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Abstract— Dynamic power management is a design
methodology aiming at controlling performance and
power levels of digital circuits and systems, with the
goal of extending the autonomous operation time of
battery-powered systems, providing graceful perfor-
mance degradation when supply energy is limited, and
adapting power dissipation to satisfy environmental
constraints.

We present different approaches to power manage-
ment, and we discuss issues related to the design of
computer-aided design tools for power management.
In particular, we first review techniques applicable to
control-units, such as clock-gating, pre-computation,
and partitioning. Next we report on power man-
agement techniques used in conjunction with high-
level synthesis and applicable to data path and con-
trol units. Last we consider system-level power man-
agement, describe the “Advanced Configuration and
Power Interface” standard, and some of the research
challenges in designing computer-aided design algo-
rithms and tools in this area.

1. INTRODUCTION

Interest in techniques for designing integrated cir-
cuits and systems with low-power consumption has been
steadly growing. Research in this field is fueled by two ma-
jor markets: portable electronics and high-performance
systems. In the former case, low-power circuits are
needed to provide a reasonable operation time to battery-
operated devices. In the latter case, environmental fac-
tors, such as heat dissipation, may pose a practical limi-
tation to the use of high-performance processors if power
consumption is not controlled and bounded.

Low-power consumption in integrated circuits and sys-
tems can be achieved through the combination of differ-
ent techniques, including architectural design choices (8],
logic and physical design [14, 16}, choice of circuit families
and implementation technology [18]. Most power saving
is achieved by ingenious architectural organization, even
though computer-aided design (CAD) techniques have
been shown to be effective in synthesizing low-power cir-
cuits.

We review design techniques and synthesis algorithms
for circuits and systems with reduced power consump-
tion, with specific emphasis on dynamic power manage-

ment techniques. We view dynamic power management as
a design methodology to control performance and power
consumption that exploits idleness in circuit and system’s
components. We believe that dynamic power manage-
ment can yield the largest power savings when applied to
the system architectural design as well as to the detailed
logic design of its hardware components.

Design techniques and computer-aided design solutions
for power management are described extensively in [2].
All approaches are based on the principle of exploiting
idleness of circuits, systems, or portions thereof. They
involve both detection of idle conditions and the freezing
of power-consuming activities in the idle components.

Sequential circuits, such as control-units, display of-
ten a large degree of idleness due to their reactive na-
ture. Techniques based on clock gating and/or on par-
titioning have been shown to be successful in reducing
power consumption. These methods have been extended
to cope with power management in networks represent-
ing either data path or control. The power reduction so-
lutions merge seamlessly with circuit synthesis, which is
used routinely for circuit design.

Recent initiatives to handle system-level power man-
agement include Microsoft’s OnNow initiative [13] and
the Advanced Configuration and Power Interface (ACPI)
standard proposed by Intel, Microsoft and Toshiba (12].
These approaches migrate power management to the soft-
ware layer running on hardware platforms, thus providing
a flexible and self-configurable solution to adapting the
power/performance tradeoff to the needs of mobile (and
fixed) and computing and communication.

Despite the effort in standardizing the interface, lit-
tle work has been done, to the best of our knowledge,
to design algorithms and tools for optimal control of
power-managed system. We will conclude this review by
highlighting the major issues in modeling and designing
power-management schemes.

II. IDLENESS AND SHUTDOWN MECHANISMS

The basic principle of a dynamic power manager is to
detect inactivity of a unit and shut it down. A funda-
mental premise is that the idleness detection and power
management circuit consumes a negligible fraction of the
total power.



We classify idleness as ezternal or internal. The former
is strongly tight to the concept of observability of a unit’s
outputs, while the latter can be related to the notion of
internal state, when the unit has one.

A circuit is externally idle if its outputs are not observed
during a period of time. During such period, the unit is
functionally redundant and can be shut down, thus reduc-
ing power consumption. A unit is internally idle, when it
produces the same output over a period of time. Thus, the
outputs can be latched and the unit shut down. Internal
idleness can be caused by a stationary input stream, or
by the combined effect of input conditions applied when
the unit is in particular internal state.

While external idleness is a general concept applica-
ble to electro-mechanical (e.g., disks) and electro-optical
(e-g., displays) devices, internal idleness is typical of dig-
ital circuits.

There are several mechanisms for shutting down a unit.
Their merit is related to the power savings during shut-
down and to the time required to shut down and restore
a unit.

A simple method, commonly used in digital design,
is disabling registers by lowering the enable input. By
freezing the information on registers, data propagation
through combinational logic is halted, with a correspond-
ing power savings. (This saving may be significant in
CMOS static technologies, where power is consumed
mainly during transitions).

An extension of this method is gating the clock, i.e., by
providing registers with a qualified clock which is held at
logic zero when a disactivation signal (detecting idleness)
is present. Clock-gating provides superior power savings
as compared to schemes based on enabled-registers, be-
cause registers are not clocked and do not dissipate power,
and the clock distribution networks dissipate less power
too. Note that both enabled registers and gated clocks al-
low a circuit to restart operation at the cycle ending the
idleness period.

A radical approach to shutdown is to turn off power to
a unit. While this mechanism is conceptually simple and
applicable in general, it usually involves a non-negligible
time to restore operation. Thus this scheme is better ap-
plicable to system components (e.g., memories, disks, dis-
plays). Some components can be shut down at different
levels, each one corresponding to a power consumption
level and to a delay to restore operation. For example, a
disk [19] may have an operational state, in addition to an
idle, a low-power idle, a standby, and a sleep state. In the
idle states the disk is spinning, but the some of the elec-
tronic components of the drive are turned off. The transi-
tion from idle to active is extremely fast, but only 50-70%
of the power is saved in these states. In the standby and
sleep states, the disk is spun down, thus reducing power
consumption by 90-95%. On the other hand, the tran-
sition to the active state is not only slow, but in causes
additional power consumption.
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Fig. 1. Gated-clock architecture

III. POWER MANAGEMENT FOR FUNCTIONAL BLOCKS

In this section, we consider power management for func-
tional units within VLSI circuits, and we concentrate on
the fundamental mechanisms and on CAD related issues.

A. Gated Clocks

While the idea of clock-gating has been known for a
while, the first set of CAD tools for designing gated clock
circuits was proposed by Benini et al. in [4, 6]. The
method is applicable to control units, modeled as finite-
state machines (FSMs). While the original method [4]
required an explicit FSM description (e.g., state table),
this technique has been extended to cope also with net-
works [5].

The circuit is augmented by an activation block (Figure
1), which issues a signal that selectively stops the clock,
thus preventing power dissipation in the combinational
logic and in the registers. (This signal is latched to avoid
spurious transitions.)

Clock gating exploits internal idleness. The activation
block is synthesized automatically, using the knowledge
of the FSM transition table. Next, its implementation is
optimized with the goal of reducing its own power dissi-
pation, while preserving idleness detection in a predefined
fraction of idle conditions. Power savings in control circuit
are in the order of 30%, even though larger savings are
possible on reactive circuits, such as most logic controllers
employed in telecommunication systems.

A technical gifficulty in designing circuits with gated
clocks is due to the lack of explicit FSM representations
(or the inability to extract them) for circuits with 20 reg-
isters or more, because of the exponential growth of the
number of states. This problem is overcome by using im-
plicit methods [5] that can extract the activation circuit
from a network description of the controller. With this
extension, more complex controllers can be handled.

Kitihara et al. [11) developed CAD tools for gated clock
design that have been successfully used in an industrial
environment.
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B. Pre-computation

The pre-computation approach to power management
is due to Alidina and co-workers [1]. The method relies
on the idea of duplicating part of the logic with the pur-
pose of pre-computing the circuit output values one clock
cycle before they are required, and then use these values
to reduce the total amount of switching in the circuit dur-
ing the following clock cycle (See Figure 2.) By knowing
the output values one clock cycle in advance, the original
logic can be turned off during the next time frame, thus
eliminating any switching of internal capacitances.

Pre-computation exploits the external idleness of a cir-
cuit. The use of pre-computation-based architectures has
shown to be particularly effective for the optimization
of pipelined circuits, whose structure consists of a com-
binational logic block with latched inputs and outputs.
Comparisons between the pre-computation and the gated-
clock approach are presented in a companion paper (7).

C. Control-unit partitioning

A control unit may be implemented as a collection of
interacting sub-units, each executing a portion of the over-
all control function. The advantage of using a partitioned
controller versus a monolithic unit is that each sub-unit
can be selectively clocked. In other words, the clock of the
idle sub-units can be halted, with a corresponding power
saving. Usually only one sub-unit is active at a given time.
When the corresponding control function terminates the
unit sends a start message to another sub-unit and then
disables itself.

Since partitioning the control-unit implementation
leads to an area and interconnect overhead, the granu-
larity of the the partition affects significantly the overall
results. Coarse-grained partitions are preferable because
they reduce the communication overheads among the sub-
units.

The search for a good partition of a control unit can be
reduced to a power-oriented decomposition of the corre-
sponding FSM models. Such a decomposition can be per-
formed using the information of the sequential behavior of
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Fig. 3. Partitioned control unit

the control unit [2] (i.e., the state table of the controller)
or by analyzing the control-flow of behavioral models of
the overall circuits [3]. In the latter case, the control flow
analysis can reveal mutually-exclusive sections of the cir-
cuit operation (due to serialization or branching) which
can be implemented by sub-units with no concurrent ex-
ecution.

D. Power management in high-level synthesis

Several power management techniques, that operate in
conjunction with high-level synthesis, have been recently
proposed. Their appeal stems from the potential power
savings, which is larger at the high-level of abstraction
as compared to the logic level, because of the granularity
of the objects being power managed. Nevertheless, dif-
ficulties come from the accuracy of power consumption
information in behavioral models, as well as from the dis-
uniform acceptance of high-level synthesis methodologies.
(E.g., the scope of synthesis varies from one high-level
synthesis tool to another. Some tools operate on RTL
descriptions and some on behavioral models restricted by
synthesis policies). We will give some illustrative exam-
ples. ,

Theeuven and Seelen [20] proposed a method that
searches RTL models for internal idleness. They intro-
duced a technique to identify registers that are in hold
mode for a large fraction of the operation time. For these
registers, a hold expression is computed, which is used to
synthesize a power management circuit that controls their
clock.

External idleness on data-path busses can be efficiently
detected in RTL descriptions. Reducing switching activ-
ity on busses is important, because of the usually large
capacitance being switched. At this level of abstraction,
we can classify data path modules as computational units
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tronic components of the drive are turned off. The transi-
tion from idle to active is extremely fast, but only 50-70%
of the power is saved in these states. In the standby and
sleep states, the disk is spun down, thus reducing power
consumption by 90-95%. On the other hand, the tran-
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III. POWER MANAGEMENT FOR FUNCTIONAL BLOCKS

In this section, we consider power management for func-
tional units within VLSI circuits, and we concentrate on
the fundamental mechanisms and on CAD related issues.

A. Gated Clocks

While the idea of clock-gating has been known for a
while, the first set of CAD tools for designing gated clock
circuits was proposed by Benini et al. in [4, 6]. The
method is applicable to control units, modeled as finite-
state machines (FSMs). While the original method {4]
required an explicit FSM description (e.g., state table),
this technique has been extended to cope also with net-
works [5].

The circuit is augmented by an activation block (Figure
1), which issues a signal that selectively stops the clock,
thus preventing power dissipation in the combinational
logic and in the registers. (This signal is latched to avoid
spurious transitions.)

Clock gating exploits internal idleness. The activation
block is synthesized automatically, using the knowledge
of the FSM transition table. Next, its implementation is
optimized with the goal of reducing its own power dissi-
pation, while preserving idleness detection in a predefined
fraction of idle conditions. Power savings in control circuit
are in the order of 30%, even though larger savings are
possible on reactive circuits, such as most logic controllers
employed in telecommunication systems.

A technical difficulty in designing circuits with gated
clocks is due to the lack of explicit FSM representations
(or the inability to extract them) for circuits with 20 reg-
isters or more, because of the exponential growth of the
number of states. This problem is overcome by using im-
plicit methods [5] that can extract the activation circuit
from a network description of the controller. With this
extension, more complex controllers can be handled.

Kitihara et al. [11] developed CAD tools for gated clock
design that have been successfully used in an industrial
environment.
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B. Pre-computation

The pre-computation approach to power management
is due to Alidina and co-workers [1]. The method relies
on the idea of duplicating part of the logic with the pur-
pose of pre-computing the circuit output values one clock
cycle before they are required, and then use these values
to reduce the total amount of switching in the circuit dur-
ing the following clock cycle (See Figure 2.) By knowing
the output values one clock cycle in advance, the original
logic can be turned off during the next time frame, thus
eliminating any switching of internal capacitances.

Pre-computation exploits the external idleness of a cir-
cuit. The use of pre-computation-based architectures has
shown to be particularly effective for the optimization
of pipelined circuits, whose structure consists of a com-
binational logic block with latched inputs and outputs.
Comparisons between the pre-computation and the gated-
clock approach are presented in a companion paper (7].

C. Control-unit partitioning

A control unit may be implemented as a collection of
interacting sub-units, each executing a portion of the over-
all control function. The advantage of using a partitioned
controller versus a monolithic unit is that each sub-unit
can be selectively clocked. In other words, the clock of the
idle sub-units can be halted, with a corresponding power
saving. Usually only one sub-unit is active at a given time.
When the corresponding control function terminates the
unit sends a start message to another sub-unit and then
disables itself.

Since partitioning the control-unit implementation
leads to an area and interconnect overhead, the granu-
larity of the the partition affects significantly the overall
results. Coarse-grained partitions are preferable because
they reduce the communication overheads among the sub-
units.

The search for a good partition of a control unit can be
reduced to a power-oriented decomposition of the corre-
sponding FSM models. Such a decomposition can be per-
formed using the information of the sequential behavior of
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Fig. 3. Partitioned control unit

the control unit [2] (i.e., the state table of the controller)
or by analyzing the control-flow of behavioral models of
the overall circuits [3]. In the latter case, the control flow
analysis can reveal mutually-exclusive sections of the cir-
cuit operation (due to serialization or branching) which
can be implemented by sub-units with no concurrent ex-
ecution.

D. Power management in high-level synthesis

Several power management techniques, that operate in
conjunction with high-level synthesis, have been recently
proposed. Their appeal stems from the potential power
savings, which is larger at the high-level of abstraction
as compared to the logic level, because of the granularity
of the objects being power managed. Nevertheless, dif-
ficulties come from the accuracy of power consumption
information in behavioral models, as well as from the dis-
uniform acceptance of high-level synthesis methodologies.
(E.g., the scope of synthesis varies from one high-level
synthesis tool to another. Some tools operate on RTL
descriptions and some on behavioral models restricted by
synthesis policies). We will give some illustrative exam-
ples.

Theeuven and Seelen [20] proposed a method that
searches RTL models for internal idleness. They intro-
duced a technique to identify registers that are in hold
mode for a large fraction of the operation time. For these
registers, a hold expression is computed, which is used to
synthesize a power management circuit that controls their
clock.

External idleness on data-path busses can be efficiently
detected in RTL descriptions. Reducing switching activ-
ity on busses is important, because of the usually large
capacitance being switched. At this level of abstraction,
we can classify data path modules as computational units



and steering modules. Computational units are arith-
metic and logic circuits, while steering modules are mul-
tiplexers, registers and three-state drivers. Kapadia [10]
proposed a technique based on monitoring the observabil-
ity of data-path busses, and by freezing their values by
controlling the steering modules.

Other power management techniques exploit the ability
of high-level synthesis of mapping behavioral descriptions
into circuits. Operand isolation is a power recovery tech-
nique that exploits external idleness. It considers data-
path units which do not produce observed results in some
steps of the schedule. The inputs to such units can be
frozen, by adding appropriate latches and by using a cor-
responding control circuit, with the goal of eliminating
switching activity when the unit is idle. Note that it is
straightforward to extract idle conditions from a sched-
ule. Whereas operand isolation is used in manual design
practice, a computer-aided tool for using this idea was
presented first by Raghunathan et al [17] based on con-
troller specification and steering logic restructuring.

Memory segmentation [9) is a scheme that reduces
power by exposing idleness in memory accesses. By par-
titioning a memory into segments with independent clock
and refresh signals, idle segments can be put in sleep mode
(i.e., their clock can be stopped), or their refresh signal
can be shut down, thereby minimizing their power dissi-
pation. The partition of the memory can be driven by
information of memory usage, available in high-level syn-
thesis.

Finally, Monteiro and Devadas {15] proposed a schedul-
ing technique where branching conditions are evaluated
early in the schedule, so that power can be saved by
operand isolation of the unit in the inactive branch. Al-
though results show power reduction of 30% for a few
benchmark circuits, the applicability of this technique is
limited by the potential performance loss.

IV. POWER MANAGEMENT FOR SYSTEMS

In this section we consider power management for elec-
tronic systems, that contain a plurality of chips as well
as other components of different nature. Analog, electro-
mechanical and optical components contribute to a sig-
nificant fraction of the overall power budget. For exam-
ple, the power breakdown for a well-known laptop com-
puter [21] shows that, on average 36% of the total power
is consumed by the display, 18% by the hard drive, 18%
by the wireless LAN interface, 7% by non-critical com-
ponents (keyboard, mouse etc.), and only 21% by digital
VLSI circuitry (mainly memory and CPU). Reducing the
power in the digital components of this laptop by 10X
would reduce the overall power consumption by less than
19%.

Dynamic power management is successfully used by
system designers, but the manual design of complex sys-
tems that support dynamic power management is a dif-

ficult, long and error-prone task. Unfortunately, system-
level computer-aided design environments and tools are
still in their infancy, and EDA vendors are lagging far be-
hind the needs of this segment of the electronic industry.

To compensate for this lack of support, several system
developers and vendors (12, 13] are aggressively pursu-
ing a long-term, wide-scope strategy to greatly simplify
the task of designing large and complex power-managed
systems. The strategy is based on a standardization ini-
tiative known as the advanced configuration and power in-
terface (ACPI), described in the next section. Although
the initiative targets personal computers (PCs), it con-
tains useful guidelines for a more general class of systems.
The characterizing feature of ACPI is that it recognizes
dynamic power management as the key to reducing overall
system power consumption, and it focuses on making the
implementation of dynamic power management schemes
in personal computers as straightforward as possible.

The ACPI specification forms the foundation of the On-
Now initiative launched by the Microsoft Corporation.
The OnNow initiative is specific to the design of per-
sonal computers (PCs) and proposes the migration of
power management algorithms and policies into the com-
puter’s operating system (OS). An OnNow-compliant PC
platform must conform to a set of requirements require-
ments [13], including: i) the PC is ready for use as soon
as the user turns it on; ii) the PC appears as off when not
in use, but it must be capable of responding to wake-up
events; iii) software tracks hardware status changes and
adjusts accordingly; iv) all hardware devices participate
in the power management scheme.

Present personal computers do not meet the require-
ments of OnNow yet. Nevertheless, the migration of
power management to the operating system level will yield
a profound improvement of the performance, power con-
sumption and quality of service of personal computers,
because it will give the control of the system to the com-
poneant (i.e., OS) that can make the most informative de-
cisions. OnNow relies on the ACPI infrastructure to in-
terface the software to the hardware components to be
managed.

A. ACPI

ACPI [12] is an OS-independent, general specification
that applies to desktop, mobile and home computers as
well as to high-penformance servers. The specification has
emerged as an evolution of previous initiatives that at-
tempted to integrate power management features in the
low-level routines that directly interact with hardware de-
vices (firmware and BIOS). It also provides some form
of backward compatibility since it allows ACPI-compliant
hardware resources to co-exist with legacy non-ACPI-
compliant hardware.

ACPI is the key element for implementing operating
system power management (OSPM) strategies, such as
OnNow. It is an open standard that is made available
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for adoption by hardware vendors and operating system
developers. The main goals of ACPI are to: i) enable
all PCs to implement motherboard dynamic configuration
and power management; ii) enhance power management
features and the robustness of power managed systems;
iii) accelerate implementation of power-managed comput-
ers, reduce costs and time to market.

The ACPI specification defines the interfaces between
OS software and hardware. The software and hardware
components relevant to ACPI are shown in Figure 4.
Applications interact with the OS kernel through ap-
plication programming interfaces (APIs). A module of
the OS implements the power management policies, as
discussed in the previous section. The power manage-
ment module interacts with the hardware through ker-
nel services (system calls). The kernel interacts with
the hardware using device drivers. The front-end of the
ACPI interface is the ACPI driver. The driver is OS-
specific, it maps kernel requests to ACPI commands, and
ACPI responses/messages to kernel signals/interrupts.
Notice that the kernel may also interact with non-ACPI-
compliant hardware through other device drivers.

At the bottom of Figure 4 the hardware platform is
shown. Although it is represented as a monolithic block,
it is useful to distinguish three types of hardware com-
ponents. First, hardware resources (or devices) are the
system components that provide some kind of special-
ized functionality (e.g., video controllers, modems, bus
controllers). Second, the CPU can be seen as a special-
ized resource that need to be active for the OS (and the
ACPI interface layer) to run. Finally, the chipset (also
called core logic) is the motherboard logic that controls
the most basic hardware functionalities (such as real-time
clocks, interrupt signals, processor busses) and interfaces
the CPU with all other devices. Although the CPU runs
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the OS, no system activity could be performed without
the chipset. From the power management standpoint, the
chipset, or a critical part of it, should always be active,
because the system relies on it to exit from sleep states.
Hence, ACPI does not define power management strate-
gies for the chipset itself. The power consumption of the
chipset should be managed at the firmware level, trans-
parently to the OS. ,

It is important to notice that ACPI specifies neither
how to implement hardware devices nor how to realize
power management in the operating system. No con-
straints are imposed on implementation styles for hard-
ware and on power management policies. Implementation
of ACPI-compliant hardware can leverage any technol-
ogy or architectural optimization as long as the power-
managed device is controllable by the standard interface
specified by ACPI.

In ACPI, the hardware is seen as a monolithic system,
with five global power states. Namely:

e Mechanical off state G3, with no power consumption.

o Soft off state G2 (also called S5). A full OS reboot
is needed to restore the working state.

o Sleeping state G1. The system appears to be off and
power consumption is reduced. The system returns
to the working state in an amount of time which
grows with the inverse of the power consumption.

e Working state GO, where the system is ON and fully
usable.

e Legacy state, which is entered when the system does
not comply with ACPL

The global states are shown in Figure 5. They are or-
dered from top to bottom by increasing power dissipation.

The ACPI specification refines the classification of
global system states by defining four sleeping states within
state G1, as shown in Figure 5:

Processor states



Fig. 6. Global and power states and substates

e S1 is a sleeping state with low wake-up latency. No
system context is lost in the CPU or the chipset.

e S2is a low wake-up latency sleeping state. This state
is similar to the S1 sleeping state with the exception
that the CPU and system cache context is lost.

e S3 is another low wake-up latency sleeping state
where all system context is lost except system mem-
ory.

e 5S4 is the sleeping state with the lowest power and
longest wake-up latency. To reduce power to a mini-
mum, all devices are powered off.

Additionally, the ACPI specification defines states for
system components. There are two types of system com-
ponents, devices and processor, for which power states
are specified. Devices are abstract representations of the
hardware resources in the system. (See Figure 5). The
processor is the central processing unit that controls the
entire PC platform. Special devices are embedded con-
trollers, that function as resources for the main CPU.

ACPI defines a specialized interface for embedded con-
trollers. Although from a power management point of
view embedded controllers are treated as normal re-
sources, they have specialized drivers because they may be
used to monitor power-related system characteristics, per-
form low-level complex calculations, and they may pro-
vide data that is required to implement power manage-
ment policies. For example, an embedded controller can
be used to control board temperature sensors and provide
valuable data for thermal management.

States and transitions for an ACPI-compliant system
are shown in Figure 6. Usually the system alternates
between the working (G0) and the sleeping (G1) states.
When the entire system is idle or the user has pressed
the power-off button, the OS will drive the computer into
one of the states on the left side of Figure 6. From the
user’s viewpoint, no computation occurs. The sleeping
sub-states differ in which wake events can force a tran-

sition into a working state, and how long the transition

should take. If the only wake-up event of interest is the
activation of the user turn-on button and a latency of a
few minutes can be tolerated, the OS could save the en-
tire system context into non-volatile storage and transi-
tion the hardware into a soft-off state (G2). In this state,
power dissipation is almost null and context is retained
(in non-volatile memory) for an arbitrary period of time.
The mechanical off state (G3) is entered in the case of
power failure or mechanical disconnection of power sup-
ply. Complete OS boot is required to exit the mechanical
off state. Finally, the legacy state is entered in case the
hardware does not support OSPM. '

It is important to note that ACPI provides only a
framework for designers to implement power management
strategies, while the the choice of power management pol-
icy is left to the engineer. This leaves important research
problems open. Namely the study of very high-level per-
formance/power models, the design of policies for dy-
namic control, and their validation. These problems are
important subjects of research for developing the corre-
sponding computer-aided design tools.

B. Modeling, design and validation

We consider now the power management problem from
the perspective of a tool developer who is interested in
algorithms and tools for designing power management
schemes and validating them.

In essence, we need to abstract the ACPI scheme as
a finite-state system, where each state is associated with
a specific power and performance level. Moreover, tran-
sitions among states have a cost in term of power and
performance as well. Consider for example spinning up a
hard disk. The disk acceleration requires a peak of elec-
trical power, and the data will be available from the disk
only after it has settled to an operational speed.

System-level design requires deriving power and per-
formance measures from abstract models, with limited
information about the internals. The difficulty in achiev-
ing precise measures is compounded by the complexity of
the interactions of the system’s component, which makes
some values uncertain, despite the accuracy of the model
being used. The uncertainty about performance and
power data can be modeled by considering average val-
ues for state and transitions, as well as their statistical
distributions [2].

Another sousce of uncertainty is the behavior of the
user, which cannot be modeled deterministically. Nev-
ertheless the model of the user plays a significant role
in evaluating the power/performance behavior. Consider
for example two users of two identical laptop comput-
ers: their activities may require different power profiles
because of the applications being used.

Stochastic models of systems and users may serve two
purposes. First, simulating the overall behavior of a
product in action, with the goal of validating its perfor-
mance/power levels. Second, deriving appropriate power
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management schemes. Whereas such schemes may be ar-
bitrarily complex, we focus our attention on a simple yet
effective abstraction which we call policy. A policy is a
sequence of decisions about the state transitions based on
the previous history of the system activity. A simple ex-
ample of a policy is to determine the sequence in time of
commands to spin up or down a hard disk. Note that the
finite-state system abstraction, as supported by ACP]I, is
a prerequisite for the definition and computation of a pol-
icy.

In engineering practice, eager policies*have been used
as well as policies based on timeouts. An eager policy
shuts off a unit as soon as it is not used. When timeouts
are used, resources are kept in the operational state for a
prescribed fixed time after becoming idle. Needless to say,
these strategies do not guarantee to minimize the overall
power consumption. Therefore an important problem is
to determine optimal (or optimum) policies that minimize
power consumption subject to performance constraints, or
vice versa. While this problem is hard in general, some
simplifying assumptions about the system’s model may
make their solution tractable [2]. It is important to stress
that CAD tools for determining optimum/optimal policies
would be very useful, because policies need to be deter-
mined for different systems and system/user configura-
tions.

Validation techniques, based on stochastic simulators,
may be also of great use to validate policies by verifying
that the abstract modeling assumptions do not impair the
validity of the results. Overall, policy determination, im-
plementation and validation constitute the cornerstones
of system-level power management tools [2].

V CONCLUSIONS

In this review we have considered power management at
different levels of abstraction. First, we considered logic
level models of digital circuits, and presented schemes for
clock-gating, pre-computation, and partitioning of control
units. These techniques have been shown to be practical
when applied to control-dominated circuits, or to the con-
trol portion of a circuit. Unfortunately, the power con-
sumed by the control unit may be small when compared
to the overall circuit dissipation.

Next we considered power management in high-level
synthesis, and we commented on operand isolation, mem-
ory segmentation and scheduling. These techniques are
applicable to both data path and control units, and thus
may lead to significant power savings within a digital chip.

Finally we described power management for systems,
and we considered operating system power management
as proposed by the OnNow initiative and supported by
the ACPI standard. These approaches are important
for system-level design where the digital component con-
sumes only a fraction of the total power.

By enlarging the scope of applicability of power man-

L. Benini, G. De Micheli

agement techniques, we discover larger potential power
savings. Nevertheless, the higher the abstraction level
is, the harder it is to estimate performance and power.
Therefore intersting areas of research are the use of
stochastic models for system-level power estimation as
well as the development of algorithms and tools for man-
agement policies and their validation.
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