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Abstract

Behavioral power estimation is required to help the designer in making im-
portant architectural choices. In this work we propose an accurate and general
behavioral power modeling approach especially suited for synthesis-based design
flows making use of a library of hard macros implementing behavioral operators.
Power dissipation models are pre-characterized and back-annotated in a prelim-
inary step. Accurate information on the power dissipation of the used macros
can then be collected during behavioral simulation of the synthesized circuit. Qur
characterization and modeling methodology is based on the theory of linear re-
gression. Optimal linear power models are obtained with methods of least squares
fitting and its generalization to a recursive procedure called tree regression. The
behavioral power models are available within PPP, a multilevel simulation engine

for power estimation fully compatible with Verilog XL.

1 Introduction

A critical feature for the success of behavioral synthesis tools is the capability of early
estimating the power dissipation of large digital systems. In this work we present a
novel approach to behavioral power modeling especially suited for synthesis-based design
methodologies.

In the design of large digital systems, building blocks are typically described by be-
havioral models. For instance, at the RTL level the circuit behavior is described by means
of arithmetic operators and registers controlled by loop and conditional structures. RTL

models are cycle-accurate and enable behavioral simulation orders of magnitude faster



than gate-level simulation. Since fully-functional RTL models are available generally
much earlier than their gate-level counterparts, obtaining power data during RTL sim-
ulation is an attractive possibility.

Techniques for power estimation based on behavioral models have been recently pro-
posed. While in earlier approaches [1] the effect of input signals statistics was not taken
into account, Landman et al. [2] proposed a technique that accounts for signal statistics
and showed that power is strongly dependent on such information. Unfortunately, the
applicability of this approach depends on a set of assumptions on data representation and
signal statistics, and relies on human knowledge for the formulation of basic behavioral
models that are subsequently automatically optimized.

Our modeling technique allows accurate power estimation in systems where the data
representation and signal statistics do not satisfy the requirements for the applicability
of the methods proposed in [2]. We start from a library of hard macros implementing the
behavioral operators. Our characterization procedure is run once for all on the library
elements (for which we assume the availability of a gate or circuit level representation).
Power models are then extracted and backannotated in the behavioral representations of
the library elements. The backannotated models can be run within RTL simulation and
provide a high level power estimate. Notice that characterization of hard macros can be
performed once for all by the library vendor. This is not the case for soft-macros, that
are generated from synthesizable HDL at design time. In this work we do not deal with
soft macros.

Our approach is a generalization of well-known linear regression techniques. We
abstract all information on the internal structure of the unit (i.e., we assume that the
circuit is a black bozx). As a consequence no human knowledge is required and the
model extraction procedure is fully automatic. For a class of circuits the accuracy of
the regression model can be improved if different regression equations are obtained for
different modes of operations. We define a new characterization procedure called tree
regression that captures this kind of behavior.

The experimental results show that behavioral power estimation is a feasible al-
ternative to gate-level (or circuit level) techniques even in cases where no preliminary
assumptions on data representation and signal statistics can be exploited in the prechar-
acterization phase. Although the loss of accuracy is sizable, our models always perform
better than simple estimates on average power.

We have embedded the behavioral power estimation tool in PPP [5], a multilevel

power estimation engine designed to assist the designer with accurate power informa-



tion during the complete design process, from the specification to the final gate-level

implementation.

2 Previous work

In the simplest kind of RTL models [1, 3], the power dissipation of a functional unit is
approximated with a single fitting coefficient P, namely, the average power dissipation.
The value of P is generally computed by simulating the unit with a long sequence of
random input patterns possibly resembling the unit inputs statistic. The most common
assumption on the distribution of such patterns is that of uniform white noise (UWN).
The power of a system composed by several functional units is then computed as the
sum of their average power estimators.

Landman et al. [2] realized that for signal processing systems operating with 2’s
complement numbers, the input probability distribution is not UWN and the simple
UWN assumption can produce large errors. They concluded that a dual bit type (DBT)
model is a more accurate representation of signal statistics. The least significant bits
have an activity pattern very close to white noise, while the most significant bits (sign
bits) have high correlation and cannot be modeled as UWN. The model proposed in [2]
takes input statistics into account by increasing the number of fitting coefficients to be
obtained during unit characterization. The main limitations of the DBT approach are
i) the need of human knowledge for formulating basic models ii) the degradation of the
accuracy to simple average power estimate when the sign bits are a small fraction of the
inputs. We address both the limitations and we propose a black-box general model for

power estimation.

3 Linear regression models

Consider a functional unit with n inputs and m outputs. Assume that the circuit is
stable at ¢, and ?3 (t; > 1), and that an input transition occurs in the time interval
T = [t1,t3]. We denote by p the power consumption of the circuit in the time period
T. Our goal is to find a black-box pattern dependent model of p using only boundary
information (i.e., the knowledge of the inputs and outputs of the unit at time ¢; and ¢5).

To this purpose, we take T' equal to the time period between subsequent input pat-

terns, and we follows two simple observations: 7) in a CMOS combinational circuit, some



input has to switch in order to dissipate power, i) the presence of switching outputs cor-
responds to some internal activity. Moreover, patterns with high input-outputs activity
usually lead to higher power dissipation than patterns with lower activity. Obviously this
is not always true also because the transitions of different signals may have a different
impact on the dissipated power.

We approximate the power dissipation in the circuit by means of a linear regression
model based on its input-output activity. The input (output) activity is represented by
a vector of Boolean variables i = (i1, 19, ...,%,) (0 = (01,02, ...,0r,)) taking value 1 when
there is a transition on the corresponding input (output) signal. In symbols, our power

estimate is
P =co+cit1 4+ cata + ...+ Culy + Crp101 F Crp202 F oo+ Crym O (1)

where ¢ = (¢g, €1, ..., Chym) are fitting coefficients to be determined during characteriza-
tion.

Obviously, Equation (1) is only a rough approximation: power dissipation is also
affected by several other parameters (initial input values, input slopes and signal skews)
and its dependence on the 1/0 activity is not exactly linear. On the other hand, signal
transitions are the main sources of power consumption and the linear power model is
attractive because it is simple and it does not require any knowledge of the actual
structure of the unit being modeled.

To determine the coefficients of Equation (1) we need a sample of input-output ac-
tivities and corresponding power consumption. The sample of data collected during the
characterization phase can be represented by a pair (X, p). If s is the sample size, X
is an s X (n +m + 1) Boolean matrix containing the values taken by the independent
variables during characterization (its k-th row being x* = (1,5,45 ....4% of b, ..., ok ),
while p is a vector of size s containing the corresponding values of the dependent variable
(the k-th element being p*) obtained from accurate gate-level power simulation.

Given a sample (X, p), coeflicients ¢ are the unknown of the following system of

linear equations:
p = Xc. (2)

Due to the statistic nature of the characterization process, the sample size must be
significantly larger than the number of parameters to be characterized. Hence, matrix

X has many more rows than columns and the linear system is overdefined. The vector ¢
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Figure 1: a) Correlation between the I/O activity of an 8-bit carry-lookahead adder and its energy-
per-cycle consumption. b) Bell-shaped distribution of the energy consumption of the same circuit due
to input transitions corresponding to the same activity vectors (namely, i = (0011001100011011),0 =
(00101001)).

giving the minimum mean square error among all possible linear estimators of p can be
obtained from (2) using well-known techniques of least squares fitting [4]. An important
property of the least squares linear model is that it always produces an estimate of p
with the same average value as the average value of p in the sample used for fitting.

Therefore it is guaranteed to perform at least as well as an average value approximation.

3.1 Model validity

In this subsection we check the validity of the linear regression model by discussing the
simplifying assumptions we made to construct it.

The first assumption to be checked is that there is correlation between the input-
output switching activity and power dissipation. We performed several tests: a typical
result is shown in Figure 1.a where the power dissipation is plotted as a function of the
total input output activity (i.e., the number of inputs and outputs switching) for an
eight-bit carry-lookahead adder. It is apparent that in this case there is good correlation
between power consumption and input-output activity. This result is not general, but we
experimentally found that it holds for a large set of circuits with functionality ranging
from random logic to arithmetic operators. Moreover, the proposed regression model
provides a deeper insight than the model used in Figure 1.a in that it accounts for the
activity of single inputs and outputs.

The second issue is the robustness of the linear model in presence of the “noise” made



by the variation of parameters that do not take part in the model (such as the initial
state of the input signals). An important property of the least squares equation is that
it provides the optimum fit in a statistical sense. If the dependent variable can be seen
as the superposition of a deterministic variable (function of the independent variables)
and a random noise with Gaussian distribution, it can be shown that the least squares
fit maximizes the probability that for a given value of the independent variables the de-
pendent noisy variable has the value predicted by the least squares solution. We checked
the Gaussian hypothesis by plotting the distribution of power dissipation obtained for
several input transitions corresponding to the same configurations of 1 and 0. An exam-
ple probability distribution for the same adder mentioned before if shown in Fig. 1.b:
the bell-shaped curve closely resembles a Gaussian distribution. Again, we do not claim
the generality of this result, but our tests show that it holds for a large class of circuits.

Finally, the last hypothesis to be tested is the linearity of the model. Unfortunately,
power is not a linear function of the input-output switching activity. The linear model
has been chosen because the theory of linear regression is well-established, and it does
not require any knowledge of the internal structure of the circuit.

However, trying to fit a non-linear relationship with a linear model may cause sizable
errors. Moreover, a gross aspect of non linearities is that the unit may have different

modes of operation, with completely dissimilar power consumption.

4 Advanced regression models

The inputs of large logic units can often be grouped into two classes: control inputs
and data inputs. Control inputs have very strong influence on the behavior of the units,
because they select different modes of operation. On the other hand, while high activity
on data inputs usually correlates well with high power dissipation, such behavior is not
observed for control inputs. From this observation, it comes that control inputs can
be used to select among different regression equations. Given a control variable, and a
sample, we split the sample in two subsets, one for each value of the control variable.
On the two sub-samples we then compute two new linear regression models.

The main advantage of this procedure is intuitively clear. If the behavior of the
logic unit changes radically for different values of the control variable, a single regression
model will attempt to find a linear fit between two widely spaced clusters of data. As
a result, the fitting will not be satisfactory for neither of the two clusters. If we split

the data, and we separately fit the two clusters, much better results are obtained. The
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Figure 2: a) Least squares linear approximation of a non-linear function of two Boolean variables. b)
Exact fitting of the same function using two linear equations of variable z;. The value of 5 is used to

switch between the two models.

effectiveness of model splitting is illustrated in Fig. 2 for a two variable function.

This reasoning can be extended to multiple control variables in a recursive fashion.
Once we have split the data in two clusters, we can further split if other control variables
can be found in the partial models. The structure generated by the recursive splitting is
called regression tree. The internal nodes of the tree are labeled with the control variables
on which we split the model, while the leaves correspond to regression equations with
n + m — d independent variables, where d is the depth of the tree. The number of leaves
is exponential in the depth of the tree. Consequently, the splitting procedure must be
limited to a small number of input variables.

Notice that, in principle, model splitting also addresses non-linearities. A function
p of Boolean variables x1, x3, ...,x, is non-linear if and only if some of the independent
variables (say z;) affects not only the value of p, but also the dependence of p on some
other variable (say x;). In other words, x; plays the role of a control variable. Accuracy

can then be improved by using two different regression models for the two values of x;.

4.1 Splitting criterion

Since our goal is a black-box modeling procedure, we need an automatic splitting criterion
based on boundary information. To this purpose we use a statistical approach that
can be outlined as follows. i) The global regression model is computed. ii) For each
independent variable z;, the proportion of variance o? of the dependent variable y due
to x; is computed. iii) The independent variable with the largest o7 is chosen for splitting
(if o2 is above an user-defined splitting threshold).

The rationale behind this procedure is quite simple. The variance o? is high if a
change in the value of z; is associated to a wide variation of y (in average). In other

words, if the independent variable z; selects between two radically different behaviors of



the unit, the variance of y due to x; will be significant.

The advantage of using a statistical method to select the splitting variables is two-
fold. No human knowledge is required to steer the characterization process, and the
method may be also applied to units with no evident control signals, in order to isolate

behaviors with good linearity characteristics.

5 Experimental results

Circuit Average Lin.Reg. Reg.Tree 1 Reg.Tree 2
name | Ins. | Outs || RMSE | AVGE || RMSE | AVGE || RMSE | AVGE || RMSE | AVGE
alu2 10 6 0.441 0.346 0.335 0.291
1.154 | 0.903 0.484 | 0.138 0.501 | 0.197 0.510 | 0.180

alu4 14 8 0.388 0.294 0.275 0.260
1.042 | 0.762 0.518 | 0.072 0.549 | 0.147 0.521 | 0.119

cl7 5 2 0.701 0.422 0.378 0.376
1.786 1.325 0.695 | 0.111 0.686 | 0.015 0.660 | 0.070

c432 36 7 0.365 0.207 0.199 0.191
1.128 | 0.849 0.390 | 0.086 0.385 | 0.071 0.403 | 0.122

count | 35 16 0.337 0.232 0.227 0.221
1.362 1.181 0.428 | 0.136 0.421 | 0.103 0.401 | 0.073

decod 5 16 0.607 0.374 0.315 0.301
1.683 1.231 0.636 | 0.107 0.549 | 0.100 0.458 | 0.031

parity | 16 1 0.204 0.174 0.164 0.163
0.693 | 0.570 0.382 | 0.224 0.397 | 0.251 0.405 | 0.266

pcle 19 9 0.442 0.364 0.344 0.323
1.307 | 1.038 0.602 | 0.136 0.605 | 0.178 0.578 | 0.113

fastdiv | 17 9 0.462 0.364 0.333 0.331
1.193 | 0.729 0.677 | 0.050 0.666 | 0.076 0.685 | 0.086

mult 17 16 0.287 0.263 0.257 0.251
0.781 | 0.596 0.463 | 0.164 0.459 | 0.162 0.445 | 0.132

sqrt 9 4 0.366 0.272 0.269 0.255
1.110 | 0.807 0.496 | 0.053 0.507 | 0.112 0.510 | 0.121

Table 1: Results and comparison for different behavioral power models

We tested our methodology on a set of benchmarks from the MCNC suite and on



arithmetic units generated with Synopsys’ DesignWare. Notice that even if we have
some partial knowledge about the benchmark interface and size, we do not know their
internal structure (often we do not even know the functionality). This is the ideal
testing environment for our procedure: we want to automatically generate power models
for library units without using any knowledge on their structure.

The data on power dissipation has been obtained with PPP [5], an accurate gate-level
power simulator that has been reported to produce estimates within 5% from electric
simulation (for library-based design in CMOS technology). Notice that electric simula-
tion of our benchmarks would have required an excessively large amount of computation
time, thus the availability of a fast and accurate power simulation tools is paramount
for model building.

For each circuit in the table we generated a large sample of input patterns and power
dissipation. The input patterns used for model building are uniformly distributed and
independent. In a different design environment, typical usage trace could be used. We
build the regression model using linear regression and tree regression with depth one
and two (i.e., two and four leaves). The regression models are compared to the simple
estimator given by the average power on the sample (i.e., a pattern-insensitive estimate
equal to the average value).

Two different error measures are reported: the relative root mean square error RM S E
(RMSE = VMSE/AVG, where AV is the average power on the test sample) and
AV GE, the relative error on the average (AVGE = |AVGae — AVG|/AVG). While
RMSE provides information on how well the pattern dependence of power dissipation
is modeled, AVGE is a measure of the accuracy in the estimation of the average power.

The results are shown in Table 1. First, we estimated the accuracy of the models on
a test sample composed by input vectors randomly chosen from the large sample used in
characterization. In this case only the RM SFE is significant, because all models give the
same (correct) average power estimate by construction and AVGE is not significantly
different from zero. It can be seen that the regression tree approach leads to models with
improved quality compared to linear regression and constant model.

In the second experiment we generated a new set of input vectors with completely dif-
ferent statistical characteristics from the vectors used for characterization: the switching
activity was much reduced (from .5 to .2) and some correlation was randomly introduced
between inputs. In this case both RMSFE and AVGE are significant. The performance
of the constant model is unacceptably degraded, both in average and instantaneous power

estimate. In contrast, the performance and robustness of the linear regression model for



average power estimation is generally good. Unfortunately, the RMSFE is quite high,
proving that linear models do not perform well as instantaneous power estimators.
Although it is clear that linear regression outperforms the simple average power pat-
tern independent model, the choice between regression tree and standard linear regression
is not straight-forward. It appears that the regression tree is superior to linear regression
when the usage patterns are similar to the characterization patterns. If this is not true,

standard linear regression leads the best results.

6 Conclusions and Future work

In this work we discussed the theory and the results of linear regression models for power
dissipation of combinational hard macros. Our method does not rely on any assumption
on data representation and signal probability distribution. No human knowledge is
needed for providing an initial model. Our methodology is particularly well suited for
design methodologies based on automatic synthesis and standard macro libraries. The
linear model has limited accuracy for instantaneous power, but it is remarkably robust
and sufficiently accurate for average power estimation. Regression models represent a
noticeable improvement with respect to single-parameter power models and are widely
applicable.

We incorporated linear regression models in PPP, a logic simulation engine for power
estimation based on Verilog XL. PPP provides guidance to the designer during the
phases of the design process, from behavioral simulation to gate-level optimization and

validation.
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