Symbolic Synthesis of Clock-Gating Logic for Power Optimization of
Control-Oriented Synchronous Networks *

L. Benini # @. De Micheli # E. Macii !

Stanford University
Computer Systems Laboratory
Stanford, CA 94305

Abstract

Recent results have shown that clock-gating technigues are ef-
fective in reducing the total power consumption of sequential
circuits. Unfortunately, such fechnigques assume the availabil-
ity of the state transition graph of the target system, and rely on
ezplicit algorithms whose complezity ts polynomial in the num-
ber of states, that is, exponential in the number of state vari-
ables. This assumption poses serious limitations on the size of
the circuits for which automatic gated-clock generation is feas:-
ble. In this paper we propose fully symbolic algorithms for the
automatic extraction and synthesis of the clock-gating circuitry
for large control-oriented sequential designs. Owur techniques
leverage the compact BDD-based representation of Boolean and
pseudo-Boolean functions to extend the applicability of gated-
clock architectures to designs implemented by synchronous net-
works. As a result, we can deal with circuits for which the ez-
plicit state transition graph is too large to be generated and/or
manipulated. Moreover, symbolic manipulation technigues al-
low accurate probabilistic computations; in particular, they en-
able the use of non-equiprobable primary tnput distributions, o
key step in the construction of models that maich the behavior
of real hardware devices with a high degree of fidelity. The re-
sults are encouraging, since power savings of up to 36% have
been obtained on controllers containing up to 21 registers.

1

The demand of CAD tools that help the power management dur-
ing the design of digital ICs has increased in the last few years,
and much effort has been put by researchers in the development
of efficient synthesis methodologies for low-power systems.

Introduction

In this paper we focus on power optimization of control-oriented
sequential circuits. An efficient way for obtaining power savings
on a design whose initial specification is given as a state transi-
tion graph (STG) has been proposed in [1]. To be more specific,
the strategy adopted to save power is based on the concept of
clock-gating. Given the STG of the circuit to be synthesized,
conditions under which the next state and the output signals
do not change are identified. In presence of such conditions,
the clock is disabled, since no useful computation is performed
by the circuit, thus avoiding some node switching that may
cause useless power dissipation. In [2] techniques have been
described for calculating the conditions under which the clock
can be stopped, as well as exact and approximate algorithms for
synthesizing the STG description with embedded clock-gating
mechanisms.

*This work was supported, in part, by NSF under contract MIP-
9421129,

1066-1409/97 $10.00 © 1997 IEEE

514

M. Poncino ¥ R. Scarsi ?

} Politecnico di Torino
Dip. di Automatica e Informatica
Torino, ITALY 10129

There are two major limitations in the method of [2]. - First,
the tool can handle only small FSMs. Controllers which are au-
tomatically synthesized from high-level specifications may have
millions of states; explicitly enumerating all of them, as required
by the algorithms of [2], may thus be simply unacceptable. Sec-
ond, the computation of the clock-gating conditions is done
without considering the controller as a piece of a more com-
plex system but, rather, as a component running in isolation.
This implies an inevitable loss of information which could have
been exploited to achieve a more effective global optimization.
In this paper, we address both the issues pointed out above. The
problem of optimizing larger controllers is tackled in two ways.
First, by resorting to symbolic data structures, that is, BDDs
[3] and ADDs [4], to simplify the representation of the clock-
gating conditions as well as the calculation of the probability
of the activation function [5, 6]. Second, by employing a new
and efficient algorithm for the search of the optimal activation
function that is able to dynamically estimate the savings, in
terms of power consumption, that different realizations of the
clock-gating logic produce on the circuit.

For what concerns the calculation of the activation function, in
[2] it has been proposed to compute it by looking at the sequen-
tial circuit in isolation, that is, as a self-standing computing
element, thus implicitly making the assumption of equiprobable
input statistics. The control-dominated systems we are consid-
ering here are usually interacting with other controllers and/or
data-paths; this may pose some constraints on the signals that
appear at the circuits I/O interfaces. One way of properly mod-
eling the influence of the environment on the behavior of a de-
sign is through non-equiprobable primary input statistics. In
addition, even when the circuit’s primary inputs are totally in-
dependent from the other components, there may be cases in
which assuming a 0.5 input transition probability is not realistic
(think, for example, to the external reset signal of a microcon-
troller). We therefore propose to use non-equiprobable primary
input probability distributions in the computation of the acti-
vation function. Such distributions can be determined from the
knowledge of the specific functionalities associated to the var-
ious input signals or, alternatively, by performing system-level
simulation over a large number of clock periods.

We present results that show the feasibility of the proposed tech-
niques. In fact, power savings of up to 36% have been obtained
on some of the mid-sized Iscas’89 benchmarks [7]). Moreover,
experimental data show the impact that the accurate knowledge
of the primary input statistics can have on both the total prob-
ability of the activation function and the power savings obtain-
able through implementation of the gated-clock architecture.

2 Background

We assume the reader to be familiar with the basic concepts of
Boolean functions and with the data structure commonly used
for the symbolic manipulation of such functions, that is, the bi-
nary decision diagrams (BDDs). Background material on this
subject can be found in [3]. We review here two Boolean oper-
ators essential for our purposes. Given a single-output Boolean
function, f(zi,...,zn), the positive and the negative cofac-
tors of f, with respect to variable x;, are defined as: fo, =
f(zi,...,zi = 1,...,25) and f‘”i = flz1,...,2i = 0,...,2a).
The ezistential and the universal abstraction of f with respect
to z; are defined as: 3z, f = fz; + for and Vo, f = fo, - for .

2.1

We consider synchronous sequential circuits composed of com-
binational gates and edge-triggered flip-flops. All flip-flops are
controlled by the same clock, and we assume that they are all
resetable to a given state. Associated with a sequential circuit
is an encoded, Mealy-type, finite state machine (FSM) that de-
scribes the behavior of the circuit. An FSM, M, is a 6-tuple
(X,2,85,5°,6,)), where X is the input alphabet, Z is the out-
put alphabet, S is the finite set of states of the machine, s° is
the reset state, 6(z, s) is the next state function (§ : X x§ — §),
and A(x, s) is the output function (A : X X § — Z). The sets X,
Z, and S are non-empty. Boolean functions § and A have mul-
tiple outputs: They implicitly define the state transition graph
(STQ) of the given FSM.

Elements ¢ € X are encoded by vectors of n Boolean variables,
Z1,--.,Tn, called input variables. Similarly, present statess € S
are encoded by k Boolean variables, s1,..., sk, called present
state variables, elements z € Z are encoded by vectors of m
Boolean variables, z1, ..., zm, called output variables, and next
states ¢ € S are encoded by k Boolean variables, ty,..., ¢,
called next state variables.

Mealy-type FSMs produce the output z when the edge labeled
is traversed, while Moore-type FSMs produce the output 2z when
a given state s is reached. Therefore, in Moore-type machines,
states, rather than edges, are labeled with output symbols.

Sequential Circuits and Finite State Machines

2.2 Pseudo-Boolean Functions and ADDs
A n-input pseudo-Boolean function, f : B™ — S, is a mapping
from a n-dimensional Boolean space to a finite set of elements
S. Different data-structures have been proposed for storing and
manipulating functions of this type. In this work, we use the
algebraic decision diagrams (ADDs) [4].
The most important operators for efficient manipulation of the
ADDs are: ITE, APPLY, and ABSTRACT.
ITE takes three arguments: f, an ADD restricted to have only 0
or 1 as terminal values, and g and h, generic ADDs. It is defined
by:

ITE(f,9,h) = f-g+ f' -h
APPLY takes one operator, op (e.g., +, —, X), and two operand
ADDs as arguments; it applies op to all corresponding elements
of the two operands and returns the resulting ADD.
ABSTRACT reduces the dimensionality of its argument function
through existential arithmetic abstraction of some variables. Let
u be the support of a pseudo-Boolean function f(u), and let =
and y be two sub-sets of u such that z Uy = u. The arith-
metic existential abstraction of = from f(u) with respect to the
arithmetic sum is defined as:

\Efw) = f(u).

515

This definition tells that, instead of taking the Boolean sum
of all the the cofactors associated with the minterms of the z-
variables, as in Boolean existential abstraction, the ABSTRACT
operator computes precisely the arithmetic sum. Similarly, the
arithmetic existential abstraction of with respect to the MAX
operator is defined as:

\MAX f(u) = max f(u).

2.3 Probabilistic Analysis of a FSM

The probabilistic behavior of a finite state machine can be stud-
ied by regarding its transition structure as a Markov chain. It
is sufficient to label each ount-going edge of each state with the
probability for the FSM to make that particular transition to
obtain a discrete-parameter Markov chain. On the other hand,
studying the Markov chain, that is, computing the state occu-
pation probabilities, is related to performing the reachability
analysis of a FSM.

Given the transition relation of the finite state machine rep-
resenting the sequential circuit, it is possible to compute the
vector p whose entries p, tell us the steady-state probability of
the FSM to be in state s.

ADD-based procedures allow the computation of vector p for
very large FSMs [5, 6]. Transition graphs with up to 1027 states
were successfully handled by the ADD-based probabilistic anal-
ysis tool. Complex primary input probability distributions can
be specified and efficiently represented with ADDs in order to
have more detailed hardware modeling options. In this work we
rely on the performance of these algorithms to overcome some
of the limitations which appeared in the implementation of the
optimization methods of [1, 2].

3 Reducing Power Through Clock-Gating

A gated-clock circuit is obtained by modifying the architecture
depicted in Figure 1-a. We define a signal called activation
Function (F.) that selectively stops the local clock of the circuit,
when the machine does not perform state or output transitions.
When Fgq = 1 the clock will be stopped.

The sequential circuit with clock-gating logic is shown in Fig-
ure 1-b. The block labeled “L” represents a latch, transparent
when the global clock signal CLK is low. The latch is needed
for correct behavior, because F, may have glitches that must
not propagate to the AND gate when the global clock is high.
Moreover, notice that the delay of the logic for the computation
of Fq may be on the critical path of the circuit, and its effect
must be taken into account during timing verification.

_J STATE

lour

Combinational |,y

Combinational
i Logic

Logic

CLK

(a) (b}

Figure 1: A Sequential Circuit (a). Gated-Clock Version (b).

The activation function is a combinational logic block with the
primary inputs and the state lines of the circuit as input vari-
ables. No external information is used; the only input data for
our algorithm are the gate-level description of the circuit and
the probability distributions of the input signals.

3.1 Idle Conditions

Given the gate-level description of the circuit and its probabilis-
tic model, we first want to identify the idle conditions when the
clock may be stopped. A gate-level netlist is the implementation
of a sequential circuit that can be represented by a finite state
machine. In the following we will refer to the FSM associated
to the netlist to clarify some important points. Determining
the idle conditions is a simple task for circuits implementing
Moore-type FSMs. When the present state and the inputs are
such that the next state does not change, the Moore FSM is
idle; in symbols: §(z, s) = s (i.e., the self-loops). Unfortunately,
this property does not hold for Mealy FSMs.

Consider for example the fragment of a Mealy FSM shown in
Figure 2. State Sz has a self-loop, but we cannot stop the clock
when we observe the code of Sz and inputs 11 on the state and
input lines. The reason is that the self-loop does not change the
next state, but it changes the output if the previous transition

was S; — S2. Intuitively, the self-loop on S2 becomes an idle .

condition only if it is taken for two consecutive clock cycles. In
contrast, the self-loop on S35 is an idle condition, because every
incoming edge of S3 has the same output and knowing that the
next state is S3 provides enough information to infer the output
value.

Figure 2: Fragment of a Mealy FSM.

This observation has been formalized in [2] where the states of a
Mealy-type FSM have been divided into two classes. States like
S, where self-loops are not idle conditions (unless taken twice),
are called Mealy-states, while states like S3 are called Moore-
states. For Mealy-states it is not possible to stop the clock of
the circuit just by observing the state and input lines. In [2]
an algorithm is described that operates on the STG of the FSM
to transform Mealy-states into Moore-states, thus allowing the
exploitation of more self-loops as idle conditions where the clock
can be stopped.

In this work, we want to extract the idle conditions available in
the synchronous network implementing the FSM. It is generally
computationally infeasible to extract the STG representation for
large sequential circuits. As a consequence, the transformation
from Mealy-states to Moore-states is not applicable and we must
restrict ourselves to the Moore-states of the Mealy FSMs.

3.2 Activation Function

Given an FSM implemented by a synchronous logic network,
we would like to find the self-loops of the Moore-states. Such
self-loops are uniquely identified by the present state and input
values and represent the set of idle conditions that may be ex-
ploited to stop the clock. For example, for the FSM fragment
in Figure 2, the only useful idle condition is the self-loop on S
(identified by input value 00 and state value S3).

The complete activation function Fu(z, s) is defined as the union
of all self-loops of Moore-states (z and s are respectively the
input and state variables). The set of all self-loops in the FSM
includes F,, because it contains also the self-loops of Mealy-
states.

516

The identification of the Moore-states can be performed im-
plicitly (i.e., without extracting the STG) by a procedure that
requires a single unrolling of the sequential circuit, i.e., dupli-
cating the combinational logic to represent two consecutive time
frames, as shown in Figure 3.

.
x L L

z z

Combinationat
logic (2)

Combinational
logic (1)

Figure 3: Unrolling of a FSM.

There are two cascaded logic blocks: the inputs of the first com-
binational block are = and s, representing respectively primary
and state inputs. The outputs are z. The next state outputs of
the first block are fed into the state inputs of the second block
{the signals ¢). The primary input values in the second block
are represented by 1, while the output of the second block are
zt.

With this model, finding the Moore-states is quite simple. For
a Moore state t, the following property holds: if in the sec-
ond combinational logic block the state transition is a self-loop
(i-e. &(zt,t) = t), for each state transition s — ¢t in the first
block, the output z = A(z, s) and 2t = A(z,t) are the same.
Intuitively, this property expresses the requirement that every
incoming edge for state £ has the same output value, but we
are interested only in states with self-loops, because otherwise
no idle conditions are available. Finding all states for which
the condition is true is equivalent to finding all Moore-states
with self-loops, but no STG extraction is required. This proce-
dure lends itself to an elegant symbolic formulation that will be
described in the next section.

4 Synthesis of the Clock-Gating Logic

In this section we describe a symbolic algorithm to generate the
clock-gating circuitry and we discuss the issues related to the
global optimizations that are enabled by the presence of the
new logic into the circuit. The expression giving the activation
function Fu in symbolic form is the following:
Fu(z¥t,t) = A -V, ,(B+C) (1)
The term A = Hf_l(&(m*' ,t) = t;) imposes the condition that,
in the second frame of the unrolled circuit, the machine has a
self-loop. This is expressed by having each present state variable
t; identical to the next state function §;(z*,t).
The term B = H:’;l(k.;(z, 8) = Ai(zt,t)) describes the con-
straint on the output values. Since we are detecting Moore-
states, we require that the output values of the incoming edge
and the self-loop are the same. Notice that the unrolling implies
the use of different variables for the two frames of the unrolled
circuit.
The term C = (H?zl(é';(m,s) =t;))’ is ORed with the second
term to express the fact that the equality of the outputs in two
frames does not need to be enforced for transitions not in the
next state functions of the FSM.
The resulting activation function F, is expressed in terms of
the auxiliary variables (xz 1, t) for convenience, and can be easily
re-expressed as a function of the inputs = and present states s
by variable renaming.

4.1 Reducing the Activation Function

Direct application of Equation 1 yields, in the general case,
functions whose power dissipation may partially mask off the
potential power savings. Therefore, it is mandatory to develop
a systematic method to reduce the implementation of F,, while
keeping as high as possible the probability of its ON-set.

To reach this objective, we proceed as follows. First, we build a
pseudo-Boolean function, P, , which implicitly represents the
probability of the minterms in the ON-set of F;. Then, we it-
eratively remove from F, some of its ON-set minterms until a
given cost criterion breaks the loop. Clearly, both the minterm
removal and the stopping condition must be guided by a com-
bination of the size improvement in the implementation of Fy
and the probability decrease of the ON-set of F,. We have de-
vised several heuristics that help in keeping together these two
requirements.

4.1.1
Let us assume the pseudo-Boolean functions of the primary in-
put probabilities, Pinputs(‘”) and of the state occupation prob-
abilities, Pstgies(8), to be known (for the details on how these
two functions can be computed implicitly using ADDs the reader
may refer to [5, 6]). The probability Pp, can be simply obtained

Computing Pg,

as:
Pp (z,8) = Pinputs(m) * Pstates(s) - Fa(x, s)
Obviously, Pr, is stored as an ADD, whose paths from the root
" to the leaves give the probability of all the minterms in the ON-
set of Fp. The total probability of the ON-set of Fg, (i.e., a
real number) can then be computed by applying the ABSTRACT
operator: PROB(F,) = \,f,"_,PI:-‘L (z, s).

4.1.2 Iterative Reduction of F.

Given the activation function, F,, and its probability func-
tion Pg_ , the reduction algorithm iteratively prunes some of
the minterms of F,; until an acceptable solution is found. The
pseudo-code of the procedure is shown in Figure 4.

procedure Reduce Fa(Fg, Pp,) {

FaBest = Fg; PBest = PF,,;

FaCurr = Fa; Poyrr = Pr,;
Best_Cost = Compute Cost (FLC¥T);
while (not Stop Test(FFest pp_)} {
FaCurr — Prune.Fa (Fac’urr);
Curr_Cost = Compute Cost (F.OU™);
if (Curr-Cost < Best_Cost) {
F‘Pest - FaCurr;

PBest = Pourrs
Best_Cost = Curr_Cost;

}

return (FBesty;

Figure 4: The Reduce Fa Algorithm.

As mentioned earlier, the objective of procedure Reduce Fa is
to determine a new activation function, FB¢5¢ which is con-
tained into the original F,, has a high global probability, and
is less costly (in terms of both power and area) if compared to
F,. Three main routines are called inside Reduce Fa: Prune Fa,
Compute Cost and Stop.Test. We discuss them in this order.

517

4.1.3 Heuristics to Prune Function F,

We have experimented with two different heuristics for pruning
the activation function.

The first one is based on the idea of removing from the ON-set
of Fy the minterms or the cubes whose probability is smaller
than a relative, user-selected threshold, a € [0,1].

Given the probability function Pg, (x, s}, we first compute the
maximum value of its leaves:

Maz = \g{fXPFa (=, 5)

Then, we set to O all the leaves of the Pp, (z,s) ADD whose
values are smaller than aMaz, and we set to 1 the remaining
leaves. This is accomplished through an ad-hoc ADD operator
called THRESHOLD; we denote as P, the so obtained ADD (which
is, actually, a BDD, since it has only 0 and 1 leaves). Finally,
the current activation function is computed by application of
the ITE operator:

FLC¥T = 118(Pp, , F2,0)

Preserving a high probability for F,; is essential. However, to
obtain a minimum power implementation, it is equally impor-
tant to keep the area of the clock-gating circuitry under control.
It is well known that reducing the number of minterms in the
ON-set of a function does not guarantee that the size of the cor-
responding (optimized) circuit decreases. On the other hand, if
some minterms in the ON-set are moved to the don’t care-set
instead of the OFF-set, then the final realization of the circuit
is advantageous from the area point of view. To take this as-
pect into account, we need to generate the don’t care function,
DCg;”'""’, which is associated to the activation function. One
way of computing it is the following:

DCZMT = Fy @ FE™T (2)
Clearly, churr can be used to optimize F, aC UTT at each itera-
tion of the reduction process.

In the rare cases where a large fraction of the minterms of F, has
the same probability, say p, keeping the p leaf in the ADD does
not allow enough reduction of Fg; on the other hand, setting it
to zero causes an unacceptable decrease in the total probability
of the pruned F,. We propose a solution based on the concept
of BDD subsetting [8]. We retain only the “dense” subset of
minterms with probability p, in the hope that to a small ADD
for the probability function corresponds a compact logic circuit
realizing the reduced F;. Experimental evidence has proved this
choice to be reasonably efficient.

The reduction technique outlined above uses as primary prun-
ing criterion the probability of the minterms to be added to
the don’t care-set. An alternative heuristic is reminiscent of
the strategy presented in [9], and it is based on the key ob-
servation that reducing the number of variables in the support
of Fa may cause a reduction in the size of its implementation,
since the number of circuit inputs decreases accordingly. The
procedure selects a variable x; to be eliminated from the sup-
port of F; based on the probability of the universal abstraction
qi = Vo, Fo(z). Variables with the highest P(g;) are eliminated,
one at a time, until a user-selected cost requirement (which ac-
counts for both the total probability of the reduced F,; and the
size of its implementation)is met. Also in this case, the reduced
activation function can be further optimized at each iteration of
procedure Reduce Fa by using the don't care information that
can be computed using Equation 2. For space reasons, we do
not discuss the details of this heuristic.

4.1.4 Computing the Cost of Function F,

The pruning heuristics described in the previous section use, as
driving criterion, the total probability of the reduced activation
function as well as the size of its implementation. However, the
ultimate objective of the optimization algorithm is the reduction
of the dissipated power of the overall design. Therefore, the cost
function we employ to decide whether the current solution is
acceptable uses the power as primary target. Its expression is
the following:

Curr_Cost = POW(Circ)(1 — PROB(FL¥TY) + POW(FL¥™)

POW/(Circ) is the average power dissipation of the original cir-
cuit, computed through Monte-Carlo or symbolic simulation.
POW(FaO'”"'), on the other hand, is the average power dissi-
pation of an optimized multi-level implementation of Fac"""".
The first term of the summation represents an estimate of the
expected power dissipation of the circuit when clock-gating is
present. The second contribution is the additional power con-
sumed by the activation function. The biggest source of approx-
imation is in the assumption that the power of the gated-clock
circuit (excluding the activation function) scales linearly with
the probability of FaC’urr. The advantage of this cost func-
tion stands in its limited computational requirements, since
POW(Circ) is calculated once and for all before starting the
Fy reduction process. The negative side is, obviously, that the
possibly beneficial effects of simplifying the logic of the over-
all circuit using FCU'™ as external don’t care-set are not ac-
counted for. In contrast, POW(FGC“") is clearly recomputed
for each new activation function, that is, at each iteration of the
Reduce Fa algorithm.

4.1.5 The Stopping Criterion

As in any gradient-based refinement procedure {where the it-
erations continue as long as there are improvements, and stop
as soon as the cost function starts increasing again), we re-
duce the ON-set of F, at cach iteration and we exit the reduc-
tion loop the first time the cost function starts increasing, i.e.,
Curr_Cost > Best.Cost. Experimental evidence in previous
work [1] has shown that, in most of the cases, the cost function
is either monotone or with a single minimum. This result is
intuitive, since the reduction of the activation function is such
that the newly generated F, is contained into the one gener-
ated at the previous iteration, and therefore once a minimum
is hit, it is difficult to hit another one. This argument is plau-
sible as long as the circuitry implementing F; and the logic of
the original circuit are kept separated. In fact, in this case, a
smaller activation function improves the power dissipation only
by reducing the consumption in the clock-gating circuitry. A
size reduction of Fg that increases the power implies that the
power not saved in the circuit is larger than the power saved in
the clock-gating circuitry, and using an even smaller activation
function will only make this situation worse.

When the cost function is more complex, this line of reasoning
may no longer be correct. This is because minterms removed
from F, are actually added to the don’t care-set of the same
function, and since such don’t care conditions are used to op-
timize the overall circuit, a larger don’t care-set may help in
reducing its size, and therefore, possibly, the total power con-
sumption. It is clear then that, due to the complexity of the
adopted cost function, finding a direct relationship between such
function and the optimality of the computed solution is not an
easy task. We are currently investigating more sophisticated
stopping criteria which are able to guide a branch-and-bound
searching technique.

518

4.2 Global Circuit Optimization

The result produced by procedure Reduce Fa is a gate-level spec-
ification of the activation function, Fy,, which is likely to produce
some power savings when appropriately connected to the origi-
nal sequential design.

After the logic is included in the circuit in the way shown in Fig-
ure 1-b, some global optimization can be performed. Notice that
the activation function is functionally redundant. Since the tar-
get is area rather than power minimization, the optimizer may
remove the clock-gating logic in its entirety, thus producing a
circuit which is very similar to the original one. This is most
likely to happen when Fj is used as external don’t care-set for
each primary and state output and redundancy removal meth-
ods are used for the optimization. Clearly, this is something we
must avoid. '

The solution we have adopted to overcome this problem consists
of adding to the circuit an extra output pin to make function
F, directly observable. With this artifact, redundancy removal
procedures can be applied to the circuit. This type of optimiza-
tion has highly beneficial effects on the gated-clock circuits: not
only it may reduce the power dissipation, it also increases the
testability of the system, because it eliminates the untestable
faults in the combinational logic generated by the insertion of
the redundant clock-activation logic [10].

4.3 Covering Additional Self~-Loops

If a sequential circuit is an implementation of a Mealy FSM with
no Moore-states, the activation function will be empty. In this
section we discuss generalizations of the procedure used to find
the initial ¥, that allow the exploitation of different kinds of
idle conditions.

We target self-loops on Mealy states. As discussed above, these
self-loops are not idle conditions because we cannot guarantee
that output transitions will not be required, even if the next
state does not change. This problem can be solved if the outputs
of the sequential circuit are taken as inputs of the activation
function as well as the state and primary inputs. The gated-
clock architecture can be modified as shown in Figure 5. If all
outputs are taken as inputs of the activation function, all self-
loops can be exploited to stop the clock. As an example, consider
again Figure 2: if we are allowed to observe the output values,
then a state value of 53, an input value 00, and an output value
11 uniquely identifies the self-loop in S3. Observing these values
we can stop the clock because: i) the FSM is in a self-loop, ii)
the output is not going to change in the next clock cycle.

|

Combinational

Logic ouT

CLK

Figure 5: Modified Gated-Clock Architecture.

The expression of the activation function including output val-
ues is very similar to the one presented in Equation 1:

Fao(zT,t,2t)=4.(D+0) (3)

where terms A and C are the same as in Equation 1, and D =
H;’;l()\i(z*‘,t) = z;*) Notice that the support of F; has been
extended to include the output variables z*.

It may be observed that, since the number of outputs in a se-
quential circuit is often very large, the size of the activation
logic may increase too much. However, it may be the case that
we do not need to use all outputs as inputs of F,. For example,
referring to Figure 2, to exploit the self-loop on S5 it is sufficient
to sample the second output, because the first output does not
change on all transition reaching S». Formula 3 can be modified
so that only a subset of the outputs becomes part of the support
of Fy. We have:

Fo(zt,t,2Y)Y=A - ((D1-D3) 4+ C)

H:”zl()\i(aﬁ‘,t) =2f), Dy = H:’;w+l(Ai(m, s) =

Ai(zt,t)), and w is the number of circuit outputs we want to

where Dy

consider.

There is clearly a trade-off between the number of additional
self-loops that can be considered in the activation function by
including one or more outputs to its support and its size (and
power dissipation). We have devised the following heuristic pro-
cedure to perform the selection of an optimal subset of out-
puts for inclusion in the support of the activation function. For
each primary output, zf, of the circuit, we first compute func-
tion Fa(a:+ ,t z;") and we determine the value of its probability.
Then, we sort the outputs according to such values. Finally,
we build function Fo(zt,t, z1) incrementally by adding to the
previously computed activation function the outputs which con-
tribute more to the total probability value of F;. The construc-
tion terminates when a user-defined threshold value is reached
by the probability of F,.

5 Experimental Results

The power optimization algorithms proposed in this paper have
been implemented within the SIS {11] environment, and their
effectiveness benchmarked onto some examples taken from the
literature.

The original synchronous circuits have been optimized for area
through the SIS script script.rugged, and mapped for speed
using the SIS commandmap -n 1 -AFG. These mapped circuits
have been used as the starting point for our experiments. The
logi: for the reduced F, has been computed through procedure
Reduce Fa and connected to the original circuit as indicated in
Figure 1-b. The functional specification of F, has then been
added as external don't care-set for each circuit output, and the
circuit optimized for area through script.rugged.

The cell library we used for the experiments contained NAND
and NOR gates with up to four inputs, and buffers and inverters
with 3 different size/drive options. Power values of the initial
and final circuit implementations were obtained using the Irsim
simulator [13]. All the experiments were run on a DEC-Station
5000/240 with 64 MB of main memory.

Table 1 summarizes our results obtained on some Iscas’89 syn-
chronous networks [7]. In particular, columns PI, PO, and FF
show the characteristics of the circuits. Column Gates, Delay
and Power tell the number of gates, the rise and fall delays (in
nsec), and the power dissipation (in uW'), before and after opti-
mization. Columns Variation give the percentage of gate count
and delay increase and power reduction obtained on each ex-
ample. Finally, column F, Time reports the CPU time (in sec)
required by procedure Reduce.Fa to determine the simplified ac-
tivation function.

We have tested both pruning heuristics for the generation of
the optimal F,, but the quality of the results did not change
sensibly (for the results in the table we report the best obtained
savings).

519

Since the reactive nature of a controller typically depends on the
external environment, it is likely to happen that idle conditions
are exercised when the circuit is interacting with the components
in its neighborhood. Such interaction may be modeled through
non-equiprobable primary input distributions. Then, given that
the computation of the activation function depends on the input
probabilities, we expect the size and the probability of Fy to be
affected by the use of non-equiprobable input distributions.

As an example, let us consider the minmax3 circuit [14]; in Fig-
ure 6 we plot the value of PROB(F,) for varying values of the
probability of the enable (active high) and clear (active low)
control inputs. For a fixed value of the probability of c¢lear,
PROB(F,) increases as the probability of enable decreases, and
it goes up as the probability of clear increases. This is reason-
able, since a high probability of both enable and clear to be
active drives the circuit into the hold states, corresponding to
the traversal of the self-loops of the STG.

T T T

SR g = |

0.8 |-

06 4 - g

PROB(Fa)

0 i H i L
05 0.75 1
plclear)

Figure 6: Case Study: The minmax3 Circuit.

To show how the knowledge of the primary input statistics im-
pacts the synthesis and the refinement of Fy, and thus the power
savings achievable with our optimization technique, we present
results for the same circuits of Table 1 in which the probability
of some of the inputs has been set to values different from 0.5.
Since no information was available for both the circuit function-
alities and the environment in which the controllers are oper-
ating, we have chosen to modify the statistics of the primary
inputs belonging to the support of the activation function cal-
culated for the equiprobable case. More specifically, we have set
the input probabilities so as to emphasize the reactivity of the
benchmarks. As expected, power savings have gone up sensibly.
The size (and the number of flip-flops) of the circuits consid-
ered in our experiments is such that the application of the tech-
niques presented in [1, 2] would be extremely hard, because
of the complexity of the STG extraction procedure. In con-
trast, our symbolic algorithms easily deal with these examples,
even with the limited memory available on our machine. To our
knowledge, these are the largest sequential circuits for which
gated-clocks have been automatically generated. For some ex-
amples the power savings are sizable (25%-35%), while for others
almost no advantage is given by gating the clock. The area and
the delay are kept under control (8% and 5%, on average).

In Table 3 we compare the power results achieved by our method
to those of [2] for some of the small, symbolic Mcnc?91 FSMs
[12] (the ones for which large savings were obtained by the ex-
plicit algorithm). From the data we can easily conclude that the
symbolic approach is at least as powerful as the explicit one.

Circuit PI | PO FF Before Optimization] After Optimization Variation [Fq Time
| Gates | Delay | Power | Gates | Delay] Power | Gates | Delay | Power |
8208.1 10 1 8 90 11.00/10.98 75 95 11.07 11.06 49 +5% +1% —34% 7.3
3298 3 6 | 14 181 | 19.26/19.24 89 140 | 19.90/15.88 72 7% 3% | —19% 17.8
3386 7 7 3 148 | 14.94/14.92 63 160 | 15.97/15.55% B8 18% 1% —8% 5.9
3400 3 [21 168 20.81/20.79 90 185 21.14]/21.12 63 +10% +2% —30% 80.1
8420.1 18 1 16 171 16.42/16.40 106 185 17.61/17.59 67 +8% +7% —36% 160.3
244 3 6 | 21 199 | 20.81/20.29 101 217 | 22.12/22.10 76 +5% 9% | —26% 51.0
3610 19 7 6 2890 | 25.62]25.60 95 306 | 27.31/27.29 81 +6% +6% —16% 301.3
3526 3 6 | 21 206 | 18.24/18.22 119 330 | 10.83/19.81 114 | +11% F8% —4% 120.2
Table 1: Results for Some Iscas’89 Circuits.
Cireuit Equiprobable Inputs Non-Equiprobable Inputs
PROB(Fg) | Power PROB(Fz) | Power
{ Orig. | Opt. | Savings { Orig. | Opt. | Savings
8208.1 0.314 i3 49 3% 0.831 64 17 73%
3298 0.241 89 72 15% 0.902 53 10 81%
3386 0.110 63 58 8% 0.642 52 18 65%
8400 0.249 90 63 30% 0.809 67 15 7%
5420.1 0.311 106 67 36% 0.829 90 21 76%
s444 0.249 101 76 25% 0.811 69 19 72%
s510 0.140 95 81 15% 0.670 81 [4%
sb26 0.244 119 114 4% 0.798 88 43 51%
Table 2: Results for Different Input Probability Distributions.
Cireait FT T P65 T Siztcs Power Savings] Second, we are exploring the relationship between gated-clock
| Symbolic | Explicit | and precomputation-based architectures; this with the objective
bbara 1 2 10 45% 4%, of integrating the two approaches into a more general and ef-
:bt:‘ 2; ; 1: ;:Z‘,’ ﬁg‘ fective power management strategy. Finally, ADDs help us in
ey o i . . .
Tons 5 T E) 10%, 13%, accurately modeling the influence of the external environment
2420.kiss | 19 2 18 2¢% 18% on the circuit behavior. In fact, instead of only providing prob-

Table 3: Comparison to the Results of [2] on the Mcnc’91 FSMs.

6 Conclusions and Future Work

We have presented a fully symbolic approach to the automatic
generation of clock-gating logic for control-oriented sequential
circuits. Our methodology starts from synchronous networks
and does not require the extraction of the STG, a very com-
putationally expensive operation. We leverage the BDD-based
representation of Boolean and pseudo-Boolean functions to ex-
tend the applicability of clock-gating techniques to classes of se-
quential systems of size unattainable by previous methods based
on explicit algorithms.

The generality of our formulation enables the application of the
synthesis procedure to activation functions with extended sup-
port (including some of the circuit outputs). The compactness
and expressive power of ADDs allow us to accurately compute
the probability of the activation function, and to develop algo-
rithms that control the optimization of the global power dissipa-
tion with superior accuracy, compared to previous approaches.
Our optimization strategy also relies on an integrated synthesis
methodology that aims at reducing the overhead of the redun-
dant clock-gating logic by effectively exploiting the additional
don’t care conditions in the combinational logic, The results are
promising), since we obtain power reductions as high as 36%.
Future investigation on this subject will focus on several di-
rections. First, approximate algorithms for FSM probabilistic
analysis need to be developed to further enhance the applicabil-
ity of this technique. This is because the real bottleneck of the
symbolic approach is the ADD-based calculation of the exact
state occupation probabilities, which becomes infeasible when
the circuits contain more than a few tens of registers. Construct-
ing and pruning the activation function, on the other hand, is
neither computationally intensive nor too memory demanding.

520

ability distributions for the primary inputs, we can actually feed
the optimization tool with the statistical distributions of all the
input patterns, since such information, exponential by nature,
can be efliciently represented using ADDs. We are currently
incorporating this enhanced modeling capability into the code.

References

[1] L. Benini, P. Siegel, G. De Micheli, “Automatic Synthesis of Gated
Clocks for Power Reduction in Sequential Circuits,” IEEE Design
and Test of Computers, pp. 32-40, Dec. 1994.

L. Benini, G. De Micheli, “Transformation and Synthesis of FSMs
for Low Power Gated Clock Implementation,” IEEE Trans. on'CAD,
Vol. CAD-18, No. 6, pp. 630-643, Jun. 1996.

R. Bryant, “Graph-Based Algorithms for Boolean Function Manip-
vletion,” IEEE Trans. on Computers, Vol. C-35, No. 8, pp. 79-85,
Aug. 1986.

R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A.
Pardo, F. Somenai, “Algebraic Deccision Diagrams and their Appli-
cations,” ICCAD-93, pp. 188-191, Nov. 19983. .

G. D. Hachtel, E. Macii, A. Pardo, F. Somenzi, “Symbolic ‘Algo-
rithms to Calculaic Stcady-State Probabilisies of a Finite State Ma-
chine,” EDTC-94, pp. 214-218, Feb. 1994,

G. D. Hachtel, . Macii, A. Pardo, . Somensi, “Probabilistic Analy-
sis of Large Finite Statc Machines,” DAC-31, pp. 270-275, Jun. 1994.

F. Brgles, D. Bryan, K. Kosmifiski, “Combinational Profiles of Se-
quential Benchmark Circuits,” ISCAS-88, pp. 1929-1934, May 1989.
K. Ravi, F. Somensi, “High-Density Reachability Analysis,” ICCAD-
985, pp. 154-1568, Nov. 1995.

M. Alidina, J. Monteiro, 8. Devadas, A. Ghosh, M. Papaefthymiou,
“Precomputation-Based Sequential Logic Optimization for Low
Power," IEEE Trane. on VLSI Systems, Vol. VLSI-92, No. 4, pp. 428-
436, Dec. 1994,

M. Favalli; L. Benini, G. De Micheli, "Design for Testability of
Gated-Clock FSMs,” EDTC-86, pp. 589-596, Mar. 1996.

E. M. Sentovich, K. J. Singh, C. W. Moon, H, Savoj, R. K. Bray-
ton, A. Sangiovanni-Vincentelli, “Sequential Circuits Design Using
Synthesis and Optimization,” ICCD-92, pp. 328:333, Oct. 1992,

S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide
Version 3.0,” Technical report, Microelectronica Center of North
Carolina, Jan. 1991.

A. Salz, M. Horowits, “IRSIM: An Incremental MOS Switch-Level
Simulator,” DAC-26, pp. 173-178, Jun. 1989,

O. Coudert, C. Berthet, J. C. Madre, "“Verification of Sequential
Machines Using Boolean Functional Vectors,” IFIP Intl. Workshop
on Applied Formal Methods for Correct VLSI Design, pp. 111-128,
Nov. 1989.

2]

[31

[4]

(8]

(6]
[
(8]
[¢]

[10]

f11]

[12]

[13]

[14]

