Adaptive Least Mean Square Behavioral Power Modeling *

Alessandro Bogliolo

DEIS - University of Bologna
Bologna - I 40136

Abstract

In this work we propose an effective solution to
the main challenges of behavioral power modeling:
the generation of models for the power dissipation of
technology-independent soft macros and the strong de-
pendence of power from input pattern statistics. Qur
methodology is based on a fast characterization per-
formed by simulating the gate-level implementation of
instances of soft macros within the behavioral descrip-
tion of the complete design. Once characterization has
been completed, the backannotated behavioral model re-
places the gate-level representation, thus allowing fast
but accurate power estimates in a fully behavioral con-
text.

Our power characterization procedure is a very effi-
cient process that can be easily embedded in synthesis-
based design flows. No additional effort is re-
qutred from the designer, since power characteriza-
tion merges seamlessly with a natural top-down design
methodology with ilerative improvement. After char-
acterization, the behavioral power simulation produces
accurate average and instantaneous power estimates
(with errors around 7% and 25%, respectively, from
accurate gate-level power simulation).

1 Introduction

As power dissipation becomes a critical cost met-
ric for VLSI systems, reliable power estimates are
needed as early as possible in the design flow. Accu-
rate power estimation techniques have been proposed
[1], but they operate at the circuit [2] or gate [3, 4] level
and may require excessive computational resources to
provide power statistics on large digital systems.

An even more severe challenge is given by the lack
of detailed information on the circuit structure in the

*Partially supported by NSF under contract MIP-9421129
and by AEI under grant De Castro.

1066-1409/97 $10.00 © 1997 IEEE

Luca Beninif

404

Giovanni De Michelit

7CSL - Sta,nford University
Stanford - CA 94305-9030

early phases of the design process. During behav-
toral specification, the designer does not have infor-
mation on the actual implementation that will satisfy
the constraints. On the other hand, CAD tools are
increasingly effective. Automatic synthesis of designs
specified at the behavioral level is becoming common
practice [5, 6, 7]. Behavioral synthesis offers many ad-
vantages: it allows shorter design time and enables the
exploration of design tradeoffs.

As far as power dissipation is concerned, several ef-
forts have been made to provide power estimation at
the behavioral level [8, 9, 10, 11}. All methods pro-
posed in the literature rely on the assumption that
a library of primitive functions is available during be-
havioral synthesis. The primitives (also known as hard
macros) are circuit-level (or gate-level) blocks imple-
menting behavioral operators such as addition or mul-
tiplication. The knowledge of both the inner structure
and the functionality of a primitive can be exploited
to construct models of its power consumption.

The main limitation of such characterization
methodologies is that they assume the knowledge of
the gate-level or circuit level structure of the primi-
tives before the design is implemented. Unfortunately,
this assumption is not always valid. While libraries of
primitives are always available in behavioral synthesis,
they are often specified as soft macros. A soft macro is
a functional block for which a synthesizable HDL de-
scription is provided, but its gate-level implementation
depends on the technology library of elementary gates
used by the designer. When synthesis is performed,
the soft macro is synthesized using the technology li-
brary available, and its gate-level description is gen-
erated on the fly. Intuitively, soft macros resemble
software libraries written in a high-level programming
language, while traditional hard macros are similar to
binary libraries.

In this work we propose a power estimation method-
ology that is particularly suited for soft macros used
in a behavioral synthesis environment. We refer to
a top-down design flow with iterative improvements.

The designer starts with a behavioral specification (in
a HDL such as Verilog or VHDL), a library of soft
macros, a technology library of elementary gates and
a set of patterns to be used for the validation of the
behavioral specification. ’

Fast synthesis and simulation steps are iteratively
performed to explore the design space. Our approach
consists of constructing behavioral power models for
the instances of the soft macros as soon as they are
synthesized. This is done by an automatic charac-
terization procedure that runs within each simulation
step. The design is simulated at the behavioral level,
with the only exception of the last synthesized blocks,
for which the gate-level descriptions are simulated to
extract information about their power consumption.
Power consumption data are concurrently collected for
all macro instances under characterization. As soon
as enough data are collected to characterize the power
model for an instance of a macro, its gate-level descrip-
tion is no longer simulated. We then switch back to
its backannotated behavioral model, therefore progres-
sively speeding-up the simulation as more instances
are characterized. In subsequent iterations, behav-
ioral power models do not need to be recharacterized
(unless the corresponding blocks have been directly
affected by optimization). They are directly used
to backannotate the corresponding behavioral speci-
fications, thus exploiting the efficiency of behavioral
power simulation for design exploration.

We model the power consumption of a complex
combinational block by means of a linear combina-
tion of its input-output switching activities. Model
characterization consists of finding an assignment for
the coefficients that minimizes the mean square error
made by the linear power estimate. The exact solution
to this optimization problem can be found by means
of least squares fitting techniques, that may become
expensive in terms of CPU and memory requirements
(all the data involved in the characterization process
are to be available at the same time and a large system
of linear equations is to be solved). To relax compu-
tational requirements we use a characterization algo-
rithm based on a well known technique of adaptive sig-
nal processing, known as least mean squares (LMS) al-
gorithm [12]. LMS has very mild computational costs
and its key advantage is that it converges to the exact
mean square model but it does not require collection
of large amounts of data and can be performed on-line,
while the simulation is running.

Notice that input spatio-temporal correlations are
automatically taken into account by running the in-
stances under characterization within the behavioral

405

simulation of the entire design (i.e., in situ). This is
a key point: in general the LMS algorithm converges
to different models for different instances of the same
macro, even if the implementation is exactly the same.
Each model is the best least squares linear fit to the
power dissipation of the instance given the input pat-
terns that are actually provided by the environment.

Nevertheless, caching mechanisms across multiple
instances can be used either to provide first-cut es-
timates or to speed-up the characterization process.
The behavioral power model of a previously charac-
terized instance can be used as the starting point to
construct the power model of new (or newly modified)
instances of the same macro.

Our behavioral modeling strategy provides aver-
age and instantaneous power estimates with accuracy
around 7% and 25% (respectively) from accurate gate-
level power simulation (performed by PPP (3], the
same simulator used for characterization). Although
the accuracy loss is sizable, we believe that the gener-
ality and ease of use of our methodology can be very
useful for steering the behavioral synthesis process and
enables the power simulation of large systems.

2 Power estimation with LMS

We restrict our analysis to soft macros imple-
mented by complex combinational logic blocks (here-
after called units for brevity). Consider a unit with n
inputs and m outputs. Consider two time instants t;
and t2, t; < t3. Assume that the unit is stable (i.e.,
not affected by transient phenomena) at ¢; and ¢5, and
that an input transition occurs in the time interval
[t1,t2]. We use p(t1,%2) to denote the power consump-
tion of the unit in the time interval [t;,22]. Our goal
is to find a black-box model of the power dissipation
using only boundary information (i.e., the knowledge
of input-output transitions).

Least squares fitting

We approximate the power dissipation in the unit
by means of a linear regression model based on its
input-output activity. The input (output) activity
is represented by a vector of Boolean variables 1 =
(i1,%2, .., in) (0 = (01, 02, ..., 0)) taking value 1 when
there is a transition on the corresponding input (out-
put) signal. In symbols, our power estimate is

p=cotcit1+ ..+ cnin +Cen4101+ ...+ CnymOm (1)

where ¢ = (¢g, €1, ..., Cnym) are the fitting coefficients
to be determined during characterization.

Bordd e®
°°°° L)
s 0%° > 02
F a’ 2
H ° E
‘5 s ° E 0.1
° .
°
2406t O
2 09
a) 10 b) 5404 Ged0d Terld Besdd Det0d ferOS
YO Activity Energy ()

Figure 1: a) Correlation between the I/O activity of an 8-bit
carry-lookahead adder and its energy-per-cycle consumption. b)
Bell-shaped distribution of the energy consumption of the same
circuit due to input transitions corresponding to the same activ-
ity vectors (namely, i = (0011001100011011),0 = (00101001)).

The rationale behind this model is simple: when
there is little input-output activity the power dissi-
pation is likely to be small, while high input-output
switching activity usually implies high power dissipa-
tion in the internals of the block.

Obviously, the linear model is only a rough approxi-
mation: power dissipation is not exactly a linear func-
tion of input-output activity. A typical behavior is
shown in Figure 1.a where the power dissipation is
plotted as a function of the total input-output activ-
ity (i.e., the number of inputs and outputs switch-
ing) for an eight-bit carry-lookahead adder. It is ev-
ident that in this case there is good correlation be-
tween power consumption and input-output activity.
Moreover, Figure 1.b shows the distribution of power
dissipation obtained for several input transitions cor-
responding to the same i and o (remember that a given
value of the input switching activity can be produced
by 2™ different input transitions). The bell-shaped
curve closely resembles a Gaussian noise distribution
on the estimated value p. This is an important ob-
servation, because least squares models maximize the
probability that the predicted value of p is equal to
the real value when the error in the estimation can be
modeled as Gaussian noise.

To determine the coefficients of Equation (1) we
need a sample of input-output activities and corre-
sponding power consumption. The sample of data
collected during the characterization phase can be
represented by a pair (X,p). If s is the sample
size, X is an s X (n + m + 1) Boolean matrix con-
taining the values taken by the independent vari-
ables during characterization (its k-th row being x* =
(1,2%,i%, ... ik of ok .. ok)), while p is a vector of
size s containing the corresponding values of the de-
pendent variable (the k-th element being p*) obtained
from accurate gate-level power simulation.

Given a sample (X, p), coefficients ¢ are the un-
known of the following system of linear equations:

406

p = Xec. (2)

Due to the statistic nature of the characterization pro-
cess, the sample size must be significantly larger than
the number of parameters to be characterized. Hence,
matrix X has much more rows than columns and the
linear system is overdefined. The vector ¢ giving the
minimum mean square error among all possible lin-
ear estimators of p can be obtained from (2) using
well-known techniques of least squares fitting [12]. An
important property of the least squares linear model is
that it always produces an estimate of p with the same
average value as the average value of p in the sample
used for fitting. Therefore it is guaranteed to perform
at least as well as an average value approximation.

Finding a correct sample is the key issue in the ap-
plication of regression models. If the input samplé is
not representative of the actual input values fed to
the unit during its operation, the model will produce
incorrect estimates: Landman et ol [8] showed that
using uniform white noise input samples can lead to
large errors even on average power estimates if the in-
put distribution is not uniform and white. For this
reason, the unit should be characterized within its en-
vironment. If the unit is characterized while running
a global behavioral simulation the input patterns pro-
vided to it are the actual patterns that the unit will
observe during operation. Notice that in this case mul-
tiple instances of the same unit will generally have dif-
ferent power models, because the input samples will
generally be different. ‘

Unfortunately, the determination of coefficients ¢
requires the solution of a linear system of equations
with n + m + 1 unknowns and as many equations as
the sample size s (that may be very large). Moreover,
determining the sample size is not a straightforward
task. In the general case of stationary signals, it may
require to solve the least squares system multiple times
and test for convergence.

The LMS algorithm

If several units are in the characterization phase,
the computational burden of solving multiple systems
of equations multiple times will slow down the sim-
ulation and impose severe memory requirements (all
the matrices and vectors have to be stored). A solu-
tion to these problems is offered by the LMS algorithm
[12]. In synthesis, LMS is a gradient search technique
that iteratively modifies the coefficients of Equation
(1) and adaptively tries to minimize the least squares
error produced by the model, until it reaches conver-
gence in a neighborhood of the theoretical minimum

error solution (i.e., the least squares solution). An ac-
curate description of LMS can be found in [12], here
we simply outline the algorithm and the reasons of its
usefulness in our case.
The iterative formula used for updating the coeffi-
cient vector is the following:
ck+1 — ck + 2uekxk

)

where k is the iteration step, c* is the current assign-
ment of the fitting coefficients, p is a fixed constant (to
be discussed later), x* is the input-output transition
vector (i.e., the k-th row of X) and €¥ = p¥—pk,, is the
difference between the power actually dissipated corre-
sponding to transition x* and the power estimated by
the model for the same transition. Intuitively, at each
iteration the algorithm tries to modify the coefficients
in order to reduce the error made by the model.

The initial value (c®) of the coefficient vector does
not change the asymptotic properties of convergence.
However, convergence will take less iterations if c? is
close to the optimum value. This property can be
exploited to speed-up the re-characterization process
when some instance in the system is marginally mod-
ified by optimization.

The convergence of the LMS algorithm is controlled
by parameter p. It can be shown that for convergence
the following condition must hold:

#IR])
where tr[R] is the trace of the correlation matriz R
[12]. Element r;; of R represents the correlation be-
tween the i-th and the j-th independent variables (i.e.,
rij = E[z;z;]). Since in our case the independent vari-
ables may only take value 0 or 1, the elements of R
cannot be greater than 1. An upper bound for the
trace of R, is then ¢tr[R] < n+m+1.

Even if convergence can be easily ensured, a more
subtle tradeoff is involved in the choice of p. If the
convergence of the iteration is too fast, the accu-
racy of the final solution can be compromised. In
[12] a measure of the accuracy of the solution is
defined: the misadjusiment M. LMS tries to find
the optimum ¢ by minimizing the mean square er-
ror (MSE) of the linear model. However, due to
the non-linearity of the dependent variable, the mini-
mum M SE (minMSE) is always greater than 0. The
misadjustment is an adimensional measure of the dis-
tance between the current solution and the best one:
M = (MSE—-minMSE)/minM SE. It can be shown
that the value of M at the end of the adapting process
is estimated by M = p - tr[R).

O<pu<

407

On the other hand, g is directly proportional to the
speed of convergence, the time constant being Tayrsgp =
Zﬁ’ where), is the smallest eigenvalue of R [12].

It is apparent that the choice of p is paramount for
obtaining a satisfying regression model with LMS. In
our implementation y si chosen as one tenth of the
(worst case) maximum allowed value. The user can
however override this choice either by specifying u or
by specifying the maximum number of patterns for
which the characterization must be run.

LMS has numerous advantages over the least
squares solution, while retaining the same desirable
properties of robustness and statistical significance.
First, the computational requirements are mild: the
iteration formula has complexity linear in the number
of inputs and outputs. Second, no additional storage
of past data is required. Third, the characterization
process can be performed on the fly, while the simu-
lation is running, and several units’ instances can be
characterized at the same time without sensible per-
formance penalty.

3 On-line characterization

The adaptive power model described so far actu-
ally“bridges the gap between fast behavioral simula-
tion and accurate gate-level power estimate. To do
this, a simulation engine supporting both levels of ab-
straction is required. Moreover, a straightforward in-
terface to the synthesis environments is necessary to
allow iterative design improvements. To meet these
requirements, we implemented the procedures for be-
havioral power characterization and estimation as ad-
ditional features of PPP [13], an unified synthesis and
simulation tool based on Verilog-HDL.

The basic simulation engine of PPP is Verilog-
XL, that parses the hierarchical description of the
network and performs event-driven logic simulation.
Routines for gate and behavioral level power charac-
terization/evaluation have been implemented in C and
integrated into the logic simulator using the program-
ming language interface of Verilog-XL.

The gate-level power model used in PPP has been
presented in [3]. It allows accurate and efficient power
estimations, with accuracy within 5% from Spice even
for local single-pattern estimates. The adaptive char-
acterization procedure of the behavioral power model
is described next.

The characterization procedure
We refer to the simple situation of Fig. 2, in which
two instances of the same soft macro (namely, an 8-

E[7:0]

Add2

C[5:0]

Figure 2: Example design.

bit adder) are to be synthesized in the context of a
larger design. We choose a carry-lookahead trial im-
plementation for the adders and we run the adaptive
modeling procedure to build the power consumption
model of the two units. In the Verilog description,
each unit is represented by a module containing both
the gate-level implementation of the carry-lookahead
and a task calling the LMS routine.

During characterization, the gate-level implementa-
tion of the two units is accurately simulated in the con-
text of a behavioral simulation of the entire design. In
this way, typical input vectors are automatically gen-
erated for Addl and Add2 as a typical test sequence
1s applied at the primary inputs of the design.

Suppose that the circuit is to be used at a frequency
of 50Mhz. The characterization phase then consists of
applying a sequence of input patterns with a 20ns time
period. According to Equation (3), the k-th training
step (i.e., the k-th sample) for the model of a unit
is based on its switching activity x* at time & - 20ns
and on its power consumption p* in the time period [k-
20ns, (k+1)-20ns). Both x* and p* are available at the
end of the time period, when all transient phenomena
are extinguished: the value of p* is provided by the
gate-level simulation of the implementation, while x*
is obtained as the exclusive OR between the current
and previous values of the 1/0O vectors.

During characterization, the adaptive procedure is
automatically called at the end of each time period
for each unit in the design. At the first call, a lin-
ear model is created having an independent variable
for each input/output signal and a default vector of
coefficients, ¢°. Since the initial assignment of the fit-
ting coefficients does not impact the final model, we
use 0 as default value for the elements of c®. No-
tice that in an iterative design flow, the coefficients of
an already characterized model can be used as initial
guess to speedup subsequent re-characterizations after
marginal design improvements.

At subsequent calls, Equation (3) is used to update
coefficients. The characterization process terminates
when the model has reached convergence (i.e., when
the coefficients do not change significantly over several
iterations). We use 20 (1+n+m) iterations as a con-

408

servative estimate of the convergence time, but differ-
ent sample sizes can be specified by the user. The final
assignment of ¢ is stored in a file in order to be used
for subsequent power analysis or re-characterizations.

In our example situation, both units are simultane-
ously characterized and their modeling processes take
the same time. In general, however, different units re-
quire different characterization times. Whenever the
model of a unit has reached convergence, its gate-level
implementation is automatically disabled and replaced
by the behavioral model to speedup simulation.

Furthermore, the overall size of the units under
characterization may exceed the limiting size for gate-
level simulation. This may happen either because the
overall design has been synthesized at the same time,
or because several synthesis tasks have been performed
before running characterization. In both cases, the set
of units can be partitioned and the characterization
step repeated for each subset. In our implementation,
a control mechanism is available that automatically se-
lects and characterizes clusters of units without stop-
ping simulation. This is done by switching on the fly
between gate and behavioral representations.

In summary, adaptive characterization allows us to
find the best linear estimator for the power consump-
tion of a unit in the context in which it operates. This
means that model coefficients are automatically set in
order to realize the best fit of the dependent variable
corresponding to those configurations of the indepen-
dent ones that really occur in practice.

Example 1 For the design of Fig. 2, we obtained
completely different estimators for Addl and Add2,
leading to an overall root mean square error of 18% on
pattern dependent power estimates. To check the con-
sistence of this result we tried {0 use for both units the
model obtained for Addl (Add2). The overall mean-
square error became 25% (35%).

4 Results and conclusions

We tested our method running two sets of experi-
ments. We first checked the advantage of using a linear
model instead of a constant (pattern-independent) es-
timator. For this experiment we used combinational
benchmarks extracted from the MCNC suite as well
as gate-level implementations of logic and arithmetic
functions. Circuits were mapped on a cell library with
accurate power models and simulated with PPP [3].

For each circuit, a random sequence of 20(n+m+1)
test patterns with 50% signal and transition probabil-
ities was used to perform characterization. The av-

erage power consumption measured during the char-
acterization phase was taken as a constant estimator,
while the LMS algorithm was used to characterize the
linear model of power consumption. Accuracy was
tested running concurrent gate-level and behavioral-
level simulations. Two different test sequences (of 200
vectors each) were used: the first one with the same
input statistics of that used for characterization, the
second with a lower average input activity (of 20%
instead of 50%).

Experimental results are reported in Table 1. The
first 2 columns contain the name of the circuit and
the number of I/O signals. The last 4 columns com-
pare the accuracy of the two models in terms of rel-
ative root mean square error (rmse = \/mse/payy)
and relative error on the average estimate (avge
[Pavg — Do} /Pavg). For each benchamrk, results on
the first row refer to the first test sequence with 50%
input activity. The two models have almost the same
accuracy on average power estimates, but the linear
one shows lower values of rmse since it follows the
pattern-dependent instantaneous behavior of power
consumption. The second row refers to the second
test sequence with lower input activity. Though the
accuracy of both models is impaired by the change of
input statistics, it is evident that the linear estimator
1s much more flexible than the constant one.

A second set of experiments was run to verify the ef-
fectiveness of the adaptive characterization procedure
performed ¢n situ. To this purpose, a more complex
design was used: a fully functional high-performance
IEEE standard floating point adder/subtractor in dou-
ble precision described in Verilog HDL.

The design was composed of four units: the man-
tissa datapath (53 bit wide), the exponent datap-
ath (11 bit wide), the rounding logic and the con-
trol logic. The adder was designed to perform an
addition/subtraction per clock cycle, thus it was not
pipelined. The design was built starting from a li-
brary of behavioral primitives such as adders, sub-
tractors, multiplexers and comparators. To perform
our test, we fully synthesized the exponent datapath
using Synopsys and DesignWare cells, with a small
gate library characterized for gate-level power simula-
tion in PPP [3]. The design has several internal signal
reconvergences and control inputs. Not only the uni-
form white input distribution hypothesis was not valid
within the block, but we could not even assume any
simple distribution (such as that proposed in [8]) for
the numerous control inputs.

Using PPP, the full floating point adder was sim-
ulated at the behavioral level, with the exception of

409

the exponent logic under characterization, for which
the gate-level implementation was simulated. The in-
put patterns provided to the adder were taken from
those used for testing the functional correctness of the
design. The on-line characterization of all instances in
the exponent datapath was performed concurrently in
less than 30 minutes on a DEC5000/260 workstation.

At the end of the characterization process, the en-
tire floating point adder was simulated at the behav-
ioral level, with a different sequence of input patterns,
using the backannotated power models for all units in
the exponent logic.

Table 2 reports the accuracy of the power model of
each instance, with respect to accurate gate-level esti-
mates provided by the same simulator used for char-
acterization. Results are reported in terms of rela-
tive root mean square error (rmse) and relative er-
ror on average estimate (avge). The accuracy of be-
havioral power models characterized off-line (with uni-
form white inputs) is also reported.

The quality of the adaptive models characterized
n sttu is substantially higher than that of the off-line
models: the average improvement is of 35% on rmse
and of 75% on awge. Notice also that error compen-
sation is not improving the overall accuracy of the
estimates. For the entire exponent logic, we obtained
rmse = 42.3 and avge = 34.6 using behavioral models
characterized off-line, and rmse = 22.9 and avge = 6.1
using on-line characterization.

The gate-level simulation of the entire design with
the backannotated power models took less than 100
seconds on the same machine mentioned above (for
1000 test patterns). More than 2 hours were spent to
run the equivalent gate-level simulation.

These results show the accuracy and efficiency of
our approach on circuits of practical interest (the spec-
ification of the floating point adder is available upon
request for benchmarking).

Conclusions

In this work we have described a novel approach
to behavioral power characterization and simulation.
Our methodology integrates well with design flows
based on behavioral synthesis tools, because it pro-
vides a viable solution to the problem of model-
ing technology-independent soft macros, for which no
power characterization procedures have been proposed
in the past.

Power is a strongly pattern dependent function. In-
put statistics greatly influence instantaneous and av-
erage power. We solve the pattern dependence prob-
lem by characterizing in silu the mapped instances
of the soft macros. In this way we generate linear

Table 2

Table 1 Unit Off-line model {j On-line model

Circuit Const. model Lin. model Macro | n+m | Instance rmse | avge rmse l avge
Name [n4m rmse | avge | rmse | avge CMPXX 23 AZero 23.8 11.3 8.1 0.2
cmb 20 35.5 2.2 20.7 2.1 AMax 24.8 8.9 14.6_ 2.4
81.4 78.3 40.6 30.4 BZero 23.1 102 8.2 3.1

decod 21 68.6 7.5 38.9 6.0 BMax 25.0 1.1 14.7 2.3
206.0 | 179.7 54.2 8.1 EQCmp 21.5 11.6 15.9 5.3

alu?2 16 70.8 1.8 24.4 1.9 ResZ1 61.1 60.7 38.5 9.2
56.4 53.9 24.4 2.5 ResZ2 60.8 58.4 41.0 6.1

cl17 7 62.4 75 34.3 6.6 ResM1 59.4 57.6 .|l 39.9 7.4
195.1 | 178.8 | 55.3 | 29.8 ResM2 63.9 55.5 37.3 7.0

c432 43 37.4 5.1 217 4.2 CMPGT 26 GTCmp 18.1 2.5 15.4 1.7
66.1 45.2 206 | 16.4 EXPSBS 38 SubA-B 23.2 7.1 17.9 3.6

c1908 58 185 | 13.2 | 17.4 | 129 SubB-A | 24.8 6.9 17.7 1.6
42.5 40.8 39.6 | 37.2 ExpAdjl 59.6 22.3 39.1 10.1

cmp 23 23.2 3.3 14.5 3.5 INC 24 Explncl 61.9 50.8 38.7 14.3
986 | 93.8 | 26.2 | 16.9°} | ExpInc2 || 66.2 65.8 41.3 7.5

sqrt 13 42.0 3.6 25.8 1.1 MUX21 35 ExpFSel 72.3 69.4 48.4 15.6
83.8 66.9 30.9 10.4 ExpDSel 35.2 14.9 33.3 14.3

fastdiv 26 46.4 4.9 288 | 5.1 ExpTSel || 44.2 43.4 22.6 | 10.2
80.3 20.1 59.1 16.7 MUX51 71 ExpFSel 79.6 77.1 39.6 7.8

l Entire exponent logic [423 1 346 | 229 | 61]

Table 1: Comparison between constant and linear power estimators. For each benchmark, estimates reported on the first row
have been obtained with the same input statistics used for characterization, estimates on the second row have been obtained with
completely different input statistics. Table 2: Experimental results on the 19 units in the FP exponent data path.

regression models that approximatively take into ac-
count not only the transition activity at the inputs
and outputs, but also the input arrival times and the
spatio-temporal correlation of the data.

We leverage the computational efficiency of the
LMS algorithm to enable concurrent fast characteri-
zation of multiple macro instances, and we exploit the
iterative nature of the algorithm to minimize the mem-
ory overhead for model building. Moreover, we obtain
safe convergence conditions that guarantee small de-
viation of our models compared to ideal least square
fitting.

Although our results are positive, more work is re-
quired to improve the accuracy of the linear model on
the instantaneous power estimates. We are investi-
gating non-linear fitting techniques that may produce
more accurate pattern-dependent power models with
improved instantaneous accuracy.

References

[1] F. Najm, “A survey of power estimation techniques in
VLSI circuits,” IEEE Transaction on VLSI Systems,
vol. 2, no. 4, pp. 446-455, 1994.

[2] C. Huang, B. Zhang, et al., “The design and implementa-
tion of Powermill,” in Proc. of IEEE Symp. on Low Power
Electronics, pp. 105110, 1995.

410

[3] A. Bogliolo, L. Benini, and B. Riccd, “Power Estimation of
Cell-Based CMOS Circuits,” in Proc. of Design Automa-
tion Conf., pp. 433 — 438, 1996.

B. J. George et al., “Power analysis and characterization
for semi-custom desing,” in Proc. of Int.l Workshop on
Low Power Design, pp. 215-218, 1994.

R. Camposano and W. Wolf, Trends in High-Level Syn-
thesis. Kluwer Academic Publishers, 1991.

G. De Micheli, Synthesis and optimization of digital cir-
cuits. McGraw-Hill, 1994.

D. Knapp, T. Ly, D. MacMillen, and R. Miller, “Behav-
ioral Synthesis Methodology for HTL-based Specification
and Validation,” in Proc. of Design Automation Conf.,
PP. 286-292, 1995.

P. Landman and J. Rabaey, “Architectural power analysis,
the Dual Bit Type method,” IEEE Transaction on VLST
Systems, vol. 3, no. 2, pp. 173-187, 1995.

R. S. Martin and J. Knight, “Power-Profiler: optimiz-
ing ASICs power consumption at the behavioral level,” in
Proc. of Design Avtomation Conf., pp. 42-47, 1995:

D. Liu and C. Svensson, “Power consumption estimation
in CMOS VLSI chips,” IEEE J. of Solid State Circuit,
vol. 29, no. 6, pp. 663-670, 1994.

L. Benini, A. Bogliolo, M. Favalli, and G. De Micheli, “Re-
gression models for behavioral power estimation,” to ap-
pear in Proceedings of PATMOS, 1996.

B. Widrow and S. D. Stearns, Adaptive Signal Processing.
Prentice-Hall, 1985. :

L. Benini, A. Bogliolo, and G. De Micheli, “Distributed
EDA tool integration: the PPP paradigm,” in Proceedings
of ICCD, 1996.

4]

(8]
(6]
(7]

9]

[10]

