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Specification and Analysis of Timing
Constraints for Embedded Systems

Rajesh K. Gupta and Giovanni De Michekellow, IEEE

Abstract—Embedded systems consist of interacting hardware plementations, portions of system functionality are realized by
and software components that must deliver a specific function- a program running on the processor. Consider for example, the

ality under constraints on relative timing of their actions. We  yagign of a vehicular cruise controller described in Example
describe operationdelay and executionrate constraints that are

useful in the context of embedded systems. A delay constraint 1.1 below. . . .
bounds the operation delay or specifies any of the thirteen ~Example 1.1:Fig. 1 shows a block diagram of the cruise
possible constraints between the intervals of execution of a pair controller. The controller monitors cruising speed, fuel con-
of operations. A rate constraint bounds the rate of execution of symption, and provides valve control and status/maintenance
an operation and may be specifiedrelative to the control flow — ¢.oqpack 1o the driver. The clock, calibration, and get info
in the system functionality. We present constraint propagation ) : . X

and analysis techniques to determine satisfaction of imposed POrtions are implemented in dedicated hardware, whereas the
constraints by a given system implementation. In contrast to rest is implemented as a set of program routimetuding a
previous purely analytical approaches on restricted models or runtime systemrunning on a microprocessor. The controller
statistical performance estimation based on runtime data, we performs velocity regulation by sampling the brake and gear

present a static analysis in presence of conditionals and loops with . - s -
the help of designer assists. The constraint analysis algorithms inputs at least once every millisecond and delivering appropri

presented here have been implemented in a cosynthesis system@te value to valve control at least once per second. In addition,
VULCAN, that allows the embedded system designer to interac- the performance is also constrained by a maximum delay of
tively evaluate the effect of performance constraints on hardware- 1 ms from the time a brake input is sampled to its effect on
software implementation tradeoffs for a given functionality. We {ha valve control output.
fg:ssgp?ézan%ﬁé?qggy onstrate the application and utility of A systematic exploration of system implementations using
reprogrammable components requires specification and analy-
sis of performance constraints to determine feasibility of an
implementation in hardware or software. Related work on
timing analysis comes from several sources such as feasi-
ble scheduling [5], [6] and rate analysis for asynchronous
|. INTRODUCTION concurrent systems modeled using Petri nets [7]-[9]. More
HIS WORK considers a synthesis approach to the iniecently, Hulgaarct al. in [10] presented an exact algorithm

plementation of embedded systems under constraints fen determination of bounds on the time interval between

the timing performance of the system implementation and @vents in a process graph using implicit unfolding of the
the overall cost of design. An embedded system is target@@ph. In developing a tight bound on operation invocation
for a specific and limited application and, therefore, musitervals, it considers only process graphs without conditional
be designed to efficiently implement the required functionrvocation of operations. In contrast, this work considers
ality. Driven by the advances in semiconductor technologiming analysis in presence of conditionals and loops. We
and computer-aided design techniques, embedded systemsgpsgsent a constraint analysis procedure in which additional
increasingly used in new application areas such as automotigesigner input can be specified to determine possible timing
networking, and consumer electronics. To address the copenstraint violations. The use of designer input in resolving
plexity of the embedded system design task, recently there lgagistraint violations is particularly valuable in presence of
been a surge of interest in usem&designed reprogrammableuncertainty due to conditional invocation of the operations.
components such as off-the-shelf microcontrollers to redutéis paper describes (deterministic) constraint analysis as im-

the design time and design cost [1]-[4]. dmixedsystem im- plemented in the VULCAN cosynthesis system. An overview
of various cosynthesis subtasks for hardware and software

including constraint analysis in the deterministic as well as

Manuscript received February 6, 1995; revised December 16, 1997. Thisthe probabilistic sense can be found in [11].

paper was recommended by Associate Eqitor, _R. Camposano. This work wasThis paper is Organized as follows. We brieﬂy describe the
supported in part by the AT&T Foundation, in part by NSF-ARPA MIP.

Index Terms—Constraint analysis, constraint satisfiability, em-
bedded systems, interactive analysis, rate constraints, relative
rates, timing analysis.

9115432, and in part by NSF CAREER Award MIP 95-01615. input and its allafstra'ctlon |n'to .a model in Sectlon I1. S.ectlon 1
R. K. Gupta is with the Department of Information and Computer Sciencpresents specification of timing constraints and their abstrac-

University of California, Irvine, CA 92697 USA. o tion into a constraint model. In Sections IV and V, we describe
G. De Micheli is with the Department of Electrical Engineering, Stanfor(%h . f . isfiabili d hni

University, Stanford, CA 94305 USA. e notion o constramt satis ia ility an _ present tec niques
Publisher Item Identifier S 0278-0070(97)04736-2. to carry out constraint analysis. In Section VI, we describe

0278-0070/97$10.00 1997 IEEE



GUPTA AND DE MICHELI: EMBEDDED SYSTEMS TIMING CONSTRAINTS 241

Embedded System Realization
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Fig. 1. Example of an embedded system implementation with timing constraints.

our implementation of the constraint analysis procedure andThe input description is compiled into a graph based model,
how it can be used by the system designer. We summarizdled flow graph, defined as follows.

contributions and discuss open issues in Section VII. Definition 2.1: A flow graph modeis a polar acyclic graph,
G = (V,E,x), whereV = {wg,v1,---,uyx} represent oper-
Il. INPUT SPECIFICATION AND MODEL ations withvg and vy being the source and sink operations,

_respectively. The edge sef, = {(v;,v;)}, represents depen-

\tI1Ve dbegm ;V'th gt_desclrlpnon of Eyétem ljundctlonaél:ty 1' encies between operation vertices. Functiomssociates a
a hardware description language ( ), HardwareC [ oolean (enabling) expression with every edge.

Use of a HDL makes it possible to use existing syntheS|sA vertex in the flow graph represents one of the following

techniques for digital hardware in system implementations . " . : .
o language-level operationapp, conditional, logic, arithmetic,
consisting of both hardware and software components. FurthI%r, wait, and link. As mentioned earlier, thevait operation

most HDL'’s allow for computation of explicit dependencies”’ ' o ’ P
éjsed to represent synchronization events at model ports.

between operations and memory usage by use of static d_éé link tion | dt i hi hv of models b
types and unaliased data references. Both of these featu INk operation 1S used 1o capture hierarchy ot models by
eans of a call or a loop operation. The called flow graph

are essential for analysis of constraints on timing and siZ8 , link invok
of implementation. The particular choice of HardwareC i€°"esPonding to a link vertex may be invoked one or many

immaterial, and other procedural HDL's may be used as welimes- Function and procedure calls are also represented by
The basic entity for specifying system behavior jsracess & call I|nI§ vertex where the body of function/procedure is
A process executes concurrently with other processes in fi@Ptured in a separate graph model. B _
system specification. A process restarts itself on completion o 100p link operation consists of a loop condition operation
the last operation in the process body. A process in HardwarBt@t performs testing of the loop exit condition and a loop
can have nested sequential and parallel statement block@#y- The loop body is represented as a separate graph model.
statements. The use of multiple processes to describe a systé number of invocations of the loop body are controlled
functionality abstracts parts of a system implementation thy a&loop indexvariable associated with each loop operation.
operate at different speeds of execution. All communicatidN! 00p operations are assumed to be of the form “repeat-
between operations within a process body is based on shasil”; that is, a loop body is executed at least once. The
memory. This shared storage is declared as a part of #HBL specification of “while™-loops is suitably transformed
process body. Interprocess communication is specified bging a conditional operation. Any successor to a conditional
message-passing operations that use a blocking protocol dperation is enabled if the result of condition evaluation selects
synchronization purposes. This blocking is implemented usitige branch to which the operation belongs. This is expressed
wait operations on associated control signals. by the enabling condition associated with the edge leaving the
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linked to other flow graphs. That is, a system model is
expressed asp = {G%,G%,---,GE}, where GF represents
the process graph modél; and all the flow graphs that are
hierarchically linked toG;.

A. System Implementation

A flow graph model can be implemented as a hardware
block or as a program. The implemented model is enabled by
an external controller in case of hardware and by the runtime
system in case of software, to perform the required tasks.
Therefore, anmplementatiorf (&) of a graph mode{7 refers
to assignment of delay and size properties to operatioris in
and a choice ofuntime schedulefl that enable execution
of the source operations iG/. This actual assignment of
values is related to the hardware or software implementation of
operations inGG. For nonpipelined hardware implementations,
the runtime-scheduler is trivial, and the source operation is
enabled once its sink operation has completed (and the graph

9
|1 ! / \‘ enabling condition is true for conditionally invoked graphs).
y / conjoined N\

For software, the runtime scheduler refers to the choice of
10@ 1" @ a runtime system that provides the operating environment for
conjoined, 1

execution of operations i&x. For details on implementation of
1
13 Sink 12 Sink

the runtime system, the reader is referred to [14]. Note that a
Fig. 2.  An example of a flow graph model consisting of two graphs.

< ——

choice of operation schedule is not required for an implementa-
tion. This is because we assume that the expressed concurrency
in flow graph models can be supported by available hardware
resources. That is, any serialization required to meet hardware
resource constraints has already been performed. This is not

" . . . a strong assumption, since the availability of major hardware
condition vertex. In general, a multiple in-degree operation

: P . o resources like adders and multipliers are usually known in
vertex is enabled by evaluating @aput expressiorconsisting advance

of logical AND and OR operations over enabling expressmns.l.iming properties of a system model are derived using

of its fan-in edges. Similarly, on completion of an operatiorh ottom-up computation from individual operation delays.
all or a ,SEt of its success.or.vertlces can l?e enabled. F0.r €RER us first consider nonhierarchical flow graphs, i.e., graphs
vertex, itsoutput expressions an expression over enablingih ot ink vertices. Thalelays of an operation refers to the
conditions of its fan-out edges. These expressions determing,q tion delay of the operation in cycles. In a nonhierarchical
the flow of control through the graph model. flow graph, the delays of all operations (excepait) are
A flow graph is considereavell formedif the input and fiyeq and independent of the input data. Tweit operation
output expressions use either AND or OR operations byfers variable delay which may or may not be data-dependent
not both in the same expression. For a well-formed grap&bpending upon its implementation. Theency \(G) of a
a set of input or output edges to a vertex is consider%qaph model G refers to the execution delay of. The
conjoined if the corresponding expression is a conjunctio[gitenCy of a flow graph may be variable due to the presence
over inputs or outputs. Similarly, a set of edgedlisjoined of conditional paths. Next, the hierarchical flow graphs also
if the corresponding expression is a disjunction. Structurallygntain link vertices, such asall and loop which point to
this makes the flow graph Ailogic graph [13]. For this fiow graphs in the hierarchy. Therefore, an execution delay
reason, the flow graphs are calleitbgic sequencing graphs can be associated with link vertices as the latency of the
opposed taunilogic sequencing graphs in [12] which specifycorresponding graph model times the number of times the
conditional paths as separate graphs. Bilogic graphs areaded graph is invoked. Since the latency can be variable,
common occurrence in control graphs. the delay of a link vertex can be variable. It may also
Example 2.1:Fig. 2 shows example of a well-formed bi-be unbounded in case of loop vertices since these can, in
logic graph model for a process consisting of a conditiongtinciple, be invoked unbounded number of times.
and a loop operation. In subsequent examples, the labelThe delay ofwait operation depends upon its implemen-
“conjoined” and “disjoined” are also indicated by symbolsation. For instance, in @usy-wait implementation [i.e.,
“*" and “+,"” respectively. while(!signal}, the wait operation is implemented as a loop
Finally, asystentonsists of interacting parts, each of whicloperation that iterates until the concerned ingignal is
can be abstracted into a flow graph model. A system modekteived. This implementation is commonly used for hardware
consists of one or more flow graphs that may be hierarchicalynthesis [12]. Another implementation of wait operation is a
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context-switchoperation. The latter is particularly applicablaespectively, the resulting path length containsm elements,
for software implementations [15]. For this implementatiorgonsisting of sums over all possible pairs of elements, @nd

the delay of the wait operation is characterized as a fixég. In the case of a conjoined composition, the resulting path
overhead as the delay due to the runtime system. This chadieegth is of cardinality: x m and consists of maximum over all

of operation delay is discussed later in Section V. possible pairs of elements. Finally, in a disjoined composition,
the resulting path length is of cardinality+ m and contains
B. Path Lengths in Flow Graphs all elements off, and £,,.

. . In practice, one often needs only the upper and lower bounds
We now describe the computation of path length parameters latencies. Notationallyt,, and £y, refer to the minimum
upon which our analysis of constraints is based. A path Ienggnd maximljm clement in?l respej\étively For well-formed

¢(@) defines the lower bound on the latency of the Ionges{:a hs.. and/y, can be computed efficiently by collapsin
path between the source and sink vertices, assuming the IGSBPISEm M b Yy by bsing

index to be unity for the loop operatiohsn the presence of TR ditional paths into a single operation vertex with minimum

conditional paths, the length is a vectdr— (£[i]), where or maximum branch delay respectively. We state without proof

each element[i] indicates the execution delay of a path iﬁhe following properties:

G. The elements of are the lengths of the longest paths that (4, @ Ly)ar = L1 + bons (1)
are mutually-exclusive. Depending on system control flow, not (£, ® L) = L1 + £ 2)
all statically-derived paths may be executed. Therefore, some L m T R T Ram

elements of may well represent infeasible paths. It is possible (& © Ly = max(£inr, L2nr) (3)
to improve this estimation by providing user-directives as in (41 @ £y)m = max(im, bom) (4)
[16], [17], though we do not consider such estimation methods (4, @ £y)ar = max(£1pr, bonr) (5)
here. However, the results of this analysis can be applied (£, @ L) = min(Cim, Lo). ©6)

mutatis mutandigising dynamic path estimation methods to

improve the constraint satisfiability tests presented later. These properties have been used in previous work related to
The length computation for a flow graph proceeds by @ecution path analysis in [16]. Note that our flow graphs
bottom-up computation of lengths from delays of individuadre derived from descriptions in a structured programming
operations. Given two operationsandv with delays,é., 6., language. In other words, in the input descriptions, there are
these can be related in one of the following three ways in th@ jumps and goto statements. This makes the control flow in
flow graph. the flow graphs series-parallel where the blocks (groups of op-
» Sequential compositiorThe combined delay of andv eration vertices) are either nested or sequential. This simplifies
is the sum of two operation delays and is represented the path length computation as the following example shows.
8, ® 6 2 8, + 6. Example 2.2—Latency and Path Length Computations for
« Conjoined compositianWhen the operationgs and v  Bilogic Flow Graphs: Fig. 3 below shows a process graph
belong to two branches of a conjoined fork. Since the twmodel Gz and graph models on its calling hierarcliy; calls
operations are executed concurrently and the succesébrthat constitutes body of a loop operatiog. G», in turn,
operation(s) can be started only after bathand v calls G; that constitutes the body of a loop operation
have completed execution, the combined delay of tidumbers in the circle indicate delay of the operations. For
two operations, in a well-formed bilogic flow graph, ighis set of graph models, the path lengths are
defined by the maximum over the two operation delays
5y @ 6, éymax(éu, 6u) P Y ﬁ(Gl) =20 (07 1) O] (1) = (3, 4)

« Disjoined composition when the operations: and v UG2) =203 (1,6)0LG)
belong to two branches of a disjoined fork. The delay =(6,11) ® £(G1) = (9,10, 14, 15)
of the composition is delay af or delay ofv depending UG =20 26 (0.(5.7 "a
upon the branch taken in an execution. Thus, the delay of H(G) © ®r( (5:7)) © £G2)
the disjoined composition is a tuple representing possible =40(0,5,7) © £(Gy) = (4,9,11) © £(Gy)
operation delays, & &, = (6,,6,). = (13,14, 18,19, 20,21, 23,24, 25, 26).

As defined here, it can be shown that each of the three

composition operatorsp, ®, and4 form a simple algebraic C. Rate of Execution

structure called commutative monoid, on the power set of Theinstantaneous rate of executigi(t) of an operation;

positive integersZ* with zero as an identity element. is the marginal number of executionsof operationy; at any
Operationsp and® are easily extended teary operations. instant of time, j;(t) = ((ii_ftl = limas—o % per second. Due

A disjoined composition of two delays leads to a two-tuplg the discrete nature of executions (i&.€ Z+), we define

delay, since the two operations belong to mutually exclusive L 1 such thatts (v:) < £ < ¢ ‘

paths. This composition of delays is generalized to composi- 5,(¢) £ {m u k(i) <t <trti(vi)

tion of paths as follows. In the case of a sequential composition 0 t < t1(vi)

of wo path lengths¢, and £, with cardinality n and 7 \here ¢, (1;) refers to the start time of théth execution

1Recall that loop vertices represent “repeat-until” type operations. TIQJ' operatlonvi. Assum'ng_ a synchronous execution quel
length computation treats the loop operation as a call operation. with cycle timer, we define the (lattice) rate of execution
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G3 G2 G1 TABLE |
PossiBLE TIMING CONSTRAINTS BETWEEN A PAIR OF OPERATIONS

Constraint type Description

f . @ A before B to+d, <ty

v
(@) ©,
i ,g/+ V;\ A meets B to+d, =1
@ @ @ @ A overlaps B ty —ty < dg
y*x e,/+\'i NS A finishes by B tatd, =ty + dp
@ @ @ A during B to>tpand i, +dg < ty -+ dy
@ % { A finishes B to >t and to +dy = t + dy
()

A is overlapped by B | t, —t; < d}

A is met by B to+ds =1

A after B ty +dy <4
/ A contains B te <ty and d, > dy
@ _— " A starts B loa =1 and d, < dp
L A equals B to, =ty and d, = dp

O,
@ A is started by B lo =1y and dg > dp

delay is loop link operation with a data-dependent loop index.

Since the execution delay (or latency) of a bilogic flow graph

can, in general, be data-dependent due to the presence of

at invocationk of an operationy; as the inverse of the time conditional paths, the delay pf a'calll vertex is also v'ariable.and
: ~ data-dependent. Therefore, in bilogic flow graphs, link vertices

interval between its current and previous execution. That is . :
present value-dependent delays. An operation presents a input

Fig. 3. Path length computations.

BY 2 5 _ 1 1 timing-dependent delay only if it hablocking semantics.
pilk) = Pilt) L=ty o= t(vi) — tk_l(vi)(sec ) The only operation in the flow graph model with blocking
_ T (cycle™) ) semantics is thevait operation. (Note that theead andwrite

tr(vi) — tr—1(v;) operations are treated as nonblocking.) Data-dependent loop
) ) o and synchronization operations introduce uncertainty over the
By convention, the instantaneous rate of execution is zeroibcise delay and order of operations in the system model. Due
the first execution of an operatioft, — —oo). Note that 4 concurrently executing flow graph models, these operations
pi is defined only at times when operatian is executed, affect the order in which various operations are invoked. Due

whereasp; is a function of time and defined at all times. Ing this uncertainty, a system model containing these operations
our treatment of execution rates and constraints on rates, oRly-g|ied anondeterministiq18] model, and operations with

rates at times of operation execution are of interest. Hence, W&isple delays are termedondeterministic delayor A'D
use the definition op as the rate of execution. operations.

For a graph model, its rate of reaction is the rate of
execution of its source operation, that ig,(G) = po(k).
The reaction rate is a property of the graph model, and it
is used to capture the effect on the runtime system and théOperation-level timing constraints are of two types:
type of implementation chosen for the graph model. To bea) operationdelay constraints;
specific, the choice of a nonpipelined implementation®f b) executionrate constraints.
leads t00,(G)™" = M (G) + m(G) where,(G) refers to  Delay constraints are either unary such as bounds on the delay
theoverhead delaythat represents the delay in reinvocation abf an operation or binary as bounds on the delay between
G. v(G) may be a fixed delay representing the overhead ofitiation time of two operations. Given any pair of operations
runtime scheduler or it may be a variable quantity representing and B, different possible constraints on the interval of

Ill. TIMING CONSTRAINTS

delay in case of conditional invocation 6f. execution of the two operations are described in Table I. Here,
symbolst, andd, represent execution start time and execution
D. Nondeterminism in Flow Graph Models delay of operatiornu. We defineminimum timing constraint
The delay of a basic operations in the HDL input can Hei = 0 from operation vertex; t0 v; as
characterized by a fixed number related to its implementation ti(v;) > te(vi) + L. (8)

in hardware or software. However, the delay of some operation

vertices in flow graph model depends on the input datBy default, any sequencing dependency between two oper-
specifically either on thealueof input data or on thémingof ations, induces a minimum delay constraint which must be
input data. An example of an operation with value-dependesdtisfied in order to observe the execution semantics of the



GUPTA AND DE MICHELI: EMBEDDED SYSTEMS TIMING CONSTRAINTS 245

flow graph. Similarly, amaximum timing constraint;;; > 0 B. Specification of Timing Constraints

from v; 10 v, is defined by the following inequality: Operations in the flow graph model correspond to language-

(9) level operations, that is, operations supported in the HDL.
Therefore, it is easy to specify timing constraints by tagging
We note that the operation delay constraints are general dhe corresponding statements in HDL descriptions. In the case
can be used to capture durational and deadline constraint®innested loop operations, rate constraints are indexed by
specifying real-time systems [19]. For a given operatign the corresponding loop operations. The loops are indexed by
release timeR(v) is indicated by a minute delay constrainincreasing integers where the inner-most loop is indexed zero.

tk(vj) < tk(vi) + wiy.

of R(v) from source tov. Similarly, a deadline ofD(v) is
indicated by a max delay constraint &f(v) — d(v) from v

to source operation wherv) is the execution delay of the

operationw.

In Example 3.1 below, there are two relative rate constraints

on theread operation with respect to the twawhile statements.
Example 3.1: The following example, shown at the bottom

of the next page and derived from the transmit process of

Execution rate constraints refer to bounds on the rate @fi ethernet controller, demonstrates the specification of rate
execution of an operation. In particular, execution rate copenstraints in presence of nested loop operations. Recall that
straints on input (output) operations refer to the rates at whiehAch execution of read operation indicated by tag “A” produces
the data is required to be consumed (produced). We assumsample of data. The rate constraints attributes use inverse
that each execution of an input (output) operation consumefsthe rates in units of “cycles/sample.” In this example, a
(produces) aampleof data. Execution rate constraints on I/Oninimum rate constraint of 100 cycles per sample execution,
operations are referred to data rate constraintsA minimum or 0.01 executions per cycle is specified on the read operation.
data rate constraintr; (samples per cycle arycles™) on an In addition, tworelative minimum rate constraints of one and
I/O operation defines the lower bound on the execution relel per cycle are specified for the read operation relative to
of operationy;. Similarly, amaximum data rate constraiit; the loopswhile(bitEN)andwhile(frameEN) respectively.
(Cycles_l) on an I/O operation defines the upper bound on the Operation delay constraints are specified similarly using the
execution rate of operation;. That is following syntax:

+ constraint mintime fronqtagl) to (tag2) = (num) cycles;

pv. (k) < R, forall k>0 [max raté . .
= te(v) = te_i(vy) > 7 R;~L, for all k>0. * constraint maxtime fronftagl) to (tag2) = (num) cycles;
(10)  * constraint finish—before—duringagl) (tag2);
Similarly U
= (o) _pt:_(f()f) “’T o f:‘)orraalllllkk;()(? [min ratq IV. RELATIONSHIP OF CONSTRAINT
- ’ (11) ANALYSIS TO OPERATION SCHEDULING

In embedded system designs, a rate constraint is often specifieHor each invocation of a flow graph model, an operation is
relative to a specific mode of operation, for example, samplingvoked zero, one or many times depending upon its position
of gear control only when the car is moving in case of agn the hierarchy of the flow graph model. The execution

automotive controller. These constraints are captured usifiles of an operation are determined by the two separate
relative rate constraints described next. mechanisms:

a) the runtime scheduleff;
b) the operation schedulef).

In general, when considering the rate of executionugf The runtime scheduler determines the invocation times of flow
we must consider the successive executiong;ofthat may graphs, which may be as simple as fixed-ordered where the
belong to separate invocations Gf A relative execution rate selection is made by a predefined order (most likely by the
constraintof an operationy;, with respect to a graph modelsystem control flow). This is typically the case in hardware
G, is a constraint on the rate of executionwgfwith respect implementations where the graph invocation is determined
to the same invocation df, that is,whend is continuously entirely by the system control flow. Software implementations
enabled and executindn other words of the runtime scheduler are based on the choice of the runtime
environment which is characterized byfiseddelay overhead

A. Relative Rate of Execution

e < pu (k) < RY (12)
for all &£ > 0, andthere exists an executighof G such that
tj(vo(@)) < tr—1(vi) < tr(vi) < £ (un(G))

where vg and vy refer to source and sink vertices @,

for each runtime operation.

Given a graph model(7 = (V,E), the selection of a
schedulerefers to the choice of a functiai} that determines
the start time of the operations such that

trlvi) 2 max tx(v;) + 6(vy)] (13)

respectively. The relative rate of execution expresses rate
constraints that are applicable to a speabatextof execution is satisfied for each invocatian > 0 of operationsy; andv;.

as expressed by the control flow & Clearly, a relative rate Hered(-) refers to the delay function and returns the execution
constraint is meaningful when expressed relative to a flodelay of the operationv; < v; indicates the dependency of
graph in the hierarchy in which the operation resides. operationi on operationj.
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Given a scheduling function, a timing constraint is consiaf v; (transitively) depends upon. That is
ered satisfiedif the operation initiation times determined by . .
the scheduling function satisfy the corresponding inequalities te(vi) 2 t(v;) + 8(vg) + 00, (vi), iF vy < i
[see (8)—(11)]. Clearly, the satisfaction of timing constraints {§here <* represents transitive closure of the dependency
related to the choice of the SChedU”ng function. In gener@b|ation<_ For agiven vertex;, asetA(Ui) of anchorvertices

the choice of a particular operation scheduling mechanisgidefined as the set of condition@?) and loop wait(A'D)
depends upon the types of operations supported and {kftices that have a path tg

resulting control hardware or software required to implement
the scheduler. We determine constraint satisfiability in the A(vi) = {v; € V 1 w; <" vi,v; is ND or CD}. (14)
context of a bilogic re_Iative scheduler us_ed in our Synthes&relative schedule functio
system. For presentation purposes, we briefly review the re]l
tive scheduling mechanism for unilogic flow graphs, foIIoweif
by a straightforward extension to the bilogic flow graphs.
We consider first a model? where the delay of all op- tr(v;) > max [tp(a) + 6(a) + 0.(v;)]. (15)
erations in G is known and bounded. A schedule ¢f aCA(v:)
maps vertices to integer labels that define the start time $ihce the quantity(a) is known only at runtime, the operation
corresponding operations, that &, : V — Z* such that start time under a relative schedule is determined only at the
operation start timeg,.(v;) = Q.(v;) satisfy inequality (13). runtime.
A schedule is considered minimum jt;(v;) — tx(v,)| is Inequality (15) can be derived from the inequality (13) by
minimum for all v; € V. (Recall that we assume that theexpressing the latter over the transitive closGfe of G and
effect of resource constraints has been taken into accotmgn adding the known operation delagsas offsets from
as additional serializations in the graph model.) For eacimknown delay operations. Clearly, a solution to inequality
invocation ofG, since the start times of all operations are fixe(lL5) will also satisfy inequality (13) if the offset$,, (v;) >
for all executions ofG (that is, for allk), such a schedule is £(v,,v;), where{(v;, v;) refers to the path length from vertex
referred to as atatic schedule v; to vertex v;. Finally, a relative schedule is considered
In general, due to the conditional, loop, and wait operationsiinimum if it leads to minimum values of all offsets for all
not all delays can be fixed or known statically, thus making\gertices.
determination of an unique operation start time impossible forOne of the interesting properties of a relative schedule
a static scheduler. This problem is addressed by a relatigethat it expresses the (spatial) uncertainty associated with
scheduler [6] that uses runtime information to determirmnditional invocations of an operatid@D) as its temporal
operation start times for each invocation of a graph modeincertainty by treating it as an unbounded d€l&§D) opera-
As a result, a relative scheduler does not requéi¢ to be tion. Thus, a conditional operation is same as a data-dependent
a fixed quantity. Arelative schedul€function maps vertices loop operation where operations on its branches are invoked
to asetof integers representingffsets An offset 6, (v;) of a variable number of times (zero or one) depending upon
vertex v; with respect to vertexy; is defined as the delay data values. For the purposes of relative scheduling, variable
in starting execution of; after completion of operatiom;. delay operations are treated as unknown delay operations in
Offsets are determined relative to vertices which the executifiz0]. Due to this treatment, the corresponding flow graph used

- IS defined as a set of offsets
t each operation such that operation start time satisfies the
equality

process example (frameEN, bitEN, bit, word)
in port frameEN, bitEN, bit;
out port word[8];

{
boolean store[8], temp;
tag A;
while (frameEN)
while (bitEN)
{
A: temp = read(bit);

store[7:0] = store[6:0] @ temp;
¥
write word = store;
¥
attribute “constraint minrate oft = 100 cycles/sample”;
attribute “constraint minrate 0 ol = 1 cycles/sample”;
attribute “constraint minrate 1 of = 10 cycles/sample”;
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for relative scheduling isinilogic, since conditional branches TABLE I
belong to separate graphs same as in the case of loops.
Of course, this idea can be carried further by treating all

operations as unbounded delay operations and computing the ~ Vertex || » I va | Y4 l vs || U1 ‘ U3 I 8
start times of operations at runtime. Such an implementation
of a flow graph would be similar in architecture to data flow

machines [21]. In terms of the latency of execution, such a
dynamic scheduler will give the most “compact” schedule.

However, the increased overhead cost of the runtime system
associated with a large number of unbounded delay opera-
tions would make such an architecture unsuitable for either
gate-level hardware or constrained software implementations.
Hence, attempts have been made to minimize the number of
unknown delay operations in the graph model that belong
to an anchor set [22]. The relative scheduler is extended to
bilogic relative scheduler by treating conditionals separately
from loop and synchronization operations. In particular, the

maximum path delay over all branches in a conditional is used
for scheduling purposes. Depending upon the actual branch
taken, this schedule may not be the minimum in the sense of
relative scheduling described earlier. However, it reduces the
number of VD operations, thus making it easier to perform

the constraint analysis. Also, the cost of implementing contr&l_fsetg are now computed as vectors of possible delay values.
for a bilogic relative scheduler lies somewhere between ﬂcf‘ﬁus the start time for vertex; in this case is given by
control costs for static and relative schedulers. ’ '

A bilogic relative scheduldreats an operation offset as a t(vr) = max{t(vi) +4,t(v3) + 63 + 3}.
vectorQ,Uj (v;) representing the (finite) set of possible delays. _ S
A bilogic schedule§2,, then computes the offset vectors such. Constraint Satisfiability

Relative offset, 8 || Bilogic relative offset, 8
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that The satisfiability of a given set of constraints requires
that there exist an implementation that satisfies the imposed
t(vi) > aéﬂ%.)[t“ + 6(a) + 18, (vi)]oo] (16)  constraints. For constraint analysis purposes, it is not necessary

to determine a schedule of operations, but only to verify the

where | - |, refers to the largest element (or the infinityeXistenceof a schedule. Since there can be many possible
norm) of the vector. The bilogic anchor set is defined & hedules, constraint satisfiability analysis proceeds by iden-
Ay(v) = {vj € V : v; <* v;,v; is ND}. Once again, the tifying conditions under whicmo solutions are possible. A
inequality (16) can be derived from inequality (13) for bilogidiming constraint is considerehconsistentif it can not be
flow graphs. Thus, a solution to inequality (16) will alscsatisfied byany implementation of the flow-graph model. A
satisfy inequality (13) providedb, (v;)|oo > £ar(a,v;). The Setof timing constraints is consideretlitually inconsistent
following shows an example of unilogic and bilogic relativéhese constraints can not be satisfied by any implementation
schedules. of the flow graph model. Since the consistency of constraints

Example 4.1:Let us consider the unilogic versus bilogids independent of the implementation, these are related to the
relative schedules for the flow graph model shown in Examp#é'ucture of the flow graphs.
2.1. We assume that the operatietpy takes three cycles The timing constraints are abstracted in a constraint graph
while the rest take one cycle. The assignment of offsets usifipdel consisting of vertices as operations, forward edges
a relative scheduler and a bilogic relative scheduler are sholdicating minimum delay constraints, and backward edges
in Table I, where a *” indicates that the start time of theindicating maximum delay constraints.
operation is not affected by the particular anchor vertex. Definition 4.1: The timing constraint graph modetzy is

For example, consider thelative schedulef vertexw;. Its  defined agzr = (V, £, A), where the set of edges consists of
offset vector is {1, 0, 0, -}. This indicates that starts after forward andbackwardedges, andz = Ey U E; andd;; € A
one cycle fromu; and immediately after start af; andv,. define the weights on edges such thatv;) + é;; < ti.(v;)
Also, the start time of this vertex is not affected by the stafer all & > 0.
time of vs. Therefore, according to inequality (15), the start Deterministic analysis refers to constraint satisfiability de-

time of v, is given by termination over all execution instances. This analysis relies on
the information that is statically available, such as operations
t(v7) = max{t(v1) + 1,%(vs) + 83, t(va) + 84 }. and dependencies. The static information is captured very

well by the constraint graphs. However, as we show later,
Note thaté(v1) = 0. For abilogic relative scheduletthe vertex constraint satisfiability based solely on static information may
v iS no longer an anchor but a variable delay vertex. Thee impossible, and additional user information may be needed
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to provide deterministic answers to constraint satisfiability. We
characterize those cases where additional user input is needed

o Ay ——— Yt Ay =

to proceed with constraint analysis. The rationale and use of 1 | N 1
additional information is explained later in Section V. The
key contribution of the deterministic analysis is that not all I I | | I

constraints require bounding of all operation delays. Thereforg, )
static path analysis provides a valuable input to the systerfi™ 0
designer in making a choice of system components und®j. 4. Operation invocation interval.
timing constraints.

_ For consistent timing constraints, the analysis is performeq,,s satisfiability for execution rate constraints is determined
in stages and in order of increasing nondeterminism in tlgﬁ checking for the minimum and maximum delay between

model. We first consider the satisfiability of operation delayyy 1o consecutive invocations of constrained operation. This
constraints followed by the execution rate constraints. interval can be expressed as (see Fig. 4)

talv) by (vt (v) telvn)

V. CONSTRAINT SATISFIABILITY TESTS tr(vi) — th—1(vs)

There are two important previous results that lay down the = [tx(vi) — tx(vo)] + [£x(vo) — tr—1(v)]
conditions for determining constraint satisfiability. The follow- + [ti—1(vn) — ti—1(vo)] + [te—1(v0) — ta—1(vi)]
ing theorem occurs in variou_s forms in differ_ent application = Me(vi) + Ye—1(@) + M1 (@) = Ap—1(v;) (21)
areas. Its proof can be found in, for example, in [5], [20], and
[23]. where A,(v;) refers to execution delay from source vertex
Theorem 5.1—Static Schedulingn the absence of anyvo to v; for the kth execution.v,_1(G) is the delay in
ND operations, a set of operation delay constraints fi§scheduling a graph, that is, the time from completion of
satisfiable, if and only if, there exist no positive cycles i — 1)th execution ofG to initiation of the kth execution.
Gr. From inequalities (13) and (17) each of the four components in
Using a relative scheduler, a minimum delay constraifiiequality (21) are nonnegative quantities. Let us now consider
is always satisfiable since from any solution that satisfiée lower and upper bounds on this interval. These bounds are
inequalities (15) or (16), a solution can be constructed such tiggveloped based on the analysis of paths in the flow graph.
8., (v;) > max(£(v;,v;),l;;) for each constraint;;. This so- It follows from inequality (13)_tha.t for vertices in a path,
lution satisfies both inequalities (13) and (8). On the contray,= {vi, vi+1," -+, v;} the following is true for allk > 0
a maximum delay c_onstraim may n(_)t a!ways be _:satisfiable. t(vs) < tr(vig) < v < trlvy). (22)
A constraint graph is considereeasible if it contains no
positive cycle when the delay o¥"D operations is assigned!t is important to note that even though the actual interval
to zero. The following theorem [6] lays out a necessary afgtween successive executions is summed as shown in (21),
sufficient condition to determine the satisfiability of constrainf§ie bounds on this interval can be developed based on analysis
in presence of\'D operations. of the graph model itself. This is because, in a nonpipelined
Theorem 5.2—Relative Scheduling: Min/max delay con- implementation ofG, the consecutive execution of an op-
straints are satisfiable if and only if the constraint graph gation corresponds to traversal of a path from source to
feasible and there exist no cycles witiD operations. sink vertex inG. Consider(k — 1)th and kth executions of
Execution rate constraints are constraints on the time int@? operationy; in V(G) as shown in Fig. 5. Lety,—; =
val between invocations of the same operation. In generdl;; -, v~} represent the path traversed framto vy in
this interval can be affected by pipelining techniques. We — 1th execution of G and letp, = {vo,---,v;} be the
consider here only nonpipelined implementations of the floipath traversed fromy to v; in kth execution ofGG. Using
graph models. Therefore, operations in the graph model digquality (22) it can be easily shown thatU g1 is a path

enabled for the next iteration only after completion of th&om source to sink inG.
previous iteration Theorem 5.3—Maximum Rate Constraimt:max-rate con-

straint R; in G is satisfied if¢,,(G) > 7 - R L.

Proof: In order to obtain a lower bound on the inter-
val between two consecutive executions of operatignwe
consider the case when the execution of the graph model
is restarted immediately after the completion of the previous

te—1(vo) < ti—1(vn) < ti(vo) < tr(vn), forall k> 0.
17
Consider an /O operation; € V(&) with data-rate con-
straints,r; and ;. The rate constraints imply

T < t(vi) — tr_1(vi) < ; for all k> 0. (18) execution, i.e.5,_1(G) = 0. From the discussion above, there
R T exists a path irt7 that corresponds to the consecutive execution
T refers to the cycle time of the clock associated with of operationy;. In other words, the intervak, (v;) — tx—1(v;)
Inequality (18) is satisfied if and only if is bounded by the latency of the graph. Recall that the length
. T vector provides a lower bound on latency Gf The result
() — £ ) > —
Inlin(tk(vz) tre—1(v;)) > R, [lower bound (19) follows. 0
max(t(v1) — tr_r (v3)) < T [upper bounl  (20) Note that similar_ to a minimum d.elr'sly constraints, a max-
k i imum rate constraint is always satisfiable. Whep(G) <
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the invocation interval. For example, consider a statenfent

(condition) value= read (a). There is not enough information
to determine the rate of execution of thead operation. For

O
execution, k-1 ov
SOUICe —q
s %
1
P, )
—— - v
@)
Qs
P, '
execution, k v sink
O

Fig. 5. Consecutive executions of an operation corresponds to traversal of
a path inG.

TR ! the maximum rate constraitit; can still be satisfied 2)
by an appropriate choice of the overhead delay that is applied
to every execution of.

Example 5.1—Maximum Rate ConstraintSsor the flow
graph model shown in Fig. 2, the maximum rate of the
write operation, determined b§(G1), is 1 cycle!, whereas
the maximum rate of theead operation is determined by
UGe) = (1e0)e(le3)e(1el) = (3,5)is1/3 cycle™ .

Any maximum rate constraint larger than or equalli3 is
satisfied by the graph model.

Note that this lower bound,,, used for checking the sat-
isfaction of maximum rate constraints, also defines the fastest
rate at which an operation in the graph model can be executed
by a nonpipelined implementation. This points to the necessary,
condition for meeting a minimum rate constraint. Sufficient
conditions for minimum rate constraints are considered next

deterministic analysis purposes, we take a two step approach
to answering constraint satisfiability.

Determine if a given implementation is satisfactory
assuming that the condition is always trul other
words, the only uncertainty is conditional invocation
of the graph which may correspond to the body of a
process or a loop operation. This is consistent with the
interpretation that a timing constraint specifies a bound
on the interval between operation executions but does
not imply, per se that the operation must be executed.
Under this assumption, the loops are executed at least
once (that is, loops are of the type “repeat-until”),
since the “while” loops are expressed as a conditional,
followed by a repeat-until loop, as explained earlier.
Next, we use the rate constraint on the conditionally
invoked operation as the additional information about
frequency of invocation of the condition. That is, the
rate constraint is used aspaoperty of the environment

in continuing the rate constraint analysis to operations
that lie above the constrained operation in the graph
hierarchy. This way, constraints can be considered as
a source of additional information about the system
environment, which is considerably more convenient
to specify than probabilities of conditions taken. An
alternative approach would be to use simulations to
collect data, on the likelihood of the condition being
true, and use it to derive constraint satisfiability. This
approach is out of scope of the this paper.

Recall that the actual execution delay or the lateA¢)
fers to the delay of the longest path ¢h Unlike length,

elay of a path inG may not be bounded in presence/oD

A. Constraint Satisfiability Tests Using Graph Hierarchy

operations. We examine the two cases separately.

A hierarchical flow graph is composed using link vertice®8. Case 1:(¢ Contains NoAD Operations

A link vertex represents a call to a flow graph in the hierarchy.
For a given graph modeF, that is called by a link vertex in
graphG’, graphG’ is also referred to as a parent graph(df
and is considered to baboved in the control-flow hierarchy
G in the system control-flow. While the lower bound on th

The latency of7 takes one of the finite values corresponding
to interval specified by/(G). Equations (1)—(6) define the
formulae for calculation of. An upper bound on the operation
’ianterval is then given by

time-interval between successive executions of an operation max(tx(vi) — txk—1(vi)) < In’?x[’yk_l(G) + A1 (@)]

can be derived by analyzing™, that is the graph to which
the operation belongs, and all the grajpedowin the control-

< max (@) + u(G). - (23)

flow hierarchy, the determination of the upper-bound on the The overheady, () represents the delay;1(vo(G)) —
interiteration interval of an operation, also requires estimatiops ,, (())] and can be thought of as an additional delay
of the delays due to operations and graphs thaatievethe qperation in series with the sink operatiany (G). If G is
operation in the control-flow hierarchy. In particular, the effe¢{ot a root-level flow graph, then there exists a parent flow
of the runtime scheduler must also be taken into account. graph 7, that callsG by means of a link operation, say

~ We use the following notation to help express the propag#he upper bound on this interval is derived when itie and
tion of constraints over the graph hierarchy. For a given grap 1 1th invocations ofG correspond to separate invocations
G, G4 denotes the parent body that calls the graphFor a of the link operationy € V(G,). That is

graphd, G, refers to theparent process graph.e., the graph

at the root of the hierarchy corresponding to a process model, (@) = ti41(v0(G)) = ti(on (G)) < #j11(v)

Note that (static) determination of the interval of successive
executions of an operation that is conditionally invoked is
undecidable. That is, there may not exist an upper bound on

—t(v) —z; - M(G) < m]ax[tj+l(v) —t;(v)]

— minz; - Ir%n[)\k(G)] (24)

J
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wherez; is the number of times the flow gragh is invoked In order to obtain a bound on the runtime scheduler over-
for the jth execution of operation,. By definition, G is head, inequality (25) can be unrolled until the parent graph
invoked at least once for each executiorpfe.,min; z; = 1. corresponds to the (unconditionally invoked) process model,

Therefore, from inequalities (23) and (24) G, for which v(G,) = ~,. Thus
(@) < [Ua(G1) +3(G)] = €n(G) - (25) e
S —~ Y@ = Y AUGH +To + [ (Go) = Ln(@)]  (28)
:"/(G) Gi=G+

Note that by definition/;(G4) > £y (G) > £,,(G), there-
fore, 7 is always a positive quantity.

Example 5.2: Consider the graph hierarchy shown in Fig.
assuming a purely hardware implementation with no overhea |
due to the runtime system. We hag(&7;) = (1) and{(G») =
(3,5). Therefore

whered, = 5(G,) = max; 1(G,) is the bound on the delay
ue to the runtime scheduler. The following example shows
use of constraint propagation in deriving bounds on the
ay of the runtime scheduler.
Example 5.3—Minimum Rate Propagatiofonsider the
hierarchy of graph models used in Example 2.2. reproduced

(G1) = £y (Ge) +0 — £,,(Gy) = 4. in Fig. 6. Here
Thus, the overhead in execution 6f which is called by a UG) = (3,4) _ AlG) = 4: 3=1
link vertex in G5 is four cycles. £(G>) = (9,10,14,15) AlGy) =15-9=6

£(Gs) = (13,14, 18, 19, 20,

Lemma 5.1—Minimum Rate Constraint with N&D: A
21,23,24,25,26) Al(G3) =26 — 13 = 13.

minimum rate constraint on an operation € V(G), where

G contains na\'D operations is satisfiable if First, we show the intuition behind rate constraint satisfiability,
_ T followed by the use of constraint propagation to achieve the
G) + Lu(G) < o (26)  same result.

T

where the overhead term(G) is defined by (25). A minimum rate constraint is specified on operation “A

i . . in (G; that constitutes the loop body of operation twoGf
Proof: The proof follows from inequalities (20), (23)'with loop index,z, which in turn is a loop body of operation

and (25). ; . G 1/ G2 4
A bound on the overhead delay,(G) can be used to thcggee InGy. Letry = 1/100, 7y = 1/5, r* = 1/25, and

= —1 . i
determine bound on the overhead delayGhf by examining ris’ = 1/50 cycle™ . Recall, that'§ refers to a minimum rate
. ) . . ) . constraintrelative to G.
possible execution paths i&¢,. By induction, this process et us first considerSt — 1/5 ¢ cle—!. Since this con-
can be carried further to determine a bound on the overhea*é'. . . A Y ‘ s .
delay in the invocation of the parent process grebh This Straint Is rel_atlve ta7y, thgre is no overhead the in invocation
overhead delay corresponds to a bound on the delay dueo[oGl’ e, 5(G1) = 0. Since
the runtime scheduler overhead. This places restrictions on
the choice of the runtime scheduler such that a bound on
tbhe scheduling interval can indeed be placéthte that a The constraint'§* = 1/5 is satisfied. Similarly, constraint
ound onv;(G) does not necessarily imply a bound on th(;::Gz — 1/25 is satisfied since
latency of G. This is illustrated by Example 5.3 below. An" 4 —

immediate consequence of the above (sufficient) condition forG, ) + 7,,(G1) = [£2:(Ga) + F(Ga) — £ (G1)] + £2:(G1)

F(G)] +E4m(G) =4 < 1/% =5,

satisfiability of minimum rate constraint is that the question 1

about the constraint satisfiability can lgopagatedas a =[154+0-3]+4=16< 1/% = 25.
minimum rate constraint on the link operation in the parent

graph model. Constraintr§® = 1/50 is satisfied since

Lemma 5.2—Constraint PropagatiorA flow graph G sat-

isfies a minimum rate constraint; if for its parent graph V(G + L (Gh)

en = [AUGs) + AUG2) +5(Gs)
. + 4 (G3) = £ (G1)] + €0 (G1)
Y(G4) + Ly (G 5{——A£G} 27
e @n :[13+6+0+13—3]+4:33§1/%:50.
J
2 —
whers Agf(_G) = £ (G) = bn(G). Finally, for the minimum rate constraint,s = 1/100, we
root: should also consider the overheadof the runtime scheduler
(G + I (Gy) < I _ AUQG) which adds to the bound of 33 cycles on successive intervals
- of operation “A” relative to GG3. Therefore, ar4 is satisfied
= HG) + Ln(G) < T _ (Im (@) — (@) [25] if the delay due to the runtime scheduler is less than or equal
i to 100 — 33 = 67 cycles.
=G+ (G L 1 Alternatively, r4 = 1/100 can be propagated as a rate
Ti constraint of1/(100 — 1) = 1/99 on G5 which is in turn

From Lemma 5.1(7 satisfies minimum rate constraint [0 propagated as a rate constraint bf(99 —6) = 1/93 on
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Rel. rate constraint relative

to G1 bounds this interval. . :
. Rate constraint, r

|99p index bounds this
g Rel. rate constraint relative  interval
to G2 bounds this interval.
x1 i x2 x3 x4

fip o S

- A1)

| y1 | | y2 |
. A (G2)

2 A (G3) g

S L5 | I

Fig. 6. Upward propagation of minimum execution rate.

(3. This constraint onGs is satisfied for a bound o3 — +(G) may also not be bounded by the maximum path length of
£y(Gs) = 93 — 26 = 67 cycles on the delay due to theits parent graph. For the sake of simplicity, let us first consider
runtime scheduler. the (relative) minimum rate constraint on a graph model with

Theorem 5.4—Minimum Rate Constraint with Nd>: A zero overhead, that isy,(G) = 0 for all k¥ > 0. Such a
minimum rate constraint on operation, € V(&), whereG  rate constraint then bounds the latency of the graph model
contains no\/D operations is satisfiable if the overhead duand is represented as a backward edge (that is, a maximum
to the runtime scheduler is bounded as follows in (29), showdelay constraint) from the sink vertex to the source vertex
at the bottom of the page. in the constraint graph model @. Since( is a connected

Proof: The proof is shown at the bottom of the next pageyraph, such a constraint invariably leads toVaD-cycle in
In summary, a minimum execution rate constraint on a gragie constraint graph. According to Theorem 5.2, the maximum
model G that contains noV'D operations is translated as arjelay constraint can be satisfied only by bounding the delay of
upper boundyy; on the delay of the runtime system whichhe AD operation, that is, by transforming tHéD operation

checked by comparing it against.

into a noo\"D operation. The implications of a bound on the

Note, that if the graph is not a root level graph, then orp operation delays are as follows.

there exists a parent grapfi, with a link operation that
calls G. However, the unbounded delay due to tbA&D
operation does not affect satisfiability of the minimum rate
constraints on the operations i¢¥. This is illustrated by the
Example 5.3 above where the satisfiability of minimum rate
constraints on operation “A” in7; is not affected by the
ND operationsv, and v3 in Gy and G3, respectively. In
general, the delay of aWD operation affects satisfiability
of a minimum rate constraint applied on an operatather
than the operations linked with th&/D operation. This case
is considered next.

C. Case II:G ContainsA/D Operations

In presence of\V'D operations inZ, the latency A(G) can
no longer be bounded by the longest path lenggih G. In
addition, if G is not a root-level flow graph, its the overhead

» Let us first consider synchronization relatddD oper-

ations. Since there are multiple ways of implementing
a synchronization operation, the effect of the bound is
to choose those implementations which amest likely

to satisfy the minimum rate constraint. Thus, a bound
on the delay of the synchronization refers to a bound
on the delay offered by thamplementationof the N'D
operation. The implementation delay of a synchronization
operation is referred to as thsynchronization over-
head v,,. This overhead delay is determined by the
particular hardware or software implementation of the
runtime scheduler. In the absence of a runtime scheduler,
in hardware, for example, where the schedule of all
operations is statically fixed, the source operation is
scheduled for execution immediately after completion
of execution of the sink operation, and this overhead

(29)
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is zero. For softwarey,,, delay is determined by the bound the loop index of link operation associated with
implementation of the wait operation by the runtime  The constraint satisfiability is then continued urdl
scheduler. For example, a common implementation tech- corresponds to a process body,.

nique is to force acontext switchin case an executing The presence of multipleV’D operations inG and G
program enters a wait state. Herg, would be twice present a more complex case since a minimum rate bounds
the context-switch delay to account for the round-trighe effective delay which is now a function of multiple loop
delay. For such an implementation, the minimum rat@dexes. In general, this is a difficult problem to answer
constraint is interpreted as the rate supportable by dsterministically since the use of constraints as a property
implementation. With this interpretation, th€D oper- to determine bounds on loop indexes, as mentioned earlier,
ations are considered nMD operations with a fixed is also affected by the order in which th€D operations
delay ~,,. are evaluated. One straightforward extension of our deter-
Next, the data-dependent loop operations use a datainistic analysis procedure for single’D-operation models
dependenibop indexthat determines the number of timego models with multiple A"D operations is to allow only
the loop body is invoked for each invocation of the loopne A"D operation at a time and use programmer input to
operation. The delay offered by the loop operation isound othert\"D operations. Since the results are dependent
its loop index times the latency of the loop body. Asipon the order of evaluation oD operations, a con-
mentioned earlier, at the leaf-level of graph hierarchgiraint analysis procedure that determines satisfiability over
the latency of the loop body is given by its path lengthll possible order is likely to be computationally expensive.
vector. The elements of a path length vector consist 8hother possibility is to use statistical information about
the lengths of all paths from source to sink, and these afe program behavior. For instance, Puschner and Koza in
bounded. In case the constrained graph model containg2#] describe language constructs that allow user to input
most one loop operation, the minimum rate constraint information about the behavior of the programs that can
can be seen as a bound on the number of times the Ide® used to improve the quality of maximum time estima-
body@G,, corresponding to the loop operatiois invoked. tion.

This bound on loop index is given by (30) that is derived Theorem 5.5—Minimum Rate Constraint with/D:
later. This bound: is then treated as a property of the loog-onsider a flow grapl with an "D operationu representing
operation, consequently making it a dg® operation a loop in the flow graph. A minimum rate constraint on

with a bounded delay for carrying out further constrair@Perationv; € V(G) andv; # v is satisfiable if the loop
analysis.Verification of these bounds requires additionalndex z,, indicating the number of timeé&, is invoked for
input from the useri.e., the information modeled by the€ach execution of is less than the bound,

input description in HardwareC is not sufficient to answer { 1

the question about constraint satisfiability, and the user is g, 2 [T = ’V(CZ) _(éM)(G) + #(v)
M v

prompted to verify validity of bound.
wherep(v) refers to themobility of operation and is defined

J+1 (30)

For a relative minimum rate constraint relative @&

the overhead ter(G), in (30) is assigned zero value.,5 the gifference in the length of the longest path that goes

In general, however, the satisfiability of a minimumy g, and#,,.2 G, refers to the graph model called by
execution rate constraint also includes a bound on the

invocation delay;y of GG, as per (28). Clearly, a bound 2The mobility is computed (| E(G)|) time as the difference in starting

on ’Y(G) implies a bound on the latency 6?4_ which is times of as late as possible (ALAP) and as soon as possible (ASAP) schedules

ivalent t . t traint ti of a deterministic delay flow graph constructed by considering all link vertices
equivalent 1o a minimum rate constraint on an operatiqf) e ca link vertices with delay as the maximum path length of the called

in G4. However, this minimum rate constraint doest graphs.

(€
T t(@) - > (@)
T Gi=Gy

— I (Gi)] = U (Go) = £n(G)] 2 70

Go
= Tz 0@+ Y, AUG) + [0(Go) = (@] +7,
¢ Gi=Gy

Go

= T2 0m(@ 43 S AUG) +[6n(Go) = £n(G)] + 7o
T Gi=G,

= = 2 0(@) +3(Q) [28]

= r; is satisfied. [Lemma 5.]
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TABLE I _[90=17=15+40) L
RUNTIME OVERHEAD IN CYCLES - 4 Tl=o
Implementation | Processor | Overhead, 7,, cycles With this bound on loop index, th&/D operationw, has a
Subroutine 86 798 bound on its delay of 20 cycles.
Coroutine 86 364 On the other hand, @lativerate constraint§2 of 0.02/cy-
Restricted Coroutine 86 103 cle leads to a bound on loop index of
Description by cases 86 85 50-0—-154+0
Restricted Coroutine DLX 19 4
Description by cases DLX 35 . . .
with this bound the delay of; is less than 36 cycles.
the A"D operationv and the overhead bourig G) is defined VI. CONSTRAINT ANALYSIS IMPLEMENTATION
by (28).

Proof: The maximum interval between successive exeCU_Operation-Ievel cor)straint analysis is implemented as a
tions of operationy; € V(@) is given by the maximum latency part of the cosyr_lthesus framework, VULCAN [11], to allow
of G and its maximum overheadl(@). [See inequality (20) the system designer to explore hardware versus software

and the following discussion.] The latency @fis defined as implementations Qf a given systgm model. .The operat.|on
the maximum over the lengths of all paths from source to sirq?.lays corresponding to hardware implementation are obtained

vertices. Letp, represent the longest path from source to sinll|<smlg the thtl_gh-lgvel syn:jhesljs t ootlﬁ [12], twhterefas SOftW‘.”;.r c
that goes through operation Implementation is considered in the context of a specific

processor-cost model specified by the designer. To evaluate
MG) < €y(pe) + (2o — 1) - £ (Go). the effect of the runtime system, we have explored the fol-
lowing three ways to implement the software routines: a)
Note that#;;(G) is computed by treating all link verticessubroutine-based, b) coroutine-based, and c¢) description-by-
as call link vertices, and, therefore, it includes the delay deases. Briefly, a subroutine implementation refers to translation
to one execution of each loop body, hence, the second tesfnprogram threads into program subroutines that operate
in equation above represents the additional component to theder a global task scheduler. In contrast, a coroutine im-
latency due to théz, — 1) invocations of the loop flow graph plementation reduces the overhead by placing routines in a
Gy. cooperative, rather than hierarchical, relationship to each other.
The length of the longest path from source to sink detefhe coroutines maintain a local state and willingly relinquish
mines the value of;(G). The vertexv may or may not lie control of the processor at exception conditions which may
on the longest path from source to sink operations. This slalsk& caused by unavailability of data (for example, a data
between?,;(G) and the length of the longest path througllependency on another thread) or an interrupt. In case of
v is captured by the mobility:(v) of operationv. That is, such exceptions, the coroutine switch picks up the processes

Ly (po) = Iu(G) = p(v). according to a predefined priority list. Upon resumption, a
For satisfiability of constraint;, we require that coroutine execution starts execution from the position where
- its was detached last. A restricted coroutine implementation
v+ max (@) < - reduces the overhead further by suitably partitioning the on-
’ T chip register storage between program routines such that
=7+ {u(G) — p(v) + (zv = 1) - u(Go)} < . program counter is the only register that is saved/restored

P during an interroutine transfer. Finally, in the description-by-
7 = G) = tn(G) + () : 4 brion-by

=z, < +1. cases, we merge different routines and describe all operations
£ (Go) in a single routine. This scheme is simpler than the coroutine
. . . scheme. Here, we construct a single program which has
This provides the bound on every loop indexGh O gie prog

- a unique state assignment for each synchronization opera-
Example 5.4—Bound on Loop Index Due to Minimum EXﬁ a g y P

. . . - —"tion. A global state register stores the state of execution
cution Rate Constramt:CpnsMer_a minimum rate constraint ¢ - hread. Transitions between states are determined by
.Of 0.02/cycle on operation B in graph mode¥, shown. the runtime scheduling of different ND operations based
in Example 5.3. Let the maximum delay dye to the ruptlmgn the data received. This method is restrictive since it
scheduler béyy, = 0 (for _example, hardwgre_lmplementatmn)precludes use of nested routines and requires description as a
The bound on the loop index for operatiop is calculated as single switch statement, which in cases of particularly large
follows: software descriptions, may be too cumbersome. Table Il

= _ - _ summarizes program overhead for different implementation
WG2) = AMGa) 1 s + bn(Ga) = bn(G2) schemes. Results are reported for two processors, DLX [26]
=13 +_?+1_3_9: 17 and the Intel 8086. From these implementations, we see
Ty = VTB —7(G2) _EM(GQ)"'“(UQ)J +1 that the overhead due to the runtime system in software
£yv(Gh) varies from approximately 20 cycles to over 700 cycles
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depending upon the choice of the processor and the runtiswests. Under certain conditions, these bounds can be extended

system. by modifying the structure of the flow graphs witND
The constraint satisfiability tests are put together in theycles [11]. The following illustrates an example where the

procedurecheck_satisfiability shown at the bottom of the satisfiability tests successfully return with bounds on A

page. The input to the procedure is a set of graph modelgerations.

with delay and rate constraints along with a choice of the Example 6.1:For Example 5.3, let us assume the following

runtime system. Given a flow graph mod&lwith operation imposed constraints:

delay and execution rate constraints, the constraint analysis = 1/100,75 = 1/6,75 = 1/40,75 = 1/50,7* =

proceeds bottom-up. The leaf-level flow graphs do not contaifi30,7¢ = 1/200

any loop D operations. Its output is null if the constraintsicp = 12, Rg = 0.5,7y = 20.

are satisfiable, else eithe® is unsatisfiable or it returns Recall

bounds on the delay of ND operations that would make

constraints satisfiable. These bounds are then verified by  £(G1) = (3,4) AUGL) =1
the system designer as being applicable or requiring system  £(G2) = (9,10, 14,15) AU(G2) =6
redesign. £(Gs) = (13,14, 18,19, 20,

Thus, the satisfaction of the bounds on delay /D 21,23,24,25,26) Al(Gs) = 13.

operations requires additional information from their imple-

mentations (such as context switch delay, possible loop ihhere are three main steps to the constraint analysis procedure:
dex values) against which the questions about satisfiabil-1) construction of the constraint graph which is done by
ity of minimum rate constraint can be answered. Because adding forward edges for minimum delay and maximum
of these bounds, there is now a certaireasureof con- rate constraints and backward edges for maximum delay
straint satisfiability that approaches certainty as the derived and (relative) minimum rate constraints;

bound approaches infinity. More importantly, having bounds 2) identification of cycles by path enumeration for each of
derived from timing constraints makes it possible to seek the backward edges in the constraint graph;
transformations to the system model which trades off these3) propagation of minimum rate constraints up the graph
measures of constraint satisfiability against implementation  hierarchy.

checksatisfiabilitf ) {
forv e V(G) {
if v = loop [* recursively go to leaf-level graph */
checksatisfiability“,,);

¥
I>1 constructG [* construct the constraint graph model */
for each backward edge in Gt {
>II if (cycle-set= find-cyclesGr)){ /* check for min/max */
for I € cycle-set{ [* identify cycles caused by backward edges */
if (£ar(L") > 0) * find positive length cycles */
return (Constraint; is unsatisfiable); /* not feasible */
forvel andv € ND { [* identify N'D cycles */
print 6, = u — £,(T);
bound delay ofy = min(¢,,(v),§,); /* bound onAD delay using constraints */
mark v as nonA/D; /* now treat this delay bound as a property */
¥
¥
¥
¥
5= |4n(@) — 7 - max; R} ' /* check for max rate */
if s>0
return (& is satisfied);
else{ /* need to add null operations — */
addNOPwith 6 = |s|; * — to ensure lower bound on delay */
updatel(G,); /* modified flow graph */
checksatisfiability &);
}
if G exists /* check for min rate */
[>III impose constraint”- — AU@)]7 on link operation inG; I* propagater; */
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We show these three steps in this example. The procedpm: There are no positive cycles, so the constraint graph is

first considersGy: feasible. Further, two backward edges lead/#® cycles. Only
I In the constraint graph of¥;, there are three backwardone of themrc constrains the delays (?féth@ép operationus.
M 3 U3
edges with the following weights: The bound on the loop indexz = LQ—M—ZAI(GJ“ J+1=
G 11. With this bound the delay of; is < 165.
L=1/6=—6 -
[>111: There is no parent graph to propagate the minimum rate
G2 = 1/40 = —[40 — (G1)y(gy)=0l constraints.
—[40 — v(G2) — €3 (G2) + € (G1)] From Example 5.3, the bound on the delay due to runtime
—[40 — 0 — 15+ 3] system ismin{67,200 — 13} = 67 cycles which is greater

than 7, = 20 cycles. Therefore, with the given bounds on

=-28 loop indexes ofs; andwz the constraints are satisfied.
74 = 1/100 = —[100 — v(G1)] This example illustrates the process of constraint analysis
—(100 — [v(G2)] — 15+ 3) for a given hierarchy of graphs that model an embedded
(83— [AU(G) + Far + b (Ga)— L (Go)])  SYStem implementation along with the timing constraints. This

analysis is interactively performed where the expected bounds

—(88—[13+20+ 13- 9]) on loop indexes are verified by the user to be either acceptable

—51 or else loop transformations are attempted to ensure constraint
i>1r: The maximum forward path length i5< 6 satisfiability [11].
= no positive cycles
= The constraints are feasible. Furth€f;; contains VII. SUMMARY AND FUTURE WORK
no A'D cycles. _ . .
] - . In this paper, we have considered the two basic types of
b Propagate minimum rate constraints to constraints that are useful in characterizing embedded system
f{‘ = not propagated. timing performance. One is operatidelay constraints which
Gy=r5 =G =1/(28-1)=1/27 are defined as binary relations that are translated to bounds on
ra =Ty, =1/(61-1)=1/50. the interval between th&tart timeof two operations. The other

is executionrate constraints, typically known as throughput
constraints, which are defined as constraints on successive
executions of an operation. A notion of constraint satisfiability
is developed based on the ability to determ@éstenceof a
schedule of operations that meets the constraints. Scheduling
rp =1/50= —(50 — (G2)) = —(50 — 37) = —13 is considered in two parts: operation scheduling and task/graph
Gz =1/27 = —27 scheduling. While the former can be subject to deterministic
constraint satisfiability analysis, such analysis for the latter is
7b2—1/o():>—00 NN o e -
GZ B limited in applicability due to the additional nondeterminism
=1/30 = —30. inherent in the runtime system for software. The run-time
scheduler models uncertainty in invocation of graph models

I 7 is infeasible since it leads to a positive cycle wittnd, thUS,. attempts to “merge” this uncertainty with that of
weight = 15 — 13 = 2. The rest are feasible. Next, thedelay of (link) "D operations by choosing an implementation
constraint graph containg/D cycles with a singleA’D ©f ND operation that causes a context-switch. This merge in
operationyu,, for each of the three (feasible) backward edgedncertainty is accomplished by redefining short-term constraint
Of these, only one, namely®2, bounds the delay due to thesatisfiability overactive computation times rather than total

N'D operation by the following upper bound on loop indexgxecution times. Thus, aND operation is transformed into
F(uy) = | 30=021540 | 1 1 — 4. With this bound, the delay of & fixed-active-delay operation while the uncertainty associated

the loop operatlonm, is bound below 16 cycles. with its actual delay is delegated to the runtime scheduler.
i>IT: Propagate minimum rate constraints to The proposed algorithm is useful in carrying out an inter-
active analysis of constraints, where the effect of individual
constraints on feasibility of an implementation can be seen by

Note thatrfj1 is not propagated further thas; .
For Go:
>Ir: In the constraint graph of7,, there are four backward
edges with the following weights:

TR = Infeasible. Not propagated.
r&2 = 1/27 = Not propagated.

Gs; = )”2 —1/50 = 1y, = 1/(50 — 6) = 1/44 propagating the copstraint th_rough the hiferarphy of the graph

c? —1/30 = Not propagated. _model. The co_nstralnt angly5|s descnbeq in this paper has been
implemented in a practical cosynthesis system, VULCAN,

Finally for G31 which takes an input described in HardwareC and allows
> In the constraint graph off3, there are three backwardthe designer to interactively explore the effect of individual
edges with following weights: timing constraints on system implementation in hardware
wep =12 = —12 and software. From our experience in applying cosynthesis

o _ _ techniques, we find that the specification of pair-wise operation
re =1/200 = —(200 - 5(Gs)) = 180 constraints is sometimes restrictive in real life applications.
Ty, = 1/44 = —44. Our future plans include extension of constraint analysis to
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kary constraints, i.e., constraints @n> 2 operations. Such [24] P. Puschner and C. Koza, “Calculating the maximum execution times of
i i i i real-time programs,J. Real-Time Systvol. 1, pp. 159-194, Apr. 1989.
constraints are useful in expressing performar)ce cons.tralﬁtg] Ay Mig’heﬁ{ e Ko F. Ma”h%t‘ o TFprruong, “Thepolympus
on a group of operations that would otherwise require ‘a" synihesis system for digital designEEE Des. Test Magpp. 37-53,
cumbersome binary constraint descriptions. Oct. 1990.
[26] J. L. Hennessy and D. A. Patters@@omputer Architecture: A Quanti-
tative Approach Los Angeles, CA: Morgan-Kaufman, 1990.
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