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Abstract

We present a tool that automatically generates a run-time
scheduler for a target architecture from a heterogeneous
system-level specification in both Verilog HDL and C. Part
of the run-time scheduler is implemented in hardware, which
allows the scheduler to be predictable in being able to meet
hard real-time constraints, while part is implemented in soft-
ware, thus supporting features typical of software schedulers.

We describe the tool flow and target architecture, synthests
of the control portion of the run-time scheduler in hardware,
and control of the software using interrupts. Finally, we con-
clude with a sample application of the tool to a robot design
example.

1 Introduction

Approaches to hardware/software co-design of embedded
systems [2] can be differentiated in several ways. One way is
to consider the system-level specification, which is either ho-
mogeneous (i.e., in a single specification language) or hetero-
geneous (i.e., involving multiple modeling paradigms). An-
other way is to distinguish how the CAD tool partitions the
system specification: approaches consider either fine-grained
partitions, i.e. at the operation or basic block level, or coarse-
grained partitions, i.e. at the process or task level ([4] de-
fines granularity in a slightly different way). For example,
[3, 5] can be classified as homogeneous and fine-grained ap-
proaches, while [6, 7] are heterogeneous and coarse-grained,
which is the approach we take in this paper.

There has been much previous work in partitioning {5, 7, 2].
However, system designs modeled by heterogeneous specifi-
cations are often already partitioned into modules or tasks.
Whereas some optimality is lost in using a coarse granu-
larity in partitioning, the resulting implementation is often
closer to what designers expect, and interfacing hardware
to software blocks is easier. We assume the availability of
automated interface generation similar to [8, 7).

The sequence of hardware and software tasks can change
dynamically in complex real-time systems, since such sys-
tems often have to operate under many different conditions.
For example, a robotics system which comes into contact
with a hard surface may have to change its force control al-
gorithm, along with its attendant sensor set, estimators, and
trajectory control routines. Therefore the scheduler must be
dynamic.

In hardware-software codesign an important problem is the
management of software routines and their coordination with
hardware. A clear and easy solution is te put the run-time
system in software and suitably design the hardware such
that it can be controlled from the software. Unfortunately
software schedulers may not be predictable as far as being
able to satisfy real-time constraints. Therefore we implement
the time-constrained portion of the scheduler in hardware,
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where delays are accurately known. This paper presents a
strategy for a mixed implementation of dynamic real-time
schedulers in hardware and software.

2 Motivation and CAD Requirements

We aim at supporting system-level design with hardware and
software tasks custom written for a target architecture. We
assume that system requires both static scheduling, espe-
cially in the coordination of the hardware components to
meet real-time constraints, and dynamic scheduling (given
the inexact delay of software). A run-time scheduler must
meet both of these scheduling requirements. Qur tool, called
SERRA, automates the generation of the run-time sched-
uler, thus providing for the synchronization and scheduling
of system-level components in hardware and software.

Our approach assumes a coarse-grained partition of the sys-
tem to be implemented into medium sized components called
tasks. A typical size of a task is around 50 to 200 lines of
Verilog or C; however, the only limit on task size depends
on the high-level synthesis tool or compiler chosen. SERRA
automates the generation of a run-time scheduler to manage
concurrent tasks executing in hardware or software. We refer
to the former as hardware-tasks and the latter as software-
tasks. Thus, SERRA provides the user with the ability to
evaluate the performance of different partitions with an au-
tomatically generated run-time scheduler (system).

As a motivational example, consider a set of control laws
used to calculate appropriate torques for a robot arm.
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Figure 1. Robotics Example: Concurrent Control Laws

We assume that the controller manages two arms at the
same time, and thus any two of the laws may be selected



in each execution. An execution of the arm controller must
complete once every millisecond. Figure 1 shows three of
the ten different laws used with a PUMA arm; Ohold2 Law,
Ohold Law, and Jhold Law are top-level tasks which call
subtasks in a particular sequence. Some of the subtasks in-
volve hardware components with timing constraints specified
on a cycle basis.

The CAD requirements for co-design of this system are as
follows. First, we need to satisfy hard real-time constraints
imposed by some of the hardware components in the system
as well as by external hardware. Second, we need to optimize
the run-time system over calls to multiple tasks in hardware
and software. This involves allocation of tasks to hardware
and software as well as interface generation for communica-
tion. We want as much concurrency as possible in the final
implementation. In this paper, we focus on the synthesis of
a run-time scheduler.
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Figure 2: Tool Flow and Target Architecture

Hardware-tasks are specified in Verilog that can be synthe-
sized by the Synopsys Behavioral Compiler”™([1}; its use is
labeled BC in Figure 2 (DC labels the Design Compiler? ™).
Software-tasks are written in C. Microprocessor cores, mem-
ories (DRAM, SRAM), FIFO models, and other custom
blocks are assumed as available inputs to the system.

The system-level tasks in Verilog and C, as well as con-
straints, are input to a tool that generates the interface and
to SERRA. Constraints include relative timing constraints
{minimum and maximum separation), resource constraints,
and rate constraints. The overall control flow of the run-time
scheduler is synthesized into hardware, while the necessary
code for calling tasks in software is generated as well. Fur-
ther aspects of a RT'OS can be added in software by the user
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if desired.

4 Task Execution

We associate a start and a done event with each task in order
to allow the scheduler to control the task. In hardware the
two events are simply signals on an input port and an output
port, respectively. For software, we have a start vector and
a done vector which encapsulate the start and done events
for each software-task.

Note that some tasks are called multiple times by different
tasks, such as matrix vector multiply in our robot exam-
ple, as can be seen in Figure 1. Some real-time constraints
in hardware can be satisfied by high-level synthesis. How-
ever, constraints at the task level must be handled by the
run-time system. How can the run-time system dynamically
allocate tasks while at the same time predictably satisfying
exact timing constraints between tasks?

We solve this scheduling problem using the algebra of
control-flow expressions (CFEs) {9], which represent the se-
rial/parallel flow of computation, branching, iteration, syn-
chronization and exceptions. CFEs can specify control flow
that satisfies our real-time constraints in hardware while also
controlling dynamically the flow of execution. CFEs have a
deterministic finite-state machine (FSM) semantics, and so
can be compiled into specification FSMs representing the
possible control-flow implementations.

The Behavioral Compiler”™ already performs detailed con-
trol synthesis for individual hardware-tasks. We thus apply
CFEs at a higher level of abstraction: the coordination of
tasks, with a single CFE action serving as the start event for
a task in hardware or software. This contrasts with earlier
uses of CFEs to model systems at the operation level[10]. Us-
ing CFEs to coordinate tasks hides the coordination of low-
level operations from the CFE model and results in greatly
reduced control logic.

4.1 Task Control Flow Extraction

SERRA takes as input a collection of tasks described in Ver-
ilog and C. We obtain a Control-Data Flow Graph for each
task, or task-CDFG, from the input. Each node in a task-
CDFG corresponds to a call to another task. The user must
indicate which task is the root and thus kicks off execution
and calls of the other tasks. An example of such a root task
after obtaining its task-CDFG is seen in Figure 3, which exe-
cutes appropriate control laws of Figure 1 to output torques
for two PUMA robot arms. If a task does not call any other
tasks, then its corresponding task-CDFG is empty.

The CFEs of the task-CDFGs capture real-time constraints
between tasks (usually hardware-tasks) as well as mutual ex-
clusion between dynamically called tasks. Currently the user
must enter the constraints directly in CFEs. Note that the
CFEs are extracted from Verilog or C. Clearly, the result-
ing CFEs correspond exactly to the coarse-grained partition
of the system. Currently this CFE-extraction is performed
automatically for Verilog and manually for C.
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Figure 3: Robotics Example: Root-Level Task

Example 1[CFE Extraction] For our robotics example, we be-
gin with the task specified by the user as root-level. In this case it
is a routine written in C. After control- and data-flow analysis, we
end up with the task-CDFG of Figure 3, where the SY NC node
is not a task but indicates that the previous tasks must complete
before continuing. With each task that has nondeterministic delay,
we associate a CFE control signal and a CFE action, e.g. Wait Next
Tick has CFE control signal c0 and action wnt. Tasks with deter-
ministic delays need only an action. The action represents the start
event for that task in the synthesized system. Recall that in CFE
semantics, ” indicates zero or more cycles, * indicates exactly four
cycles, || indicates parallel execution, - indicates serial execution, and
“ indicates an infinite loop. The extracted CFE is

((c0 : wnt)* - (gp1*|lgvl*|lgp2*|lgv2*) - (((c1 : jR)" - st1)]}((c4 :
oh)* - st2)) - (c6: hm)*)*¥ O

4.2 Run-Time Scheduler Partition

From the consistent model (CFEs) of the task schedule we
make a split of the run-time scheduler into hardware and
software based on an analysis of the constraints. We hypoth-
esize that exact relative constraints between tasks cannot be
satisfied by software. Thus, we have the problem of choosing
between the predictability of satisfying real-time constraints
in hardware and the desirability of having some features of
a RTOS. We try to accommodate both choices by putting
in hardware a FSM corresponding to the CFE description
of the system, while putting in software a reactive executive
which calls the appropriate software-tasks when signaled by
the hardware FSM.
Therefore we split the run-time scheduler into two parts:
eAn executive manager in hardware with cycle-based
semantics that can satisfy hard real-time constraints.
oA software routine scheduler that can execute different
threads and may implement multitasking.
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The flow of the SERRA Run-Time Scheduler Synthesis tool
is shown in Figure 4.
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Figure 4: Block diagram of SERRA
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Figure 5: Task Control-Data Flow Graphs of Jhold Law, Set
Torque, and Ohold Law

5.1 Control State Machine

CFEs are extracted from all the tasks input to SERRA. Con-
trol inputs c0,cl,c2,...,cn are used to dynamically “re-
quest” resources. These control inputs are generated by a
conjunction of done events of previous tasks in the control
flow, except for c0 which can also be generated by a global
RESET.

Example 2[CFE Extraction With Max/Min Timing
Constraints] Consider the two tasks Jhold Law and Ohold Lav.
Their task-CDFGs, with Set Torque included (see Figure 3), are
shown in Figure 5. Node cjd in corresponds to task Calculate
Joint Dynamics and node jh0 corresponds to task Jhold LawO.
Set Torque consists of two hardware modules, Xmit Frame (zf)
and Xmit Bit {zb), which are used to input the torque data in a
bitwise fashion. A minimum two-cycle delay is required between the
start of zf and the start of zb, with a maximum allowable delay of
eight cycles. Similarly, we assume a resource constraint in that only
one matrix vector multiply (mwvm) hardware unit is available.



The maximum and minimum delay constraints between z f and zb
are easily specified in the CFE as «f-0-0<" - 2b where O is a
no-op and <7 means that the operation can occur between zero and
six times. Now the CFE extracted from the Verilog specification of
Jhold Law is
((cl: cjd)*|}(c2: FhOY*) - (c4 : 0)* - (c3 : muml)* -2f1-0-0°7 - xbl
And the CFE extracted from the C code for Ohold Law is
(c4: mom2)* - (cb:0h1)* - 2f1-0-0<7 - 2bl

Note that the control signal c4 for mvm2 is used to delay the
execution of mvml in the case that ¢3 is asserted while mvm2 is
still executing. This works provided mum2 is always executed before
movml. A more general way of providing for mutually exclusive
dynamic granting of start events for the same resource is to use the
CFE NEVER sets[9]. O

The CFE of the root task guides the composition of the
extracted CFEs. If the input tasks are a complete set for
the system, then SERRA will successfully collapse all the ex-
tracted CFEs into the root CFE.

Example 3[CFE Composition] To implement the hardware
portion of the run-time scheduler, the CFE of Example 2 and equiv-
alent CFEs for the other control laws are embedded in the CFE of
Example 1. The result is

((c0 - wnt)* - (gp1*]|gv1?|lgp2*|lgv2*)-

({1 : cjd)*|l(c2 : jhO)*)-(cd : 0)* - (c3 : mom1)* -2f1-0-0<7.2b1)
I| ((c4: mvm2)* - (c5:0h1)" - 2f2-0-0<7.2b2 ) (6 : hm)*)¥

Note that {(cl : jh)* - stl and (c4 : oh)* - st2 in Example 1 have
been replaced with the CFEs of Example 2

Control signals c1 —c4 in the CFEs are formed based on the control
flow. For example, ¢3 is set high when the cjdjon. and 7h0gonc
events have both occurred. (Note that mum1 will not be activated,
however, if c4 is high — see the comment at the end of Example 2.)
With this composition, we obtain a CFE specification of the system
which generates start events for each task (via CFE actions). D

SERRA synthesizes the control-unit of the scheduler by
means of tool THALIA which takes as input a CFE descrip-
tion and produces a logic-level description in synthesizable
Verilog[9, 10]. The constraints specified in the CFEs input
to THALIA are translated into automata. Thus, for the con-
trol to be synthesizable, the intersection of constraints with
possible state machine implementations must not be void.
5.2 Control of Software

Software has a start vector and done vector which implement
start and done events for each software-task. If there are less
than 32 distinct software-tasks, each vector can be contained
in a single word with a simple one-hot encoding (otherwise
more words can be used).

The hardware run-time scheduler updates the start vector
in software as follows. First, it updates its local register
containing the start vector. Then it triggers an interrupt
on the CPU. The CPU interrupt service routine reads the
register using a memory-mapped I/O read and places it into
the software copy of the start vector.

When the software-task is finished executing, it updates the
done vector by writing the value out with memory mapped
I/O. Thus, the done vector in the run-time scheduler in hard-
ware is updated. Notice that in the above two cases, a ded-
icated port could be used instead of memory-mapped 1/0,
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depending on the CPU.

5.3 Software Generation

For the software that runs on the microprocessor core (CPU),
the individual software-tasks are compiled and linked using
standard C compilers and linkers. Memory-mapped I/0 is
called with C pointers set explicitly to the appropriate ad-
dresses. We thus end up with a set of software-tasks and
their start addresses in the program code.

Therefore, given a particular value of the start vector, the
appropriate software-task(s) can be executed. However, we
need an executive for the software. We consider two options.

5.3.1 Option #1: Hardware Communicates Start
Vector to Software

For this option, the software part of the run-time scheduler
implements the following:
oA hardware interrupt updates the start vector.
oThe hardware interrupt finishes.
¢A polling executive in software reads the start vector
ina for(;;) loop.
oThe executive picks a process to execute.
eWhen a software-task is finished, it writes out the new
value of the done vector.
An advantage of this option is that it can support standard
RTOS scheduling algorithms (round-robin, rate-monotonic,
etc.). Multiprocessing is helpful when a long software-task
executes at the same time as a short duration software-task,
but a price is paid when switching context. A disadvantage
is the slower response time due to added overhead for imple-
menting the RTOS scheduling algorithm, polling executive,
and associated context switches.

5.3.2 Option #2: Hardware-Driven Software Exe-
cution

The second option considered is as follows:
elnterrupt updates the start vector.
eInterrupt Service Routine (ISR) executes a jump to the
appropriate software-task.
eWhen the software-task finishes, the done vector is
written and the ISR finishes.
The main advantage of this option is faster execution. Some
disadvantages are that there is no multiprocessing and all
software-tasks are executed in kernel mode.
Background tasks, such as a user interface or output dis-
play, can run when the CPU returns from an interrupt.

6 Example and experimental results

For our example, we consider the robot control algorithm of
Figure 3. We implement a subset of the tasks required for
executing Jhold Law and Set Torque in parallel with Ohold
Law and Set Torque (shown in Figure 5). Notice that Xmit
Frame (zf) and Xmit Bit (zb) of Set Torque have a strict
real time constraint that could not be satisfied with control



signals generated by a run-time scheduler in software (note
in Figure 2 we have an L1 cache). We assume that the full
system drives Xmit Bit from hardware modules other than
Xmit Frame and thus must be kept separate.

Since none of our software-tasks are exceptionally long, we
choose Option #2. This provides the faster execution speeds,
even though it serializes all software-tasks. The software
tasks are compiled and linked into assembly, with data and
program memory statically allocated, as well as memory-
mapped I/0. Finally, the software portion of the run-time
scheduler is generated in the form of an Interrupt Service
Routine that reads in a start vector which task needs to be
executed in software and then executes the task.

The system begins each iteration once a millisecond. First
the run-time scheduler starts the execution of mvm in hard-
ware for Ohold Law, c¢jd in hardware and jhO in software
for Jhold Law. Next it passes execution for Ohold Law onto
software with ohl, and it passes execution for Jhold Law
onto hardware with muvm. Finally, it serializes accesses to
Xmit Frame and Xmit Bit to set the torques for the robot.

Software-Task # Lines C | # Lines Assembly
jh0 17 151
ohl 178 695
run-time-sch-sw 23 41

Table 1: Code space for Jhold and Ohold Laws
| Hardware-Task || # Lines Verilog | Area |

cjd 598 | 14353
mvm 246 | 33965
xmit-frame 108 987
xmit-bit 66 199
run-time-sch-hw 391 314

Table 2: Results for the synthesis of hardware-tasks

Table 1 presents the results for the compilation of the soft-
ware. In Table 2 we see the results for the synthesis of
the hardware using the Behavioral Compiler”™, except for
the run-time scheduler hardware part which was synthesized
with the Design Compiler™ . Finally, the last column in
Table 2 shows the number of gate equivalents the hardware
required using the LSI 10K Logic library.

We simulated the run-time scheduler hardware unit in Ver-
ilog using Chronologic’s VCSTM | The resulting waveform
with a particular test pattern can be seen in Figure 6. Signals
wnt, gpl,..., hm are the start events for the corresponding
tasks in Figures 3 and 5. For the sake of simplicity, commu-
nication delays due to the interface are not included. With
the interface delays included, the transitions between signals
would be much longer.

Signals cl - ¢6 are the dynamic requests for resources made
to the scheduler. Note that although ¢3’s request for mvml
comes at cycle 10 (at the dotted line in Figure 6), it is not
granted until cycle 12 (i.e. mum1 goes high at cycle 12) since
before then c4 is high (see the comment at the end of Exam-
ple 2). Further, note that sometimes, as in the request ¢6 for
hm (Handle Message of Figure 3), the granting is delayed
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Figure 6: Waveform Display of Synthesized Scheduler FSM

automatically to meet the control-flow requirements. Thus,
whenever there are requests for the same resource, the acti-
vations are serialized. Also note that xf1 and xb1 occur two
cycles apart, the minimum specified.

7 Conclusion

The SERRA Run-Time Scheduler tool helps designers per-
form system-level design with hardware and software at a
coarse level of granularity,. We have shown how one can syn-
thesize a run-time scheduler in hardware and software that
can predictably meet real-time constraints while dynamically
executing tasks in hardware and software. We have utilized
the methodology of control-flow expressions to synthesize the
hardware control portion of the scheduler.

For our future work we plan to address the issue of real-time
analysis for the entire system as well as constraint analysis
for subschedules of the system that involve both hardware
and software.
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