
240 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 3, MARCH 1997

Specification and Analysis of Timing
Constraints for Embedded Systems

Rajesh K. Gupta and Giovanni De Micheli,Fellow, IEEE

Abstract—Embedded systems consist of interacting hardware
and software components that must deliver a specific function-
ality under constraints on relative timing of their actions. We
describe operationdelay and execution rate constraints that are
useful in the context of embedded systems. A delay constraint
bounds the operation delay or specifies any of the thirteen
possible constraints between the intervals of execution of a pair
of operations. A rate constraint bounds the rate of execution of
an operation and may be specifiedrelative to the control flow
in the system functionality. We present constraint propagation
and analysis techniques to determine satisfaction of imposed
constraints by a given system implementation. In contrast to
previous purely analytical approaches on restricted models or
statistical performance estimation based on runtime data, we
present a static analysis in presence of conditionals and loops with
the help of designer assists. The constraint analysis algorithms
presented here have been implemented in a cosynthesis system,
VULCAN, that allows the embedded system designer to interac-
tively evaluate the effect of performance constraints on hardware-
software implementation tradeoffs for a given functionality. We
present examples to demonstrate the application and utility of
the proposed techniques.

Index Terms—Constraint analysis, constraint satisfiability, em-
bedded systems, interactive analysis, rate constraints, relative
rates, timing analysis.

I. INTRODUCTION

T HIS WORK considers a synthesis approach to the im-
plementation of embedded systems under constraints on

the timing performance of the system implementation and on
the overall cost of design. An embedded system is targeted
for a specific and limited application and, therefore, must
be designed to efficiently implement the required function-
ality. Driven by the advances in semiconductor technology
and computer-aided design techniques, embedded systems are
increasingly used in new application areas such as automotive,
networking, and consumer electronics. To address the com-
plexity of the embedded system design task, recently there has
been a surge of interest in use ofpredesigned reprogrammable
components such as off-the-shelf microcontrollers to reduce
the design time and design cost [1]–[4]. Inmixedsystem im-

Manuscript received February 6, 1995; revised December 16, 1997. This
paper was recommended by Associate Editor, R. Camposano. This work was
supported in part by the AT&T Foundation, in part by NSF-ARPA MIP
9115432, and in part by NSF CAREER Award MIP 95-01615.

R. K. Gupta is with the Department of Information and Computer Science,
University of California, Irvine, CA 92697 USA.

G. De Micheli is with the Department of Electrical Engineering, Stanford
University, Stanford, CA 94305 USA.

Publisher Item Identifier S 0278-0070(97)04736-2.

plementations, portions of system functionality are realized by
a program running on the processor. Consider for example, the
design of a vehicular cruise controller described in Example
1.1 below.

Example 1.1:Fig. 1 shows a block diagram of the cruise
controller. The controller monitors cruising speed, fuel con-
sumption, and provides valve control and status/maintenance
feedback to the driver. The clock, calibration, and get info
portions are implemented in dedicated hardware, whereas the
rest is implemented as a set of program routinesincluding a
runtime systemrunning on a microprocessor. The controller
performs velocity regulation by sampling the brake and gear
inputs at least once every millisecond and delivering appropri-
ate value to valve control at least once per second. In addition,
the performance is also constrained by a maximum delay of
1 ms from the time a brake input is sampled to its effect on
the valve control output.

A systematic exploration of system implementations using
reprogrammable components requires specification and analy-
sis of performance constraints to determine feasibility of an
implementation in hardware or software. Related work on
timing analysis comes from several sources such as feasi-
ble scheduling [5], [6] and rate analysis for asynchronous
concurrent systems modeled using Petri nets [7]–[9]. More
recently, Hulgaardet al. in [10] presented an exact algorithm
for determination of bounds on the time interval between
events in a process graph using implicit unfolding of the
graph. In developing a tight bound on operation invocation
intervals, it considers only process graphs without conditional
invocation of operations. In contrast, this work considers
timing analysis in presence of conditionals and loops. We
present a constraint analysis procedure in which additional
designer input can be specified to determine possible timing
constraint violations. The use of designer input in resolving
constraint violations is particularly valuable in presence of
uncertainty due to conditional invocation of the operations.
This paper describes (deterministic) constraint analysis as im-
plemented in the VULCAN cosynthesis system. An overview
of various cosynthesis subtasks for hardware and software
including constraint analysis in the deterministic as well as
in the probabilistic sense can be found in [11].

This paper is organized as follows. We briefly describe the
input and its abstraction into a model in Section II. Section III
presents specification of timing constraints and their abstrac-
tion into a constraint model. In Sections IV and V, we describe
the notion of constraint satisfiability and present techniques
to carry out constraint analysis. In Section VI, we describe

0278–0070/97$10.00 1997 IEEE

GUPTA AND DE MICHELI: EMBEDDED SYSTEMS TIMING CONSTRAINTS 241

Fig. 1. Example of an embedded system implementation with timing constraints.

our implementation of the constraint analysis procedure and
how it can be used by the system designer. We summarize
contributions and discuss open issues in Section VII.

II. I NPUT SPECIFICATION AND MODEL

We begin with a description of system functionality in
a hardware description language (HDL), HardwareC [12].
Use of a HDL makes it possible to use existing synthesis
techniques for digital hardware in system implementations
consisting of both hardware and software components. Further,
most HDL’s allow for computation of explicit dependencies
between operations and memory usage by use of static data
types and unaliased data references. Both of these features
are essential for analysis of constraints on timing and size
of implementation. The particular choice of HardwareC is
immaterial, and other procedural HDL’s may be used as well.

The basic entity for specifying system behavior is aprocess.
A process executes concurrently with other processes in the
system specification. A process restarts itself on completion of
the last operation in the process body. A process in HardwareC
can have nested sequential and parallel statement blocks of
statements. The use of multiple processes to describe a system
functionality abstracts parts of a system implementation that
operate at different speeds of execution. All communication
between operations within a process body is based on shared
memory. This shared storage is declared as a part of the
process body. Interprocess communication is specified by
message-passing operations that use a blocking protocol for
synchronization purposes. This blocking is implemented using
wait operations on associated control signals.

The input description is compiled into a graph based model,
called flow graph, defined as follows.

Definition 2.1: A flow graph modelis a polar acyclic graph,
, where represent oper-

ations with and being the source and sink operations,
respectively. The edge set, , represents depen-
dencies between operation vertices. Functionassociates a
Boolean (enabling) expression with every edge.

A vertex in the flow graph represents one of the following
language-level operations:nop, conditional, logic, arithmetic,
io, wait, and link. As mentioned earlier, thewait operation
is used to represent synchronization events at model ports.
The link operation is used to capture hierarchy of models by
means of a call or a loop operation. The called flow graph
corresponding to a link vertex may be invoked one or many
times. Function and procedure calls are also represented by
a call link vertex where the body of function/procedure is
captured in a separate graph model.

A loop link operation consists of a loop condition operation
that performs testing of the loop exit condition and a loop
body. The loop body is represented as a separate graph model.
The number of invocations of the loop body are controlled
by a loop indexvariable associated with each loop operation.
All loop operations are assumed to be of the form “repeat-
until”; that is, a loop body is executed at least once. The
HDL specification of “while”-loops is suitably transformed
using a conditional operation. Any successor to a conditional
operation is enabled if the result of condition evaluation selects
the branch to which the operation belongs. This is expressed
by the enabling condition associated with the edge leaving the

242 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 3, MARCH 1997

Fig. 2. An example of a flow graph model consisting of two graphs.

condition vertex. In general, a multiple in-degree operation
vertex is enabled by evaluating aninput expressionconsisting
of logical AND and OR operations over enabling expressions
of its fan-in edges. Similarly, on completion of an operation,
all or a set of its successor vertices can be enabled. For each
vertex, its output expressionis an expression over enabling
conditions of its fan-out edges. These expressions determine
the flow of control through the graph model.

A flow graph is consideredwell formed if the input and
output expressions use either AND or OR operations but
not both in the same expression. For a well-formed graph,
a set of input or output edges to a vertex is considered
conjoined if the corresponding expression is a conjunction
over inputs or outputs. Similarly, a set of edges isdisjoined
if the corresponding expression is a disjunction. Structurally,
this makes the flow graph abilogic graph [13]. For this
reason, the flow graphs are calledbilogic sequencing graphsas
opposed tounilogic sequencing graphs in [12] which specify
conditional paths as separate graphs. Bilogic graphs are a
common occurrence in control graphs.

Example 2.1:Fig. 2 shows example of a well-formed bi-
logic graph model for a process consisting of a conditional
and a loop operation. In subsequent examples, the labels
“conjoined” and “disjoined” are also indicated by symbols
“*” and “ ,” respectively.

Finally, asystemconsists of interacting parts, each of which
can be abstracted into a flow graph model. A system model
consists of one or more flow graphs that may be hierarchically

linked to other flow graphs. That is, a system model is
expressed as, , where represents
the process graph model and all the flow graphs that are
hierarchically linked to .

A. System Implementation

A flow graph model can be implemented as a hardware
block or as a program. The implemented model is enabled by
an external controller in case of hardware and by the runtime
system in case of software, to perform the required tasks.
Therefore, animplementation of a graph model refers
to assignment of delay and size properties to operations in
and a choice ofruntime scheduler that enable execution
of the source operations in . This actual assignment of
values is related to the hardware or software implementation of
operations in . For nonpipelined hardware implementations,
the runtime-scheduler is trivial, and the source operation is
enabled once its sink operation has completed (and the graph
enabling condition is true for conditionally invoked graphs).
For software, the runtime scheduler refers to the choice of
a runtime system that provides the operating environment for
execution of operations in . For details on implementation of
the runtime system, the reader is referred to [14]. Note that a
choice of operation schedule is not required for an implementa-
tion. This is because we assume that the expressed concurrency
in flow graph models can be supported by available hardware
resources. That is, any serialization required to meet hardware
resource constraints has already been performed. This is not
a strong assumption, since the availability of major hardware
resources like adders and multipliers are usually known in
advance.

Timing properties of a system model are derived using
a bottom-up computation from individual operation delays.
Let us first consider nonhierarchical flow graphs, i.e., graphs
without link vertices. Thedelay of an operation refers to the
execution delay of the operation in cycles. In a nonhierarchical
flow graph, the delays of all operations (exceptwait) are
fixed and independent of the input data. Thewait operation
offers variable delay which may or may not be data-dependent
depending upon its implementation. Thelatency of a
graph model refers to the execution delay of . The
latency of a flow graph may be variable due to the presence
of conditional paths. Next, the hierarchical flow graphs also
contain link vertices, such ascall and loop which point to
flow graphs in the hierarchy. Therefore, an execution delay
can be associated with link vertices as the latency of the
corresponding graph model times the number of times the
called graph is invoked. Since the latency can be variable,
the delay of a link vertex can be variable. It may also
be unbounded in case of loop vertices since these can, in
principle, be invoked unbounded number of times.

The delay ofwait operation depends upon its implemen-
tation. For instance, in abusy-wait implementation [i.e.,
while(!signal)], the wait operation is implemented as a loop
operation that iterates until the concerned inputsignal is
received. This implementation is commonly used for hardware
synthesis [12]. Another implementation of wait operation is a

GUPTA AND DE MICHELI: EMBEDDED SYSTEMS TIMING CONSTRAINTS 243

context-switchoperation. The latter is particularly applicable
for software implementations [15]. For this implementation,
the delay of the wait operation is characterized as a fixed
overhead as the delay due to the runtime system. This choice
of operation delay is discussed later in Section V.

B. Path Lengths in Flow Graphs

We now describe the computation of path length parameters
upon which our analysis of constraints is based. A path length

defines the lower bound on the latency of the longest
path between the source and sink vertices, assuming the loop
index to be unity for the loop operations.1 In the presence of
conditional paths, the length is a vector, , where
each element indicates the execution delay of a path in

. The elements of are the lengths of the longest paths that
are mutually-exclusive. Depending on system control flow, not
all statically-derived paths may be executed. Therefore, some
elements of may well represent infeasible paths. It is possible
to improve this estimation by providing user-directives as in
[16], [17], though we do not consider such estimation methods
here. However, the results of this analysis can be applied
mutatis mutandisusing dynamic path estimation methods to
improve the constraint satisfiability tests presented later.

The length computation for a flow graph proceeds by a
bottom-up computation of lengths from delays of individual
operations. Given two operations,and with delays, ,
these can be related in one of the following three ways in the
flow graph.

• Sequential composition: The combined delay of and
is the sum of two operation delays and is represented by

.
• Conjoined composition: When the operations and

belong to two branches of a conjoined fork. Since the two
operations are executed concurrently and the successor
operation(s) can be started only after bothand
have completed execution, the combined delay of the
two operations, in a well-formed bilogic flow graph, is
defined by the maximum over the two operation delays

.
• Disjoined composition: when the operations and

belong to two branches of a disjoined fork. The delay
of the composition is delay of or delay of depending
upon the branch taken in an execution. Thus, the delay of
the disjoined composition is a tuple representing possible
operation delays .

As defined here, it can be shown that each of the three
composition operators, , and form a simple algebraic
structure called commutative monoid, on the power set of
positive integers with zero as an identity element.

Operations and are easily extended toary operations.
A disjoined composition of two delays leads to a two-tuple
delay, since the two operations belong to mutually exclusive
paths. This composition of delays is generalized to composi-
tion of paths as follows. In the case of a sequential composition
of two path lengths, and with cardinality and

1Recall that loop vertices represent “repeat-until” type operations. The
length computation treats the loop operation as a call operation.

respectively, the resulting path length contains elements,
consisting of sums over all possible pairs of elements ofand

. In the case of a conjoined composition, the resulting path
length is of cardinality and consists of maximum over all
possible pairs of elements. Finally, in a disjoined composition,
the resulting path length is of cardinality and contains
all elements of and .

In practice, one often needs only the upper and lower bounds
on latencies. Notationally, and refer to the minimum
and maximum element in, respectively. For well-formed
graphs, and can be computed efficiently by collapsing
conditional paths into a single operation vertex with minimum
or maximum branch delay respectively. We state without proof
the following properties:

(1)

(2)

(3)

(4)

(5)

(6)

These properties have been used in previous work related to
execution path analysis in [16]. Note that our flow graphs
are derived from descriptions in a structured programming
language. In other words, in the input descriptions, there are
no jumps and goto statements. This makes the control flow in
the flow graphs series-parallel where the blocks (groups of op-
eration vertices) are either nested or sequential. This simplifies
the path length computation as the following example shows.

Example 2.2—Latency and Path Length Computations for
Bilogic Flow Graphs: Fig. 3 below shows a process graph
model and graph models on its calling hierarchy. calls

that constitutes body of a loop operation. , in turn,
calls that constitutes the body of a loop operation.
Numbers in the circle indicate delay of the operations. For
this set of graph models, the path lengths are

C. Rate of Execution

The instantaneous rate of execution of an operation
is the marginal number of executionsof operation at any
instant of time, per second. Due
to the discrete nature of executions (i.e.,), we define

such that

where refers to the start time of theth execution
of operation . Assuming a synchronous execution model
with cycle time , we define the (lattice) rate of execution

244 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 3, MARCH 1997

Fig. 3. Path length computations.

at invocation of an operation as the inverse of the time
interval between its current and previous execution. That is

cycle (7)

By convention, the instantaneous rate of execution is zero at
the first execution of an operation . Note that

is defined only at times when operation is executed,
whereas is a function of time and defined at all times. In
our treatment of execution rates and constraints on rates, only
rates at times of operation execution are of interest. Hence, we
use the definition of as the rate of execution.

For a graph model, , its rate of reaction, is the rate of
execution of its source operation, that is, .
The reaction rate is a property of the graph model, and it
is used to capture the effect on the runtime system and the
type of implementation chosen for the graph model. To be
specific, the choice of a nonpipelined implementation of
leads to where refers to
theoverhead delay, that represents the delay in reinvocation of

. may be a fixed delay representing the overhead of a
runtime scheduler or it may be a variable quantity representing
delay in case of conditional invocation of.

D. Nondeterminism in Flow Graph Models

The delay of a basic operations in the HDL input can be
characterized by a fixed number related to its implementation
in hardware or software. However, the delay of some operation
vertices in flow graph model depends on the input data,
specifically either on thevalueof input data or on thetimingof
input data. An example of an operation with value-dependent

TABLE I
POSSIBLE TIMING CONSTRAINTS BETWEEN A PAIR OF OPERATIONS

delay is loop link operation with a data-dependent loop index.
Since the execution delay (or latency) of a bilogic flow graph
can, in general, be data-dependent due to the presence of
conditional paths, the delay of a call vertex is also variable and
data-dependent. Therefore, in bilogic flow graphs, link vertices
present value-dependent delays. An operation presents a input
timing-dependent delay only if it hasblocking semantics.
The only operation in the flow graph model with blocking
semantics is thewait operation. (Note that theread andwrite
operations are treated as nonblocking.) Data-dependent loop
and synchronization operations introduce uncertainty over the
precise delay and order of operations in the system model. Due
to concurrently executing flow graph models, these operations
affect the order in which various operations are invoked. Due
to this uncertainty, a system model containing these operations
is called anondeterministic[18] model, and operations with
variable delays are termednondeterministic delayor
operations.

III. T IMING CONSTRAINTS

Operation-level timing constraints are of two types:

a) operationdelay constraints;
b) executionrate constraints.

Delay constraints are either unary such as bounds on the delay
of an operation or binary as bounds on the delay between
initiation time of two operations. Given any pair of operations

and , different possible constraints on the interval of
execution of the two operations are described in Table I. Here,
symbols and represent execution start time and execution
delay of operation . We defineminimum timing constraint

from operation vertex to as

(8)

By default, any sequencing dependency between two oper-
ations, induces a minimum delay constraint which must be
satisfied in order to observe the execution semantics of the

GUPTA AND DE MICHELI: EMBEDDED SYSTEMS TIMING CONSTRAINTS 245

flow graph. Similarly, amaximum timing constraint,
from to , is defined by the following inequality:

(9)

We note that the operation delay constraints are general and
can be used to capture durational and deadline constraints in
specifying real-time systems [19]. For a given operation,
release time is indicated by a minute delay constraint
of from source to . Similarly, a deadline of is
indicated by a max delay constraint of from
to source operation where is the execution delay of the
operation .

Execution rate constraints refer to bounds on the rate of
execution of an operation. In particular, execution rate con-
straints on input (output) operations refer to the rates at which
the data is required to be consumed (produced). We assume
that each execution of an input (output) operation consumes
(produces) asampleof data. Execution rate constraints on I/O
operations are referred to asdata rate constraints. A minimum
data rate constraint, (samples per cycle or) on an
I/O operation defines the lower bound on the execution rate
of operation . Similarly, amaximum data rate constraint

on an I/O operation defines the upper bound on the
execution rate of operation . That is

for all max rate
for all

(10)
Similarly

for all min rate
for all

(11)
In embedded system designs, a rate constraint is often specified
relative to a specific mode of operation, for example, sampling
of gear control only when the car is moving in case of an
automotive controller. These constraints are captured using
relative rate constraints described next.

A. Relative Rate of Execution

In general, when considering the rate of execution of,
we must consider the successive executions ofthat may
belong to separate invocations of. A relative execution rate
constraintof an operation , with respect to a graph model

, is a constraint on the rate of execution ofwith respect
to the same invocation of , that is,when is continuously
enabled and executing. In other words

(12)

for all , and there exists an executionof such that

where and refer to source and sink vertices in,
respectively. The relative rate of execution expresses rate
constraints that are applicable to a specificcontextof execution
as expressed by the control flow in. Clearly, a relative rate
constraint is meaningful when expressed relative to a flow
graph in the hierarchy in which the operation resides.

B. Specification of Timing Constraints

Operations in the flow graph model correspond to language-
level operations, that is, operations supported in the HDL.
Therefore, it is easy to specify timing constraints by tagging
the corresponding statements in HDL descriptions. In the case
of nested loop operations, rate constraints are indexed by
the corresponding loop operations. The loops are indexed by
increasing integers where the inner-most loop is indexed zero.
In Example 3.1 below, there are two relative rate constraints
on thereadoperation with respect to the twowhilestatements.

Example 3.1:The following example, shown at the bottom
of the next page and derived from the transmit process of
an ethernet controller, demonstrates the specification of rate
constraints in presence of nested loop operations. Recall that
each execution of read operation indicated by tag “A” produces
a sample of data. The rate constraints attributes use inverse
of the rates in units of “cycles/sample.” In this example, a
minimum rate constraint of 100 cycles per sample execution,
or 0.01 executions per cycle is specified on the read operation.
In addition, tworelative minimum rate constraints of one and
0.1 per cycle are specified for the read operation relative to
the loopswhile(bitEN)andwhile(frameEN), respectively.

Operation delay constraints are specified similarly using the
following syntax:

• constraint mintime fromtag to tag num cycles;
• constraint maxtime fromtag to tag num cycles;
• constraint finish—before—duringtag tag ;

IV. RELATIONSHIP OF CONSTRAINT

ANALYSIS TO OPERATION SCHEDULING

For each invocation of a flow graph model, an operation is
invoked zero, one or many times depending upon its position
on the hierarchy of the flow graph model. The execution
times of an operation are determined by the two separate
mechanisms:

a) the runtime scheduler, ;
b) the operation scheduler,.

The runtime scheduler determines the invocation times of flow
graphs, which may be as simple as fixed-ordered where the
selection is made by a predefined order (most likely by the
system control flow). This is typically the case in hardware
implementations where the graph invocation is determined
entirely by the system control flow. Software implementations
of the runtime scheduler are based on the choice of the runtime
environment which is characterized by afixeddelay overhead
for each runtime operation.

Given a graph model, , the selection of a
schedulerefers to the choice of a function that determines
the start time of the operations such that

(13)

is satisfied for each invocation of operations and .
Here refers to the delay function and returns the execution
delay of the operation. indicates the dependency of
operation on operation .

246 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 3, MARCH 1997

Given a scheduling function, a timing constraint is consid-
eredsatisfiedif the operation initiation times determined by
the scheduling function satisfy the corresponding inequalities
[see (8)–(11)]. Clearly, the satisfaction of timing constraints is
related to the choice of the scheduling function. In general,
the choice of a particular operation scheduling mechanism
depends upon the types of operations supported and the
resulting control hardware or software required to implement
the scheduler. We determine constraint satisfiability in the
context of a bilogic relative scheduler used in our synthesis
system. For presentation purposes, we briefly review the rela-
tive scheduling mechanism for unilogic flow graphs, followed
by a straightforward extension to the bilogic flow graphs.

We consider first a model where the delay of all op-
erations in is known and bounded. A schedule of
maps vertices to integer labels that define the start time of
corresponding operations, that is, such that
operation start times, satisfy inequality (13).
A schedule is considered minimum if is
minimum for all . (Recall that we assume that the
effect of resource constraints has been taken into account
as additional serializations in the graph model.) For each
invocation of , since the start times of all operations are fixed
for all executions of (that is, for all), such a schedule is
referred to as astatic schedule.

In general, due to the conditional, loop, and wait operations,
not all delays can be fixed or known statically, thus making a
determination of an unique operation start time impossible for
a static scheduler. This problem is addressed by a relative
scheduler [6] that uses runtime information to determine
operation start times for each invocation of a graph model.
As a result, a relative scheduler does not require to be
a fixed quantity. Arelative schedulefunction maps vertices
to a set of integers representingoffsets. An offset of
vertex with respect to vertex is defined as the delay
in starting execution of after completion of operation .
Offsets are determined relative to vertices which the execution

of (transitively) depends upon. That is

if

where represents transitive closure of the dependency
relation . For a given vertex , a set of anchorvertices
is defined as the set of conditional and loop wait
vertices that have a path to

is or (14)

A relative schedule function is defined as a set of offsets
for each operation such that operation start time satisfies the
inequality

(15)

Since the quantity is known only at runtime, the operation
start time under a relative schedule is determined only at the
runtime.

Inequality (15) can be derived from the inequality (13) by
expressing the latter over the transitive closure of and
then adding the known operation delaysas offsets from
unknown delay operations. Clearly, a solution to inequality
(15) will also satisfy inequality (13) if the offsets,

, where refers to the path length from vertex
to vertex . Finally, a relative schedule is considered

minimum if it leads to minimum values of all offsets for all
vertices.

One of the interesting properties of a relative schedule
is that it expresses the (spatial) uncertainty associated with
conditional invocations of an operation as its temporal
uncertainty by treating it as an unbounded delay opera-
tion. Thus, a conditional operation is same as a data-dependent
loop operation where operations on its branches are invoked
a variable number of times (zero or one) depending upon
data values. For the purposes of relative scheduling, variable
delay operations are treated as unknown delay operations in
[20]. Due to this treatment, the corresponding flow graph used

process example (frameEN, bitEN, bit, word)
in port frameEN, bitEN, bit;
out port word[8];

boolean store[8], temp;
tag A;
while (frameEN)

while (bitEN)

A: temp = read(bit);
store[7:0] = store[6:0] @ temp;

write word store;

attribute “constraint minrate of cycles/sample”;
attribute “constraint minrate 0 of cycles/sample”;
attribute “constraint minrate 1 of cycles/sample”;

GUPTA AND DE MICHELI: EMBEDDED SYSTEMS TIMING CONSTRAINTS 247

for relative scheduling isunilogic, since conditional branches
belong to separate graphs same as in the case of loops.
Of course, this idea can be carried further by treating all
operations as unbounded delay operations and computing the
start times of operations at runtime. Such an implementation
of a flow graph would be similar in architecture to data flow
machines [21]. In terms of the latency of execution, such a
dynamic scheduler will give the most “compact” schedule.
However, the increased overhead cost of the runtime system
associated with a large number of unbounded delay opera-
tions would make such an architecture unsuitable for either
gate-level hardware or constrained software implementations.
Hence, attempts have been made to minimize the number of
unknown delay operations in the graph model that belong
to an anchor set [22]. The relative scheduler is extended to
bilogic relative scheduler by treating conditionals separately
from loop and synchronization operations. In particular, the
maximum path delay over all branches in a conditional is used
for scheduling purposes. Depending upon the actual branch
taken, this schedule may not be the minimum in the sense of
relative scheduling described earlier. However, it reduces the
number of operations, thus making it easier to perform
the constraint analysis. Also, the cost of implementing control
for a bilogic relative scheduler lies somewhere between the
control costs for static and relative schedulers.

A bilogic relative scheduletreats an operation offset as a
vector representing the (finite) set of possible delays.
A bilogic schedule, then computes the offset vectors such
that

(16)

where refers to the largest element (or the infinity
norm) of the vector. The bilogic anchor set is defined as

is . Once again, the
inequality (16) can be derived from inequality (13) for bilogic
flow graphs. Thus, a solution to inequality (16) will also
satisfy inequality (13) provided . The
following shows an example of unilogic and bilogic relative
schedules.

Example 4.1:Let us consider the unilogic versus bilogic
relative schedules for the flow graph model shown in Example
2.1. We assume that the operation takes three cycles
while the rest take one cycle. The assignment of offsets using
a relative scheduler and a bilogic relative scheduler are shown
in Table II, where a “ ” indicates that the start time of the
operation is not affected by the particular anchor vertex.

For example, consider therelative scheduleof vertex . Its
offset vector is {1, 0, 0, -}. This indicates that starts after
one cycle from and immediately after start of and .
Also, the start time of this vertex is not affected by the start
time of . Therefore, according to inequality (15), the start
time of is given by

Note that . For abilogic relative scheduler, the vertex
is no longer an anchor but a variable delay vertex. The

TABLE II

offsets are now computed as vectors of possible delay values.
Thus, the start time for vertex, in this case is given by

A. Constraint Satisfiability

The satisfiability of a given set of constraints requires
that there exist an implementation that satisfies the imposed
constraints. For constraint analysis purposes, it is not necessary
to determine a schedule of operations, but only to verify the
existenceof a schedule. Since there can be many possible
schedules, constraint satisfiability analysis proceeds by iden-
tifying conditions under whichno solutions are possible. A
timing constraint is consideredinconsistentif it can not be
satisfied byany implementation of the flow-graph model. A
set of timing constraints is consideredmutually inconsistentif
these constraints can not be satisfied by any implementation
of the flow graph model. Since the consistency of constraints
is independent of the implementation, these are related to the
structure of the flow graphs.

The timing constraints are abstracted in a constraint graph
model consisting of vertices as operations, forward edges
indicating minimum delay constraints, and backward edges
indicating maximum delay constraints.

Definition 4.1: The timing constraint graph model is
defined as , where the set of edges consists of
forward andbackwardedges, and and
define the weights on edges such that
for all .

Deterministic analysis refers to constraint satisfiability de-
termination over all execution instances. This analysis relies on
the information that is statically available, such as operations
and dependencies. The static information is captured very
well by the constraint graphs. However, as we show later,
constraint satisfiability based solely on static information may
be impossible, and additional user information may be needed

248 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 3, MARCH 1997

to provide deterministic answers to constraint satisfiability. We
characterize those cases where additional user input is needed
to proceed with constraint analysis. The rationale and use of
additional information is explained later in Section V. The
key contribution of the deterministic analysis is that not all
constraints require bounding of all operation delays. Therefore,
static path analysis provides a valuable input to the system
designer in making a choice of system components under
timing constraints.

For consistent timing constraints, the analysis is performed
in stages and in order of increasing nondeterminism in the
model. We first consider the satisfiability of operation delay
constraints followed by the execution rate constraints.

V. CONSTRAINT SATISFIABILITY TESTS

There are two important previous results that lay down the
conditions for determining constraint satisfiability. The follow-
ing theorem occurs in various forms in different application
areas. Its proof can be found in, for example, in [5], [20], and
[23].

Theorem 5.1—Static Scheduling:In the absence of any
operations, a set of operation delay constraints is

satisfiable, if and only if, there exist no positive cycles in
.

Using a relative scheduler, a minimum delay constraint
is always satisfiable since from any solution that satisfies
inequalities (15) or (16), a solution can be constructed such that

for each constraint . This so-
lution satisfies both inequalities (13) and (8). On the contrary,
a maximum delay constraint may not always be satisfiable.
A constraint graph is consideredfeasible if it contains no
positive cycle when the delay of operations is assigned
to zero. The following theorem [6] lays out a necessary and
sufficient condition to determine the satisfiability of constraints
in presence of operations.

Theorem 5.2—Relative Scheduling:Min/max delay con-
straints are satisfiable if and only if the constraint graph is
feasible and there exist no cycles with operations.

Execution rate constraints are constraints on the time inter-
val between invocations of the same operation. In general,
this interval can be affected by pipelining techniques. We
consider here only nonpipelined implementations of the flow-
graph models. Therefore, operations in the graph model are
enabled for the next iteration only after completion of the
previous iteration

for all
(17)

Consider an I/O operation with data-rate con-
straints, and . The rate constraints imply

for all (18)

refers to the cycle time of the clock associated with.
Inequality (18) is satisfied if and only if

lower bound (19)

upper bound (20)

Fig. 4. Operation invocation interval.

Thus, satisfiability for execution rate constraints is determined
by checking for the minimum and maximum delay between
any two consecutive invocations of constrained operation. This
interval can be expressed as (see Fig. 4)

(21)

where refers to execution delay from source vertex
to for the th execution. is the delay in

rescheduling a graph, that is, the time from completion of
th execution of to initiation of the th execution.

From inequalities (13) and (17) each of the four components in
inequality (21) are nonnegative quantities. Let us now consider
the lower and upper bounds on this interval. These bounds are
developed based on the analysis of paths in the flow graph.
It follows from inequality (13) that for vertices in a path,

the following is true for all

(22)

It is important to note that even though the actual interval
between successive executions is summed as shown in (21),
the bounds on this interval can be developed based on analysis
of the graph model itself. This is because, in a nonpipelined
implementation of , the consecutive execution of an op-
eration corresponds to traversal of a path from source to
sink vertex in . Consider th and th executions of
an operation in as shown in Fig. 5. Let

represent the path traversed from to in
th execution of and let be the

path traversed from to in th execution of . Using
inequality (22) it can be easily shown that is a path
from source to sink in .

Theorem 5.3—Maximum Rate Constraint:A max-rate con-
straint in is satisfied if .

Proof: In order to obtain a lower bound on the inter-
val between two consecutive executions of operation, we
consider the case when the execution of the graph model
is restarted immediately after the completion of the previous
execution, i.e., . From the discussion above, there
exists a path in that corresponds to the consecutive execution
of operation . In other words, the interval
is bounded by the latency of the graph. Recall that the length
vector provides a lower bound on latency of. The result
follows.

Note that similar to a minimum delay constraints, a max-
imum rate constraint is always satisfiable. When

GUPTA AND DE MICHELI: EMBEDDED SYSTEMS TIMING CONSTRAINTS 249

Fig. 5. Consecutive executions of an operation corresponds to traversal of
a path inG.

, the maximum rate constraint can still be satisfied
by an appropriate choice of the overhead delay that is applied
to every execution of .

Example 5.1—Maximum Rate Constraints:For the flow
graph model shown in Fig. 2, the maximum rate of the
write operation, determined by , is 1 cycle , whereas
the maximum rate of theread operation is determined by

is cycle .
Any maximum rate constraint larger than or equal to is
satisfied by the graph model.

Note that this lower bound , used for checking the sat-
isfaction of maximum rate constraints, also defines the fastest
rate at which an operation in the graph model can be executed
by a nonpipelined implementation. This points to the necessary
condition for meeting a minimum rate constraint. Sufficient
conditions for minimum rate constraints are considered next.

A. Constraint Satisfiability Tests Using Graph Hierarchy

A hierarchical flow graph is composed using link vertices.
A link vertex represents a call to a flow graph in the hierarchy.
For a given graph model , that is called by a link vertex in
graph , graph is also referred to as a parent graph of
and is considered to beabove in the control-flow hierarchy

in the system control-flow. While the lower bound on the
time-interval between successive executions of an operation
can be derived by analyzing , that is the graph to which
the operation belongs, and all the graphsbelow in the control-
flow hierarchy, the determination of the upper-bound on the
interiteration interval of an operation, also requires estimations
of the delays due to operations and graphs that lieabovethe
operation in the control-flow hierarchy. In particular, the effect
of the runtime scheduler must also be taken into account.

We use the following notation to help express the propaga-
tion of constraints over the graph hierarchy. For a given graph

denotes the parent body that calls the graph. For a
graph refers to theparent process graph, i.e., the graph
at the root of the hierarchy corresponding to a process model.

Note that (static) determination of the interval of successive
executions of an operation that is conditionally invoked is
undecidable. That is, there may not exist an upper bound on

the invocation interval. For example, consider a statementif
(condition) value read (a);. There is not enough information
to determine the rate of execution of theread operation. For
deterministic analysis purposes, we take a two step approach
to answering constraint satisfiability.

1) Determine if a given implementation is satisfactory
assuming that the condition is always true. In other
words, the only uncertainty is conditional invocation
of the graph which may correspond to the body of a
process or a loop operation. This is consistent with the
interpretation that a timing constraint specifies a bound
on the interval between operation executions but does
not imply, per se, that the operation must be executed.
Under this assumption, the loops are executed at least
once (that is, loops are of the type “repeat-until”),
since the “while” loops are expressed as a conditional,
followed by a repeat-until loop, as explained earlier.

2) Next, we use the rate constraint on the conditionally
invoked operation as the additional information about
frequency of invocation of the condition. That is, the
rate constraint is used as aproperty of the environment
in continuing the rate constraint analysis to operations
that lie above the constrained operation in the graph
hierarchy. This way, constraints can be considered as
a source of additional information about the system
environment, which is considerably more convenient
to specify than probabilities of conditions taken. An
alternative approach would be to use simulations to
collect data, on the likelihood of the condition being
true, and use it to derive constraint satisfiability. This
approach is out of scope of the this paper.

Recall that the actual execution delay or the latency
refers to the delay of the longest path in. Unlike length,
delay of a path in may not be bounded in presence of
operations. We examine the two cases separately.

B. Case I: Contains No Operations

The latency of takes one of the finite values corresponding
to interval specified by . Equations (1)–(6) define the
formulae for calculation of. An upper bound on the operation
interval is then given by

(23)

The overhead represents the delay
and can be thought of as an additional delay

operation in series with the sink operation, . If is
not a root-level flow graph, then there exists a parent flow
graph that calls by means of a link operation, say.
The upper bound on this interval is derived when theth and

th invocations of correspond to separate invocations
of the link operation . That is

(24)

250 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 3, MARCH 1997

where is the number of times the flow graph is invoked
for the th execution of operation . By definition, is
invoked at least once for each execution of, i.e., .
Therefore, from inequalities (23) and (24)

(25)

Note that by definition, , there-
fore, is always a positive quantity.

Example 5.2:Consider the graph hierarchy shown in Fig. 2
assuming a purely hardware implementation with no overhead
due to the runtime system. We have and

. Therefore

Thus, the overhead in execution of which is called by a
link vertex in is four cycles.

Lemma 5.1—Minimum Rate Constraint with No : A
minimum rate constraint on an operation , where

contains no operations is satisfiable if

(26)

where the overhead term is defined by (25).
Proof: The proof follows from inequalities (20), (23),

and (25).
A bound on the overhead delay can be used to

determine bound on the overhead delay of by examining
possible execution paths in . By induction, this process
can be carried further to determine a bound on the overhead
delay in the invocation of the parent process graph. This
overhead delay corresponds to a bound on the delay due to
the runtime scheduler overhead. This places restrictions on
the choice of the runtime scheduler such that a bound on
the scheduling interval can indeed be placed.Note that a
bound on does not necessarily imply a bound on the
latency of . This is illustrated by Example 5.3 below. An
immediate consequence of the above (sufficient) condition for
satisfiability of minimum rate constraint is that the question
about the constraint satisfiability can bepropagated as a
minimum rate constraint on the link operation in the parent
graph model.

Lemma 5.2—Constraint Propagation:A flow graph sat-
isfies a minimum rate constraint if for its parent graph

(27)

where .
Proof:

[25]

From Lemma 5.1, satisfies minimum rate constraint.

In order to obtain a bound on the runtime scheduler over-
head, inequality (25) can be unrolled until the parent graph
corresponds to the (unconditionally invoked) process model,

for which . Thus

(28)

where is the bound on the delay
due to the runtime scheduler. The following example shows
the use of constraint propagation in deriving bounds on the
delay of the runtime scheduler.

Example 5.3—Minimum Rate Propagation:Consider the
hierarchy of graph models used in Example 2.2. reproduced
in Fig. 6. Here

First, we show the intuition behind rate constraint satisfiability,
followed by the use of constraint propagation to achieve the
same result.

A minimum rate constraint is specified on operation “A”
in that constitutes the loop body of operation two in
with loop index, , which in turn is a loop body of operation
three in . Let , and

cycle . Recall, that refers to a minimum rate
constraintrelative to .

Let us first consider . Since this con-
straint is relative to , there is no overhead the in invocation
of , i.e., . Since

The constraint is satisfied. Similarly, constraint
is satisfied since

Constraint is satisfied since

Finally, for the minimum rate constraint, , we
should also consider the overheadof the runtime scheduler
which adds to the bound of 33 cycles on successive intervals
of operation “A” relative to . Therefore, a is satisfied
if the delay due to the runtime scheduler is less than or equal
to cycles.

Alternatively, can be propagated as a rate
constraint of on which is in turn
propagated as a rate constraint of on

GUPTA AND DE MICHELI: EMBEDDED SYSTEMS TIMING CONSTRAINTS 251

Fig. 6. Upward propagation of minimum execution rate.

. This constraint on is satisfied for a bound of
cycles on the delay due to the

runtime scheduler.
Theorem 5.4—Minimum Rate Constraint with No : A

minimum rate constraint on operation, , where
contains no operations is satisfiable if the overhead due
to the runtime scheduler is bounded as follows in (29), shown
at the bottom of the page.

Proof: The proof is shown at the bottom of the next page.
In summary, a minimum execution rate constraint on a graph

model that contains no operations is translated as an
upper bound on the delay of the runtime system which
checked by comparing it against .

Note, that if the graph is not a root level graph, then
there exists a parent graph with a link operation that
calls . However, the unbounded delay due to this
operation does not affect satisfiability of the minimum rate
constraints on the operations in . This is illustrated by the
Example 5.3 above where the satisfiability of minimum rate
constraints on operation “A” in is not affected by the

operations and in and , respectively. In
general, the delay of an operation affects satisfiability
of a minimum rate constraint applied on an operationother
than the operations linked with the operation. This case
is considered next.

C. Case II: Contains Operations

In presence of operations in , the latency, can
no longer be bounded by the longest path lengthin . In
addition, if is not a root-level flow graph, its the overhead

may also not be bounded by the maximum path length of
its parent graph. For the sake of simplicity, let us first consider
the (relative) minimum rate constraint on a graph model with
zero overhead, that is, for all . Such a
rate constraint then bounds the latency of the graph model
and is represented as a backward edge (that is, a maximum
delay constraint) from the sink vertex to the source vertex
in the constraint graph model of . Since is a connected
graph, such a constraint invariably leads to a -cycle in
the constraint graph. According to Theorem 5.2, the maximum
delay constraint can be satisfied only by bounding the delay of
the operation, that is, by transforming the operation
into a non operation. The implications of a bound on the

operation delays are as follows.

• Let us first consider synchronization related oper-
ations. Since there are multiple ways of implementing
a synchronization operation, the effect of the bound is
to choose those implementations which aremost likely
to satisfy the minimum rate constraint. Thus, a bound
on the delay of the synchronization refers to a bound
on the delay offered by theimplementationof the
operation. The implementation delay of a synchronization
operation is referred to as thesynchronization over-
head . This overhead delay is determined by the
particular hardware or software implementation of the
runtime scheduler. In the absence of a runtime scheduler,
in hardware, for example, where the schedule of all
operations is statically fixed, the source operation is
scheduled for execution immediately after completion
of execution of the sink operation, and this overhead

(29)

252 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 3, MARCH 1997

is zero. For software , delay is determined by the
implementation of the wait operation by the runtime
scheduler. For example, a common implementation tech-
nique is to force acontext switchin case an executing
program enters a wait state. Here, would be twice
the context-switch delay to account for the round-trip
delay. For such an implementation, the minimum rate
constraint is interpreted as the rate supportable by an
implementation. With this interpretation, the oper-
ations are considered non operations with a fixed
delay .

• Next, the data-dependent loop operations use a data-
dependentloop indexthat determines the number of times
the loop body is invoked for each invocation of the loop
operation. The delay offered by the loop operation is
its loop index times the latency of the loop body. As
mentioned earlier, at the leaf-level of graph hierarchy,
the latency of the loop body is given by its path length
vector. The elements of a path length vector consist of
the lengths of all paths from source to sink, and these are
bounded. In case the constrained graph model contains at
most one loop operation, the minimum rate constraint
can be seen as a bound on the number of times the loop
body corresponding to the loop operationis invoked.
This bound on loop index is given by (30) that is derived
later. This bound is then treated as a property of the loop
operation, consequently making it a non operation
with a bounded delay for carrying out further constraint
analysis.Verification of these bounds requires additional
input from the user, i.e., the information modeled by the
input description in HardwareC is not sufficient to answer
the question about constraint satisfiability, and the user is
prompted to verify validity of bound .

For a relative minimum rate constraint relative to,
the overhead term, , in (30) is assigned zero value.
In general, however, the satisfiability of a minimum
execution rate constraint also includes a bound on the
invocation delay, of , as per (28). Clearly, a bound
on implies a bound on the latency of which is
equivalent to a minimum rate constraint on an operation
in . However, this minimum rate constraint doesnot

bound the loop index of link operation associated with.
The constraint satisfiability is then continued until
corresponds to a process body,.

The presence of multiple operations in and
present a more complex case since a minimum rate bounds
the effective delay which is now a function of multiple loop
indexes. In general, this is a difficult problem to answer
deterministically since the use of constraints as a property
to determine bounds on loop indexes, as mentioned earlier,
is also affected by the order in which the operations
are evaluated. One straightforward extension of our deter-
ministic analysis procedure for single -operation models
to models with multiple operations is to allow only
one operation at a time and use programmer input to
bound other operations. Since the results are dependent
upon the order of evaluation of operations, a con-
straint analysis procedure that determines satisfiability over
all possible order is likely to be computationally expensive.
Another possibility is to use statistical information about
the program behavior. For instance, Puschner and Koza in
[24] describe language constructs that allow user to input
information about the behavior of the programs that can
be used to improve the quality of maximum time estima-
tion.

Theorem 5.5—Minimum Rate Constraint with :
Consider a flow graph with an operation representing
a loop in the flow graph. A minimum rate constraint on
operation and is satisfiable if the loop
index indicating the number of times is invoked for
each execution of is less than the bound

(30)

where refers to themobility of operation and is defined
as the difference in the length of the longest path that goes
through and .2 refers to the graph model called by

2The mobility is computed inO(jE(G)j) time as the difference in starting
times of as late as possible (ALAP) and as soon as possible (ASAP) schedules
of a deterministic delay flow graph constructed by considering all link vertices
to be call link vertices with delay as the maximum path length of the called
graphs.

[28]

is satisfied. Lemma 5.1

GUPTA AND DE MICHELI: EMBEDDED SYSTEMS TIMING CONSTRAINTS 253

TABLE III
RUNTIME OVERHEAD IN CYCLES

the operation and the overhead bound is defined
by (28).

Proof: The maximum interval between successive execu-
tions of operation is given by the maximum latency
of and its maximum overhead . [See inequality (20)
and the following discussion.] The latency of is defined as
the maximum over the lengths of all paths from source to sink
vertices. Let represent the longest path from source to sink
that goes through operation

Note that is computed by treating all link vertices
as call link vertices, and, therefore, it includes the delay due
to one execution of each loop body, hence, the second term
in equation above represents the additional component to the
latency due to the invocations of the loop flow graph

.
The length of the longest path from source to sink deter-

mines the value of . The vertex may or may not lie
on the longest path from source to sink operations. This slack
between and the length of the longest path through

is captured by the mobility of operation . That is,
.

For satisfiability of constraint , we require that

This provides the bound on every loop index in.
Example 5.4—Bound on Loop Index Due to Minimum Exe-

cution Rate Constraint:Consider a minimum rate constraint
of 0.02/cycle on operation “B” in graph model shown
in Example 5.3. Let the maximum delay due to the runtime
scheduler be (for example, hardware implementation).
The bound on the loop index for operation is calculated as
follows:

With this bound on loop index, the operation has a
bound on its delay of 20 cycles.

On the other hand, arelativerate constraint, of 0.02/cy-
cle leads to a bound on loop index of

with this bound the delay of is less than 36 cycles.

VI. CONSTRAINT ANALYSIS IMPLEMENTATION

Operation-level constraint analysis is implemented as a
part of the cosynthesis framework, VULCAN [11], to allow
the system designer to explore hardware versus software
implementations of a given system model. The operation
delays corresponding to hardware implementation are obtained
using the high-level synthesis tools [12], whereas software
implementation is considered in the context of a specific
processor-cost model specified by the designer. To evaluate
the effect of the runtime system, we have explored the fol-
lowing three ways to implement the software routines: a)
subroutine-based, b) coroutine-based, and c) description-by-
cases. Briefly, a subroutine implementation refers to translation
of program threads into program subroutines that operate
under a global task scheduler. In contrast, a coroutine im-
plementation reduces the overhead by placing routines in a
cooperative, rather than hierarchical, relationship to each other.
The coroutines maintain a local state and willingly relinquish
control of the processor at exception conditions which may
be caused by unavailability of data (for example, a data
dependency on another thread) or an interrupt. In case of
such exceptions, the coroutine switch picks up the processes
according to a predefined priority list. Upon resumption, a
coroutine execution starts execution from the position where
its was detached last. A restricted coroutine implementation
reduces the overhead further by suitably partitioning the on-
chip register storage between program routines such that
program counter is the only register that is saved/restored
during an interroutine transfer. Finally, in the description-by-
cases, we merge different routines and describe all operations
in a single routine. This scheme is simpler than the coroutine
scheme. Here, we construct a single program which has
a unique state assignment for each synchronization opera-
tion. A global state register stores the state of execution
of a thread. Transitions between states are determined by
the runtime scheduling of different ND operations based
on the data received. This method is restrictive since it
precludes use of nested routines and requires description as a
single switch statement, which in cases of particularly large
software descriptions, may be too cumbersome. Table III
summarizes program overhead for different implementation
schemes. Results are reported for two processors, DLX [26]
and the Intel 8086. From these implementations, we see
that the overhead due to the runtime system in software
varies from approximately 20 cycles to over 700 cycles

254 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 3, MARCH 1997

depending upon the choice of the processor and the runtime
system.

The constraint satisfiability tests are put together in the
procedurecheck_satisfiability, shown at the bottom of the
page. The input to the procedure is a set of graph models
with delay and rate constraints along with a choice of the
runtime system. Given a flow graph modelwith operation
delay and execution rate constraints, the constraint analysis
proceeds bottom-up. The leaf-level flow graphs do not contain
any loop operations. Its output is null if the constraints
are satisfiable, else either is unsatisfiable or it returns
bounds on the delay of ND operations that would make
constraints satisfiable. These bounds are then verified by
the system designer as being applicable or requiring system
redesign.

Thus, the satisfaction of the bounds on delay of
operations requires additional information from their imple-
mentations (such as context switch delay, possible loop in-
dex values) against which the questions about satisfiabil-
ity of minimum rate constraint can be answered. Because
of these bounds, there is now a certainmeasureof con-
straint satisfiability that approaches certainty as the derived
bound approaches infinity. More importantly, having bounds
derived from timing constraints makes it possible to seek
transformations to the system model which trades off these
measures of constraint satisfiability against implementation

costs. Under certain conditions, these bounds can be extended
by modifying the structure of the flow graphs with
cycles [11]. The following illustrates an example where the
satisfiability tests successfully return with bounds on the
operations.

Example 6.1:For Example 5.3, let us assume the following
imposed constraints:

.
Recall

There are three main steps to the constraint analysis procedure:

1) construction of the constraint graph which is done by
adding forward edges for minimum delay and maximum
rate constraints and backward edges for maximum delay
and (relative) minimum rate constraints;

2) identification of cycles by path enumeration for each of
the backward edges in the constraint graph;

3) propagation of minimum rate constraints up the graph
hierarchy.

checksatisfiability()
for

if loop /* recursively go to leaf-level graph */
checksatisfiability();

construct /* construct the constraint graph model */
for each backward edge in

if (cycle-set find-cycles()) /* check for min/max */
for cycle-set /* identify cycles caused by backward edges */

if (/* find positive length cycles */
return (Constraint is unsatisfiable); /* not feasible */

for and /* identify cycles */
print ;
bound delay of ; /* bound on delay using constraints */
mark as non- ; /* now treat this delay bound as a property */

/* check for max rate */
if

return (is satisfied);
else /* need to add null operations – */

addNOPwith ; /* – to ensure lower bound on delay */
update ; /* modified flow graph */
checksatisfiability();

if exists /* check for min rate */
impose constraint on link operation in ; /* propagate */

GUPTA AND DE MICHELI: EMBEDDED SYSTEMS TIMING CONSTRAINTS 255

We show these three steps in this example. The procedure
first considers :

: In the constraint graph of , there are three backward
edges with the following weights:

: The maximum forward path length is

no positive cycles
The constraints are feasible. Further, contains
no cycles.

: Propagate minimum rate constraints to

not propagated.

Note that is not propagated further than .
:

: In the constraint graph of , there are four backward
edges with the following weights:

: is infeasible since it leads to a positive cycle with
weight . The rest are feasible. Next, the
constraint graph contains cycles with a single
operation, , for each of the three (feasible) backward edges.
Of these, only one, namely , bounds the delay due to the

operation by the following upper bound on loop index,
. With this bound, the delay of

the loop operation, , is bound below 16 cycles.
: Propagate minimum rate constraints to

Infeasible. Not propagated.
Not propagated.

Not propagated.

Finally for :
: In the constraint graph of , there are three backward

edges with following weights:

: There are no positive cycles, so the constraint graph is
feasible. Further, two backward edges lead to cycles. Only
one of them constrains the delay of the operation .
The bound on the loop index,

. With this bound the delay of is .
: There is no parent graph to propagate the minimum rate

constraints.
From Example 5.3, the bound on the delay due to runtime

system is cycles which is greater
than cycles. Therefore, with the given bounds on
loop indexes of and the constraints are satisfied.

This example illustrates the process of constraint analysis
for a given hierarchy of graphs that model an embedded
system implementation along with the timing constraints. This
analysis is interactively performed where the expected bounds
on loop indexes are verified by the user to be either acceptable
or else loop transformations are attempted to ensure constraint
satisfiability [11].

VII. SUMMARY AND FUTURE WORK

In this paper, we have considered the two basic types of
constraints that are useful in characterizing embedded system
timing performance. One is operationdelayconstraints which
are defined as binary relations that are translated to bounds on
the interval between thestart timeof two operations. The other
is executionrate constraints, typically known as throughput
constraints, which are defined as constraints on successive
executions of an operation. A notion of constraint satisfiability
is developed based on the ability to determineexistenceof a
schedule of operations that meets the constraints. Scheduling
is considered in two parts: operation scheduling and task/graph
scheduling. While the former can be subject to deterministic
constraint satisfiability analysis, such analysis for the latter is
limited in applicability due to the additional nondeterminism
inherent in the runtime system for software. The run-time
scheduler models uncertainty in invocation of graph models
and, thus, attempts to “merge” this uncertainty with that of
delay of (link) operations by choosing an implementation
of operation that causes a context-switch. This merge in
uncertainty is accomplished by redefining short-term constraint
satisfiability overactive computation times rather than total
execution times. Thus, an operation is transformed into
a fixed-active-delay operation while the uncertainty associated
with its actual delay is delegated to the runtime scheduler.

The proposed algorithm is useful in carrying out an inter-
active analysis of constraints, where the effect of individual
constraints on feasibility of an implementation can be seen by
propagating the constraint through the hierarchy of the graph
model. The constraint analysis described in this paper has been
implemented in a practical cosynthesis system, VULCAN,
which takes an input described in HardwareC and allows
the designer to interactively explore the effect of individual
timing constraints on system implementation in hardware
and software. From our experience in applying cosynthesis
techniques, we find that the specification of pair-wise operation
constraints is sometimes restrictive in real life applications.
Our future plans include extension of constraint analysis to

256 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 3, MARCH 1997

ary constraints, i.e., constraints on operations. Such
constraints are useful in expressing performance constraints
on a group of operations that would otherwise require a
cumbersome binary constraint descriptions.

ACKNOWLEDGMENT

The authors thank their anonymous reviewers for their
comments and constructive suggestions.

REFERENCES

[1] M. Chiodo, P. Giusto, A. Jurecska, A. S. Vincentelli, and L. Lavagno,
“Hardware-software codesign of embedded systems,”IEEE Micro, vol.
14, pp. 26–36, Aug. 1994.

[2] D. E. Thomas, J. K. Adams, and H. Schmit, “A model and methodology
for hardware-software code-sign,”IEEE Des. Test Comput., pp. 6–15,
Sept. 1993.

[3] R. Ernst, J. Henkel, and T. Benner, “Hardware-software cosynthesis for
microcontrollers,”IEEE Des. Test Comput., pp. 64–75, Dec. 1993.

[4] R. K. Gupta and G. D. Micheli, “Hardware-software cosynthesis for
digital systems,”IEEE Des. Test Comput., pp. 29–41, Sept. 1993.

[5] R. Camposano and A. Kunzmann, “Considering timing constraints in
synthesis from a behavioral description,” inProc. Int. Conf. Comput.
Des., 1986, pp. 6–9.

[6] D. Ku and G. D. Micheli, “Relative scheduling under timing constraints:
Algorithms for high-level synthesis of digital circuits,”IEEE Trans
Comput.-Aided Des., vol. 11, pp. 696–718, June 1992.

[7] S. M. Burns, “Performance analysis and optimization of asynchronous
circuits,” Ph.D. Dissertation, Calif. Inst. Technol., CS-TR-91-1,
Pasadena, 1991.

[8] J. Magott, “Performance evaluation of concurrent systems using petri
nets,” Inform. Processing Lett., vol. 18, pp. 7–13, 1984.

[9] C. V. Ramamoorthy and G. S. Ho, “Performance evaluation of asyn-
chronous concurrent systems using petri nets,”IEEE Trans. Software
Eng., vol. SE-6, no. 5, pp. 440–449, 1980.

[10] H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello, “An algorithm for
exact bounds on the time separation of events in concurrent systems,”
IEEE Trans. Comput., vol. 44, pp. 1306–1317, Nov. 1995.

[11] R. K. Gupta and G. D. Micheli, “A co-synthesis approach to embedded
system design automation,”Des. Automat. Embedded Syst., vol. 1, nos.
1–2, pp. 69–120, Jan. 1996.

[12] D. Ku and G. D. Micheli,High-Level Synthesis of ASIC’s under Timing
and Synchronization Constraints. Norwell, MA: Kluwer, 1992.

[13] V. Cerf, “Multiprocessors, semaphores and a graph model of computa-
tion,” Ph.D. Dissertation, Univ. California, Los Angeles, Apr. 1972.

[14] R. K. Gupta, “Co-synthesis of hardware and software for digital embed-
ded systems,” Ph.D. dissertation, Stanford Univ., Stanford, CA, Dec.
1993.

[15] R. K. Gupta, C. Coelho, and G. D. Micheli, “Synthesis and simulation
of digital systems containing interacting hardware and software compo-
nents,” inProc. 29th Des. Automat. Conf., June 1992, pp. 225–230.

[16] C. Y. Park, “Predicting program execution times by analyzing static
and dynamic program paths,”Real-Time Syst., vol. 5, no. 1, pp. 31–62,
Mar. 1993.

[17] Y.-T. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,” inProc. Des. Automat. Conf., June
1995, pp. 456–461.

[18] D. Bustard, J. Elder, and J. Welsh,Concurrent Program Structures.
Englewood Cliffs, NJ: Prentice-Hall, 1988, p. 3.

[19] B. Dasarathy, “Timing constraints of real-time systems: Constructs for
expressing them, method of validating them,”IEEE Trans. Software
Eng., vol. SE-11, pp. 80–86, Jan. 1985.

[20] D. Ku and G. D. Micheli, “Relative scheduling under timing con-
straints,” in Proc. 27th Des. Automat. Conf., Orlando, FL, June 1990,
pp. 59–64.

[21] I. Watson, “Architecture and performance (fundamentals of dataflow),”
in Distributed Computing, F. B. Chambers, D. A. Duce, and G. P. Jones,
Eds. New York: Academic, 1984, pp. 21–32.

[22] D. Filo, D. C. Ku, and G. De Micheli, “Optimizing the control-unit
through the resynchronization of operations,”Integr. VLSI J., vol. 13,
pp. 231–258, 1992.

[23] Y. Liao and C. Wong, “An algorithm to compact a VLSI symbolic
layout with mixed constraints,”IEEE Trans. Computer-Aided Design,
vol. CAD-2, pp. 62–69, Apr. 1983.

[24] P. Puschner and C. Koza, “Calculating the maximum execution times of
real-time programs,”J. Real-Time Syst., vol. 1, pp. 159–194, Apr. 1989.

[25] G. D. Micheli, D. C. Ku, F. Mailhot, and T. Truong, “The olympus
synthesis system for digital design,”IEEE Des. Test Mag., pp. 37–53,
Oct. 1990.

[26] J. L. Hennessy and D. A. Patterson,Computer Architecture: A Quanti-
tative Approach. Los Angeles, CA: Morgan-Kaufman, 1990.

Rajesh K. Gupta received the B.Tech. degree in
electrical engineering from the Indian Institute of
Technology, Kanpur, India, in 1984, the M.S. degree
in electrical engineering and computer science from
University of California, Berkeley, in 1986, and the
Ph.D. degree in electrical engineering from Stanford
University, Stanford, CA, in 1993.

From 1986 to 1989, he was at Intel Corporation,
Santa Clara, CA, where he worked on VLSI design
at various levels of abstraction as a member of the
design teams for the 80386-SX, 80486, and Pentium

microprocessor devices. He was as an Assistant Professor at the University of
Illinois, Urbana-Champaign, from 1994 through 1996. Since 1996, he has
been an Assistant Professor of Information and Computer Science at the
University of California, Irvine. He has worked on a number of successful
chip designs, ranging from CMOS, BiCMOS, and ECL to high-speed GaAs
devices. He is the author ofCosynthesis of Hardware and Software for Digital
Embedded Systems(Norwell, MA: Kluwer, 1995). He is coauthor of a patent
on PLL-based clock circuit. His research interests are in system-level design
and computer-aided design for embedded and portable systems, very large
scale integration design, computer systems architecture, and organization.

Dr. Gupta serves on the program committees of the Great Lakes Sym-
posium on VLSI, the CODES Workshop, ICCD, ICCAD, and DAC. He
was nominated for the NSF Presidential Faculty Fellow Award by the
University of Illinois in 1996. He is a recipient of the National Science
Foundation Career Award in 1995, the Philips Graduate Fellowship in 1991
and 1992, the Departmental Achievement Awards by the Microcomputer
Division, Intel Corporation in 1987 and 1989, the Components Research
Award of the Technology Development Division, Intel Corporation, in 1991,
the Chancellor’s Award for Excellence in Undergraduate Research in 1987, the
Joseph Dias Fellowship, University of California, Berkeley, in 1985, and the
Dr. David and Sylvia Gale Fellowship, University of California, Berkeley,
in 1984.

Giovanni De Micheli (S’82–M’83–SM’89–F’94)
received the nuclear engineering degree from Po-
litecnico di Milano, Milan, Italy, in 1979 and the
M.S. and Ph.D. degrees in electrical engineering and
computer science from the University of California,
Berkeley, in 1980 and 1983, respectively.

He is Professor of Electrical Engineering and
Computer Science at Stanford University, Stanford,
CA. Previously, he held positions at the IBM T.
J. Watson Research Center, Yorktown Heights, NY,
the Department of Electronics of the Politecnico di

Milano, and Harris Semiconductor, Melbourne, FL. He is author ofSynthesis
and Optimization of Digital Circuits(New York: McGraw-Hill, 1994), coau-
thor of High-Level Synthesis of ASIC’s Under Timing and Synchronization
Constraints(Norwell, MA: Kluwer, 1992), and coeditor ofHardware/Software
Co-Design(Norwell, MA: Kluwer, 1995) and ofDesign Systems for VLSI
Circuits: Logic Synthesis and Silicon Compilation(Norwell, MA: Martinus
Nijhoff, 1986). His research interests include several aspects of the computer-
aided design of integrated circuits and systems, with particular emphasis on
automated synthesis, optimization, and validation.

Dr. De Micheli was Program and General Chair of the International
Conference on Computer Design (ICCD) in 1988 and 1989, respectively.
He was Co-Director of the NATO Advanced Study Institutes on Hard-
ware/Software Co-Design, Tremezzo, Italy, in 1995 and the Logic Synthesis
and Silicon Compilation, L’Aquila, Italy, in 1986. He is the Program Chair (for
design tools) of the 1996/1997 Design Automation Conference. He received
a Presidential Young Investigator Award in 1988. He received the 1987
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS

AND SYSTEMS Best Paper Award and two Best Paper Awards at the Design
Automation Conference in 1983 and in 1993.

