Power estimation is obviously a prerequisite for powedhe neighborhood is a small fraction of the entire network,
optimization. Unfortunately, there is no complete agreemeBDD-based probabilistic power estimation is performed in a
in the literature on what type of power-estimation engineery short time [24]. It is important to notice that resimulation
should be used during logic optimization for driving the choicdoes not take into account the correlation at the inputs of the
of transformations and checking the final results. There gighborhood; thus, it is not as accurate a global simulation in
some consensus on using zero-delay power estimates dudstimating the effects of a remapping (but it is much faster).
optimization. Although glitch power is neglected, it has been After implementing the resimulation engine, our experi-
observed that zero-delay estimates provide reliablative ments revealed that the estimated power savings computed
power information In other words, they can be used to chooday the cost function were extremely close to those given by
among alternative implementations. resimulation. This was a surprising discovery, since it has been
On the contrary, the choice of which approach is to be usetimed that local modifications may have effects on the power
to obtain zero-delay estimates is still a controversial issug.the transitive fanouts [29]. Suspecting a bug in our resimula-
Two classes of methods have been proposed. Probabilisiims, we actually ran a set of computationally expensive tests.
methods avoid multiple simulations by propagating probabilitye applied remapping to several benchmarks, and after each
values in one single pass through the network [24]-[2&uccessful cell replacement, we simulated entire network
Statistical methods rely on traditional simulation and defingsing BPS. The surprising results are shown in Fig. 17.¢Fhe
stopping criteria based on sampling theory to decide when theis shows the power differenceB.fie: — Phetore), While the

penalty. Unconstrained speed optimization is effective as wi

964

o T T T T T T
alobal simuiarion ~—
“ost function ---

[12]

[13]

[14]

Power estimate

1 s

1 [18]

[17]

Matshings

Fig. 17. Power cost function versus simulation.

(18]

z-axis shows the cumulative number of matches. Matches are
ordered for increasing differences. Two curves are plotted: thlé)]
power differences predicted by the cost function and those
actually measured by full BPS simulation. The reader cd#’!
observe that there is almost perfect agreement. This plot wag
obtained performing a large humber of remappings, and it is
consistent across our benchmarks. 22]
It appears that the cost function is very accurate in esh—
mating power savings and losses, and resimulation is actually
not needed. Although it is implemented and functional, l53]
was not used in our runs. Nevertheless, to protect ourselyeg
against pathological cases, we perform global BPS simulation
every few remappings (usually ten). If power is increased, thg;
remappings can be undone. We conjecture that this event is
extremely rare: it never happened in our tests. [26]

ACKNOWLEDGMENT 271
The authors would like to thank F. Somenzi for providing

the Cudd package. [28]
REFERENCES

[29]
(1]
(2]

(3]

F. Somenzi and R. K. Brayton, “Minimization of Boolean relations,” in
Proc. IEEE Int. Symp. Circuits and Systeray 1989, pp. 738-473.

R. Brayton, G. Hachtel, and A. Sangiovanni-Vicentelli, “Multilevel logic
synthesis,”Proc. IEEE,vol. 78, pp. 264-300, Feb. 1990.

M. Damiani and G. De Micheli, “Don’t care set specifications in
combinational and synchronous logic circuitt#EE Trans. Computer-
Aided Designyol. 12, pp. 365-388, Mar. 1993.

[4]
network optimization,” inProc. Int. Conf. Computer-Aided Desigkpv.
1991, pp. 514-517.

L. Benini and G. De Micheli, “A survey of Boolean matching techniques
for library binding,” ACM Trans. Design Automat. Electron. Syso).
2, no. 3, pp. 193-226, July 1997.

(5]

(6]

Patrick Vuillod
E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton, and Alngénieur ENSIMAG, Grenoble, France, in 1993 and the master's and Ph.D.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 10, OCTOBER 1998

J. Mohnke and S. Malik, “Permutation and phase independent Boolean
comparison,”Integration, VLSI J.pp. 109-129, Dec. 1993.

K. Cheng and L. Entrena, “Multi-level logic optimization by redundancy
addition and removal,” irProc. Eur. Conf. Design Automatioreb.
1993, pp. 373-377.

W. Kunz and P. Menon, “Multi-level logic optimization by implication
analysis,” inProc. Int. Conf. Computer-Aided DesigNov. 1994, pp.
6-13.

B. Rohileisch, B. Wurth, and K. Antreich, “Logic clause analysis for
delay optimization,” inProc. Design Automation Conflune 1995, pp.
668-672.

S. Chang, L. Van Ginneken, and M. Marek-Sadowska, “Fast Boolean
optimization by rewiring,” inProc. Int. Conf. Computer-Aided Design,
Nov. 1996, pp. 262—269.

K. Keutzer, “DAGON: Technology binding ant local optimization by
DAG matching,” in Proc. Design Automation ConfJune 1987, pp.
341-347.

Y. Watanabe, L. M. Guerra, and R. K. Brayton, “Permissible functions
for multioutput components in combinational logic optimizatiolsEE
Trans. Computer-Aided Desigmpl. 15, pp. 734-744, July 1996.

R. Bahar, E. Frohm, G. Gaona, G. Hachtel, E. Macii, A. Pardo, and F.
Somenzi, “Algebraic decision diagrams and their applicationsPric.

Int. Conf. Computer Aided Desighlov. 1993, pp. 188-191.

F. Somenzi,The CUDD Package User's Guidegersion 1.0.5, Nov.
1995.

S. Yang, “Logic synthesis and optimization benchmarks user guide
version 3.0,” Microelectronics Center of North Carolina, Research
Triangle Park, NC, Tech. Rep., Jan. 1991.

C. Tsui, M. Pedram, and A. Despain, “Power efficient technology
decomposition and mapping under an extended power consumption
model,” IEEE Trans. Computer-Aided Desigwol. 13, pp. 1110-1122,
1994.

Synopsys, Inc.Power Compiler User Manuakersion 3.5, 1996.

R. Marculescu, D. Marculescu, and M. Pedram, “Logic level power
estimation considering spatiotemporal correlations,Pmc. Int. Conf.
Computer Aided Desigrl,994, pp. 294-299.

T. Chou, K. Roy, and S. Prasad, “Estimation of circuit activity consider-
ing signal correlations and simultaneous switching,Pioc. Int. Conf.
Computer Aided Desigr 994, pp. 300-309.

P. Schneider, U. Schlichtmann, and B. Wurth, “Fast power estimation
of large circuits,”|EEE Design Test Comput. Magol. 13, pp. 70-78,
1996.

P. Schneider, “PAPSAS: A fast switching activity simulator,”Rmnoc.
Workshop Power and Timing Modeling, Optimization and Simulation,
1995, pp. 350-360.

R. Burch, F. Najm, P. Yang, and T. Trick, “A Monte Carlo approach
for power estimation,IEEE Trans. VLSI Systvol. 1, no. 1, pp. 63-71,
1993.

C. Lennard and A. Newton, “On estimation accuracy for guiding low-
power resynthesis,JEEE Trans. Computer-Aided Desigmol. 15, no.

6, pp. 644-664, 1996.

Luca Benini (M'98), for a photograph and biography, see p. 232 of the
H. Savoj, R. Brayton, and H. Tuati, “Extracting local don’t cares foMarch 1998 issue of this RANSACTIONS

received the computer science engineering degree from

Sangiovanni-Vincentelli, “Sequential circuits design using synthesis af@grees in computer science from INPG, Grenoble, in 1994 and 1997,

optimization,” in Proc. Int. Conf. Computer DesigrQct. 1992, pp.
328-333.

F. Brown,Boolean Reasoning.Norwell, MA: Kluwer Academic, 1990.
G. De Micheli, Synthesis and Optimization of Digital CircuitsNew
York: McGraw-Hill, 1994.

W. Kunz and D. Stoffel,Reasoning in Boolean NetworksNorwell,

MA: Kluwer Academic, 1997.

R. Bryant, “Graph-based algorithms for Boolean function manipulation,”
IEEE Trans. Computyol. C-35, pp. 677-691, Aug. 1986.

F. Mailhot and G. De Micheli, “Algorithms for technology mapping

(7]
(8]

(9]
[10]

[11]

respectively.

He has worked in Grenoble in research and development for IST in
cooperation with INPG-CSI. He currently is with Synopsys-Epic, Gieres,
France. His current research interests are in logic synthesis and synthesis
for low-power systems. His previous works were on high-level description
languages and synthesis for FPGA's.

based on binary decision diagrams and on Boolean operatiFiEE ~ Giovanni De Micheli (F'94), for a photograph and biography, see p. 232 of

Trans. Computer-Aided Desigapl. 12, pp. 599-620, May 1993.

the March 1998 issue of thisSRERNSACTIONS

