Clock-skew optimization for peak current reduction

P. Vuillod*

L. Benini

A. Bogliolo G. De Micheli

Computer Systems Laboratory
Stanford University, Stanford CA 94305-9030

Abstract

The presence of large current peaks on the power and ground
lines is a serlous concern for designers of synchronous digi-
tal circuits. Current peaks are caused by the simultaneous
switching of highly loaded clock lines and by the signal prop-
agation through the sequential logic elements. In this work
we propose a methodology for reducing the amplitude of the
current peaks. This result is obtained by clock skew op-
timization. We propose an algorithm that determines the
clock arrival time at each flip-flop in order to minimize the
current peaks while respecting timing constraint. Our re-
sults on benchmark circuits show that current peaks can be
reduced by more than a factor of two without penalty on
cycle time and average power dissipation. Our methodology
is therefore well-suited for low-power systems with reduced
supply voltage, where low noise margins are a primary con-
cern.

1 Introduction

Clock skew is usually described as an undesirable phe-
nomenon occurring in synchronous circuits. If clock
skew is not properly controlled, unexpected timing vio-
lations and system failures are possible. Mainly for this
reason, research and engineering effort has been devoted
to tightly control the misalignment in the arrival times
of the clock. Although clock-skew control is still an open
issue for extremely large chip-level and board-level de-
signs, recently proposed algorithms for skew minimiza-
tion have reported satisfying results [4, 3, 5]. For a large
class of systems skew control can therefore be achieved
with sufficient confidence margin.

Conservative design styles (such as those adopted
for FPGAs) explicitly discourage “tampering with the
clock”([12]. Nevertheless, the arrival time of the clock is
often purposely skewed to achieve high performance in
more aggressive design styles. In the recent past, sev-
eral algorithms for cycle-time minimization have been
proposed [1, 2, 7, 9, 8]. The common purpose of these
methods was to find an optimum clock-skewing strategy
that allows the circuit to run globally faster.

*On leave from INPG - CSI, Grenoble, France.

ISLPED 1996 Monterey CA USA
0-7803-3571-8/96/$5.00°1996

In this work, we discuss the productive use of clock
skew in a radically new context. We target the mini-
mization of the peak power supply current. Peak cur-
rent is a primary concern in the design of power distribu-
tion networks. In state-of-the-art VLSI systems, power
and ground lines must be over-dimensioned in order to
account for large current peaks. Such peaks determine
the maximum voltage drop and the probability of failure
due to electro-migration £13]. In synchronous systems,
this problem is particularly serious. Since all sequential
elements are clocked, huge current peaks are observed
in correspondence of the clock edges. These peaks are
caused not only by the large clock capacitance, but also
by the switching activity in the sequential elements and
by the propagation of the signals to the first levels of
combinational logic.

In this paper, we focus on single-clock edge-triggered
clocking style, because it represents the worst case con-
dition for current peaks. We propose an algorithm that
determines the clock arrival times at the flip-flops in
order to minimize the maximum current on the power
supply lines, while satisfying timing constraints for cor-
rect operation. In addition, we propose a clustering
technique that groups the flip-flops with the same clock
driver. Since the number of sequential elements is gener-
ally large, it would not be practically feasible to specify
a skew value for each one of them. In our approach, the
user can specify the maximum number of clock drivers,
and the algorithm will satisfy this constraint while min-
imizing the current peak.

Our technique is particularly relevant for low-power
systems with reduced supply voltage, where the noise
margins on power and ground are extremely low. Our
method not only reduces the current peaks, but it does
not increase the average power consumption of the sys-
tem. We tested our approach on several benchmark
circuits. In average, current peak reduction of more
than 30% has been observed. Average power dissipa-
tion is unchanged. Timing constraints are satisfied by
construction.

2 Skew optimization

It is known that clock skew can be productively ex-
ploited for obtaining faster circuits. Cycle borrowing is
an example of such practice: if the critical path delay
between two consecutive pipeline stages is not balanced,
it is possible to skew the clock in such a way that the
slower logic has more time to complete its computation,
at the expense of the time available for the faster logic.
For large and unstructured sequential networks, finding
the best cycle borrowing strategy is a complex task that
requires the aid of automatic tools.

265

266

2.1

We will briefly review the basic concepts needed for the
formal definition of the skew optimization problem. The
interested reader can refer to [2, 9] for further informa-
tion. Clock-skew optimization is achieved by assigning
an arrival time to the local clock signals of each sequen-
tial element in the circuit. We consider raising-edge-
triggered flip-flops and single clock. The clock period
is Toyp. For the generic flip-flop ¢ (1 =1,2,..., N, where
N is the number of flip-flops in the network) we define
its arrival time T;, 0 < T; < Tui. The arrival time
represents the amount of skew between the reference
clock and the local clock signal of flip-flop 7. A clock
schedule is obtained by specifying all arrival times T;.
Obviously not all clock schedules are valid. The com-
binational logic between the flip-flops has finite delay.
The presence of delays imposes constraints on the rela-
tive position of the arrival times.

The classical clock-skew optimization problem can be
stated as follow: find the optimal clock schedule T =
[T1,T%, ..., Tn] such that no timing constraini is violated
and the cycle time Ty s minimzized. This problem has
been analyzed in detail and many solutions have been
proposed. Here we summarize the work presented in [2]
where edge-triggered flip-flops are considered.

We assume for simplicity that all flip-flops have the
same setup and hold times, respectively called Tsy and
Txo. If there is at least one combinational path from
the output of flip-flop ¢ to the input of flip-flop 7, we call
the maximum delay on these paths 6%*°. The minimum

Background

delay 52’”;” is similarly defined. If no combinational
path exists between the two flip-flops, 67"** = —co and
ézmjn = +co. For each pair of flip-flops ¢ and j, two
constraints must be satisfied.

First, if a signal propagating from the output of i
reaches the input of j before the clock signal for j is ar-
rived, the data will propagate through two consecutive
sequential elements in the same clock cycle. This prob-
lem is called double clocking and causes failure. The
first kind of constraints prevents double clocking:

T; + 874" > Tj + Tro (1)

On the other hand, if a signal propagating from z to
j arrives with a delay larger than the time difference
between the next clock edge on j and the current clock
edge on 4, the circuit will fail as well. This phenomenon
is called zero clocking. Zero clocking avoidance is en-
forced by the following constraint:

T; + Tsu + 675 <T; + Tex (2)

Input and output impose constraints as well. Input
constraints have the same format as regular constraints,
where the constant value of the input arrival time T;n
replaces the variable T;. For output constraints the vari-
able T} is replaced by the constant output required time

out:

The total number of constraint inequalities con-
structed by this method is O(N2+1+0), where, I and
O are the number of inputs and outputs respectively.
In practice, this number can be greatly reduced. Tech-
niques for the reduction of the number of constraints are
described in [7, 1] and are not discussed here for space
reasons.

ClK__ I I
Combinational

logic
CLK1 T1r | -

e
Clke__{fF——_____ 1~

st
CLK1
-
1
Szfj CLK2

(@ (b)

Figure 1: (a) Example circuit, with two flip-flops. (b} Timing
waveform representing the skewed clocks.

Example 1 We obtain the constraint equations for the
circyit in Figure 1. There are two variables Tx and Ty,
representing the skew of the clocks CLK1 and CLK2.
The clock period is Top. We assume that Tsy = Tuo =
0. The constrainis for variable Ty are the following:

Ty +675° < To+Tax
T, + 67 > To
Ty + 6738, < Touwr + Tets
T+ 657 2 Th

Moreover, 0 < Ty < Tux. Similar constrainis hold
for Ty. We have eliminated one input constraint and
one output constraint because we assume that skews are
positive and that the circuil with no skews was origi-
nally satisfying all input and output constrainis. Notice
that all constraints are linear. The feasibility of a set of
linear constraints can be checked in polynomial time by
the Bellman-Ford algorithm [16].

Cycle time minimization is an optimization problem
targeting the minimization of a linear cost function (ie.,
F(Tl,Tg,...,TN,Tdk) = Tuyi) of linearly constrained
variables. It is therefore an instance of the well-known
linear programming (LP) problem. Several efficient al-
gorithms for the solution of LP has been proposed in
the past [14]. Our problem is radically different and
substantially harder. It can be stated as follows: find a
clock schedule such that the peak current of the circuit
is minimum. The cost function that we want to mini-
mize is not linear in the variables T;. In the following
subsection, we discuss this issue in greater detail.

2.2 Cost function

Ideally, we would like to minimize the maximum cur-
rent peak that the circuit can produce. This is however
a formidable task, because such peak can be found by
exhaustively simulating the system for all possible in-
put sequences {and a circuit level simulation would be
required, because traditional gate-level simulators do
not give information on current waveforms). To sim-
plify the problem, we make two important assumptions.
First, we only minimize the current peak directly caused
by clock edges (i.e., caused by the switching of clock
lines and sequential elements’ internal nodes and out-
puts). This approximation is justified by experimental
evidence. In all circuits we have tested, the largest cur-
rent peaks are observed in proximity of the clock edges.
The current profile produced by the propagation of sig-
nals through the combinational logic is usually spread
out and its maximum value is sensibly smaller.

Notice that we are not neglecting the combinational
logic, but we consider its current as a phenomenon on

current peak ——

1 Ts=1.18 Tm=1.3

Tf=1.58 2
Time (ns)

Figure 2: The four parameters characterizing the triangular
approximation of the average current profile. t; and t. are the
times at which the current reaches 1% of its maximum value.

which we have no control. Again, this choice is mo-
tivated by experimental evidence: our tests show that
in most cases, the current profile of the combinational
logic is not very sensitive to the clock schedule. For
some circuits, the combinational logic may be dominant
and strongly influenced by the clock schedule. We will
discuss this case in a later section.

The second approximation regards the shape of the
current waveform. FEach sequential element produces
two peaks, one related to the rising edge of the clock,
and the other to the falling edge. We approximate
the current peaks produced by each sequential element,
(or group of sequential elements) with two triangular
shapes, that are fully characterized by four parameters:
starting time ¢;, maximum time t,,, maximum value
current I, and final time ¢;.

To compute these parameters we run several simu-
lations with PPP [19] (see Section 4) and we obtain
current waveform envelopes Iny(t) (I5, (%) is obtained
by averaging the current at ¢ on different input pat-
terns). For each peak of the curve I,,, we define the
four parameters as shown in Figure 2: ¢; is the time
at which the current first reaches 1% of the maximum
value, 5 is the time at which the current decreases be-
low 1% of the maximum value, I, and t,, are respec-
tively the maximum current value and the time when it
is reached. Experimentally we observed that the trian-
gular approximation is satisfying for the current profiles
of the sequential elements. For combinational logic, this
approximation is reasonable but less accurate.

The total current is the sum of the current contribu-
tions represented as triangular shapes. Every flip-flop ¢

has two associated contributions Af (¢, T;) and Af(t,),
representing respectively the current drawn on the rais-
ing and falling edge of the clock. Notice that such con-
tributions are functions of time ¢ and of the clock ar-
rival time 7;. In fact, the curve translates rigidly with
T;. The current drawn by the combinational logic is
approximated with a triangle Ac(t). Ac(t) is not a
function of the arrival time of any clock. The total cur-
rent is the sum of the contributions due to flip-flops and
combinational logic:

N N
Lot(t,T) = Ac(t)+ > AI(t, T)+ D Al (,T)(3)

i=1 i=1

The cost function F that approximates the peak cur-
rent 1s:

P = g et 1) N

3 T T T T T T T f T
: : : : H : iCurrent of 1=~
‘Current of Z!

[N

Current (ma)

olda i il

i i ! i
s 2 2.5 3

. 4 4.5 5
Time (ns)

Fi%ure 3: Current profiles for the two flip-flops 1 and 2 from
PPP simulation of our example circuit.

3 T T T T T T T T T
: : : H : Current of logici ———
Approximation: ===

Current (mA)

o

2.5 3 3.5 4 4.5 5
Time (ns)

F igure 4: Current profile corresponding to the combinational
logic from PPP simulator of our example circuit. The dashed line
is its triangular approximation

Our target is to find the optimum clock schedule Topt
which mimmizes the cost function F. We clarify these
definition through an example.

Example 2 The current profiles for the flip-flops of the
circuit in Figure 1 are shown in Figure 3 for one assign-
ment of Ty and Ty. The current profile of the combina-
tional logic for this ezample is shown in figure 4 with its
approzimation triangle.

The contribution of a flip-flop is approzimated by two
triangular shapes. The first corresponds to the rising
edge of the clock, the second to the falling edge. Here
we have T7 = Ons and 7o = 1.07ns. Notice that the
current profile of flip-flop 2 is shifted to the right. The
profiles for the two flip-flop do not have ezactly the same
shape because they are differently loaded.

Notice that when Ty = T3 the two current profiles of
the flip-flops are perfectly overlapped. When 11 # Ty,
the two contributions are skewed. The value of the cost
function F(11,T2) is the mazimum value of the sum
of the five triangles. Here F(0,1.07) = 2.7, whereas
initially, F(0,0) = 4.2.

3 Peak current minimization

We now describe our approach to the minimization of
the cost function described in the previous section. The
first key result of this section is summarized in the fol-
lowing proposition stated without proof.

Proposition 1 The cost function I of equation 4 can
be evaluated in polynomial time (in the number of tri-
angular contributions).

We developed a O(N3) algorithm (N4 is the number
of triangular current contributions) for the evaluation of

267

268

/% let T[i] (i..N) be the variable vector */

/* Delta origlil (i..2N41) are the 2N+l comtributioms when T[i]=0 */

float evaluate (T)

/* computes the contributions for the vector T */
Delta = translate_triangles (Delta.orig, T);
max = O;
foreach (c1 in [0..2K])

val = max(Delta(f{c1l));

foreach (c2 in [0..2K1)

if (¢2 '= c1) then
if (overlap (Deltalcil, Deltalc2l)) then

/% we look if the 2 triangles overlap and add the value */

/* of ¢2 at the maximum point of ¢l %/
max += get.value (Deltalc2], time_max (Deltalci1]));
endif;
endif;
endfor;
if (val > max) ther max = val;
ondfor;
return (max);
end evaluate;

Figure 5:

O(N?) algorithm for the computation of the cost
function F.

the cost function. The algorithm is based on the obser-
vation that the maximum of the cost function can be
attained in a finite number of points, namely the points
of maximum of the triangles that compose it. In or-
der to evaluate the value of F in one of such points,
we must check if the corresponding triangle is overlap-
ping with any of the other contributions. The quadratic
complexity stems from this check. The pseudo-code of
the algorithm is shown in Figure 5.

The second key result is summarized by the following
proposition:

Proposition 2 The peak current minimization prob-
lem is an instance of the constrained DC optimiza-
tion problem/[I5].

An important consequence of this theorem is the
NP-compieteness of the current minimization problem
(since DC optimization is NP-complete). Our solution
strategy is heuristic and it is based on the genetic al-
gorithm (GA) [17]. Notice that the GA approach is
attractive in our case because we have an efficient way
to compute the cost function.

GA-based functional optimization requires a very
large number of function evaluations (proportional to
the number of generations multiplied by the size of the
population). Since F can be efficiently evaluated, large
instances of the problem can be (heuristically) solved.

Notice two important facts. First, our algorithm
heavily relies on the triangular approximation. If we
relax this assumption, the evaluation of F' becomes an
extremely complex problem (finding the maximum of a
multi-modal function), and the GA approach would not
be practical. Second, we consider the contribution of
the combinational logic as function of time only (inde-
pendent from the T;). As a consequence, if the max-
imum current is produced by the combinational logic,
F ng, ...T) is a constant, and no optimization is achiev-
able.

3.1 Clustering

Up to now, we have assumed that the arrival time T;
of each individual flip-flop can be independently con-
trolled. This is an unrealistic assumption. In an ac-
tual VLSI circuit the clock is distributed using regular

1Problems where the cost function can be expressed as the dif-
ference of two concave functions. See [15] for a detailed treatment.

/* Let F[il (i..N) be the instances of the flip-flops */

/x Let T[i] (i..N) be the values given by the GA for instance i */
/% Lot N_p be the number of clusters to obtain */

F.sort[i] = sort.by_skew (F[il, T[il)};

size_cluster = N / N.p;

num_cluster = 0;

foreach (i in Fusortl[il)

if (size (Cluster [num._cluster] == size_cluster)) then
num.cluster++;
endif;
add_in_cluster (Cluster [num_cluster], F._sort([i]);
endfor;

return (Cluster);

Figure 6: Clustering algorithm.

structures such as clock trees [10]. Usually, sub-units
of a complex system have local clocks, connected with
buffers gdrivers) to the main clock tree. The buffers are
the ideal insertion points for the delays needed for skew
optimization (for practical implementations of such de-
lays refer for example to [4, 3]). In general it would not
be feasible to provide each flip-flop with its own buffer
and delay element, for obvious reasons of layout com-
plexity, routability and power dissipation.

Since clock-skew optimization is practical only if ap-
plied at a coarser level of granularity, we have developed
a strategy that allows the user to specify the number of
clusters (i.e., the number of available clock buffers with
adjustable delay), and heuristically finds flip-flops that
can be clustered without large penalty on the cost func-
tion. Here we assume that no constraints on the group-
ing of flip-flops have been previously specified. This is
often the case for circuits generated by automatic syn-
thesis. Structured circuits (data-path, pipelined sys-
tems) with pre-existing clustering constraints are dis-
cussed later.

Our clustering algorithm can be summarized as fol-
lows. The user specifies the number of clusters Np.
First, we solve the peak current minimization problem
without any clustering (every flip-flop may have a differ-
ent arrival time). We then insert the flip-flops in a list
ordered by clock arrival times. The list is partitioned
in Np equal blocks. New constraint equations and new
current profiles are obtained for the blocks of the parti-
tion. A new peak current minimization is solved where
the variables are the arrival times T, j = 1,2, ..., Np,

one for each cluster. We also recompute the delays from
cluster 7 to cluster j. The number of equations reduces
to O(N3 + I + O). The pseudo-code of the clustering
algorithm is shown in Figure 6.

Using clustering, we can control the granularity of
the clock distribution. The first step of our partition
strategy is based on the optimal clock schedule found
without constraint on the number of partitions. Clus-
tering implies loss in optimality, because some degrees
of freedom in the assignment of the arrival times are
lost. Our clustering strategy reduces the loss by trying
to enforce a natural partitioning. The second iteration
of current peak optimization guarantees correctness and
further reduces the optimality loss.

Example 3 Consider the small benchmark s208. It
consists of 84 combinational gates and 8 flip-flops. The
cycle time is 10ns, the clock has 50% duty cycle. The
current profile for the circuit is shown in Figure 7 with
the dashed line. Observe the two current peaks synchro-
nized with the raising and falling edge of the clock. The
irreqular shape that follows the first peak shows the cur-
rent drawn by the combinational logic.

T T T T T T T T
[: : : : : T
1“l : : : H ~——:No skew
n : H : : ———Two clusters

1, : ; - . 4

Current (A)

o 0.1 0.2 0.3 0.4

0.5
Time (sec) x10™°

Figure 7: Current profile for benchmark 5208 before and after
skew optimization with two clusters. The current profiles are
obtained by accurate current simulation

The skew is then optimized with the constraint of
2 partition blocks (i.c., two separate clock drivers al-
lowed). The current profile after skew optimization is
shown tn Figure 7 with continuous line. The beneficial
effect of our transformation is evident. Notice also that
the current profile of the combinational logic is more
spread out, but the overall contour is almost unchanged.

3.2 Dealing with combinational logic

In the previous sections, we have solved the current peak
optimization problem assuming that we cannot control
the current profile of the combinational logic. For many
practical circuits this is an overly pessimistic assump-
tion, because the data path of large synchronous sys-
tems is often staged. In a staged structure, a set of flip-
flops A feeds the inputs of a combinational logic block.
The output of the block are connected to the input of a
second set of flip-flops B. The sets A and B are disjoint.
The flip-flops in A and the block of combinational logic
are called a stage. Pipelined circuits are staged, and
most data paths have this structure, that makes the
design easier and the layout much more compact.

If the circuit has a staged structure, the behavior of
the combinational logic is much more predictable. If
we cluster the flip-flops at the input of each stage, by
imposing the same arrival time (i.e., assigning the same
clock driver) to their clock signal, we can guarantee that
all inputs of the combinational logic of the stage are syn-
chronized. As a consequence, the current profile of the
combinational logic translates rigidly with the arrival
time of the clock of the flip-flops at its inputs.

For staged circuits our algorithm is more effective,
because the clock schedule controls the current profile
of the combinational logic as well. The current peak can
therefore be reduced even if it is entirely dependent on
the combinational logic [21].

4 Implementation and results

The implementation of a program for peak current min-
imization depends on the availability of a tool that pro-
vides accurate current waveforms for circuits of suffi-
ciently large size. Electrical simulators such as SPICE
are simply too slow to provide the needed information.
In our tool, current waveforms are accurately estimated

by an enhanced version of PPP [19], a multi-level sim-
ulator specifically designed for power and current esti-
mation [20] of digital CMOS circuits. PPP has perfor-
mance similar to logic level simulators, it is fully com-
patible with Verilog XL and provides power and current
data with accuracy comparable to electrical simulators.
Input signal and transition probabilities for all the sim-
ulations are set to 50%.

The starting point for our tool is a mapped sequential
network (we accept Verilog, SLIF and BLIF netlists).
First, the sequential elements are isolated and current
profiles are obtained. Alternatively, pre-characterized
current models of all flip-flops in the library can be
provided. The combinational logic between flip-flops
1s then simulated and its average current profile is ob-
tained. The first simulation step assumes no skews.

Timing information is extracted from the network.
Maximum and minimum delays are estimated with safe
approximations (i.e., topological paths). Input arrival
times and output required times are provided by the
user. The constraint inequalities are then generated. In
this step several optimizations, such as those described
in (7, 1], are applied to reduce the number of constraint
inequalities. Data needed for the evaluation of the cost
function are produced: the triangular approximations
are extracted from the current profiles and passed to
the GA solver [18].

The GA solver then is run to find the optimal sched-
ule that minimizes the peak current. The initial popu-
lation is generated by perturbing an initial feasible so-
lution (zero skew). The GA execution terminates after
an user-specified number of generations. The resulting
optimal clock schedule is then applied in a last simula-
tion pass, where the effect on current peaks and average
power dissipation is evaluated.

If the maximum number of clock drivers has been
specified, the tool first clusters the solution with the
algorithm described in Figure 6, then it runs another
simulation to obtain the new current profiles for the
clusters (which are now regarded as atomic blocks). A
second GA run is performed to re-optimize the clustered
solution. Finally, simulation is repeated to check the
quality of the result.

The results on a set of benchmark circuits (from the
MCNC suite) are reported in Table 1. The first two
columns represent the name of the circuit and the num-
ber of flip-flops. For each of the following columns, two
rows are reported for each benchmark. The first row
refers to the results obtained with no clustering (i.e.,
clusters of size 1), the second lists the results obtained
with the number of partitions reported in column four.
For the biggest benchmarks s15850 and s13207, we ini-
tially clustered the flip-flops to reduce the complexity of
the first execution of the GA. Columus four, five and six
describe the effect of clock-skew optimization on aver-
age power dissipation. The last three columns describe
the effect on current peaks. Without clustering, we re-
duced on average the current peak by 39%. When we
cor(lystra.int the number of clock drivers, we reduce it by
27%.

We were concerned about a possible increase in power
dissipation inside the combinational logic due to un-
equal arrival times of the clocks controlling flip-flops at
its inputs (i.e., increased glitching). From the analysis
of the results it appears that skew optimization does
not have a sizable impact on average power dissipation.
On the other hand, the effect on current peaks is always

269

270

positive, and often very remarkable. For some circuits,
current peaks are reduced to less than a half the original
values. The range in quality of the results is due to the
relative importance of the current in the combinational
logic. For circuit where the current peak produced by
the combinational logic is close to that produced on the
clock edges, only marginal improvements are possible.
Notice however that some improvements have always
been obtained even for small circuits with few flip-flops.
This result may seem surprising and warrants further
explanation. In the combinational logic, signals prop-
agate through cascade connections of gates, therefore
only a relatively small number of logic gates is switch-
ing at any given time. In contrast, on a clock transition
(with zero skew) all flip-flips switch and all gates di-
rectly connected to them draw current approximatively
at the same time.

The running time of the algorithm is dominated by
the first skew optimization step and it ranges from a few
minutes to one hour (on a DEC station 5000/240). In
average, the simulation time is approximatively 40% of
the total. A larger fraction (55% in average) is spent in
the GA solver. The remaining 5% is spent in generating
the constraints and parsing the files. When the clus-
tered solution is simulated and optimized, the speedup
is almost linear in the size of the clusters.

5 Conclusions and future work

We proposed a new approach for minimizing the peak
current caused by the switching of the flip-flops in a se-
quential circuit using clock scheduling. We reduced on
average 30% of the peak current of the circuit without
any increase of power consumption. Moreover, the ini-
tial clock frequency of the circuit was preserved. We
showed that linear programming approaches tradition-
ally used for clock scheduling are not suitable, and we
proposed a heuristic solution strategy based on the ge-
netic algorithm. Clustering techniques have been in-
troduced to account for constraints on the maximum
number of available clock drivers.

Although we conservatively assumed that we have
no control on the current profiles of the combinational
logic, this assumption can be relaxed for staged circuits.
In such circuits, the combinationallogic can be clustered
with the sequential elements. In this case the peak cur-
rent of the combinational logic plays a role in the cost
function of the peak reduction algorithm: the waveform
of this combinational logic would be shifted if the clock
schedule changes. Clock skewing in this case would also
reduce the current peak caused by combinational logic,
therefore allowing more effective minimization.

References

f1] T. G. Szymanski, “Computing Optimal Clock Schedules”
DAC, Proceedings, pp. 399-404, 1992.

[2] J. P. Fishburn, “Clock Skew Optimization” JEEE Transac-
tions on Computers, vol. 39, no. 7, pp. 945~951, July 1990.

[3] Jun-Dong Cho, Majid Sarrafzadeh, “A Buffer Distribution
Algorithm for High Performance Clock Net Optimization”
IEEE Transactions on VLSI Systems, vol. 3, no. 1, March
1995.

[4] Ren-Song Tsay, “An Exact Zero-Skew Clock Routing Algo-
rithm” IEEE Transaciions on CAD of Integrated Circuiis
and Systems, vol. 12, no. 2, February 1993.

AvgPower (mictoW)

[

Current peak (mAy
ajier

Bench FF P belore Tatic beiore ratio
sI58E0 350 50 4673 46377 [N} 320 176 0.550
20 46731 46717 1.000 320 219 0.680

313207 490 80 52094 48476 0.931 267 165 0.619
20 52094 48856 0.938 267 196 0.733

dsip 224 224 70081 70038 0.999 270 230 0.852
20 70081 69720 0.995 270 240 0.889

55378 163 163 71565 72813 1.017 99.3 60.6 0.610
15 T1587 72420 1.012 99.5 75.0 0.754

59234 138 135 19364 20154 1.041 49.7 12.0 0.241
20 19364 20619 1.065 49.7 18.0 0.362

mm30a 90 90 1414131 14040 €.993 163 138 0.846
9 14141 14239 1.007 163 131 0.807

81423 T4 T4 8043 7276 0.905 50.0 22.2 0.444
10 8043 7965 0.990 50.0 35.1 0.702

mult32b 61 61 71970 72462 1.007 40.7 24.5 0.602
7 T1970 T1944 1.000 40.7 28.2 0.693

sbc 27 27 34285 34178 0.997 47.4 40.8 0.861
4 34285 34619 1.010 47.4 43.2 0.911

3400 21 21 9773 9751 0.998 12.6 7.94 0.630
3 9TTT 9854 1.008 12.6 10.6 0.844

3208 8 8 4207 4095 0.973 5.98 3.19 0.533
Z 4207 4077 0.969 5.98 3.86 0.645

Table 1: Results of our procedure applied to MCNC bench-

marks.

[5] N.-C. Chou et al., “On general zero-skew clock net construc-
tion,” IEEE Tramsactions on VLSI Systems, vol. 3, no. 1,
March 1995.

[6] T. G. Szymanski, N. Shenoy, “Verifying Clock Schedules”
Proceedings of ICCAD 1992, pp. 124-131.

[7] N.Shenoy, R. Brayton, A. L. Sangiovanni- Vincentelli “Graph
Algorithms for Clock Schedule Optimization” Proceedings of
ICCAD 1992, pp. 132-136.

[8] T.M .Burks, K. A. Sakallah, “Min-Max Linear Programming
and the Timing Analysis of Digital Circuits” Proceedings of
ICCAD 1993, pp. 152-155.

[9] K. A. Sakallah, T. N. Mudge, O. A. Olukotun “Analysis and
Design of Latch-Controlled Synchronous Digital Circuits”
IEEE Transactions on CAD, vol. 11, no. 3, March 1992.

M. Horowitz, “Clocking Strategiesin High Performance Pro-
cessors” 1992 Symposium on VLSI Circuits Digest of Tech-
ntcal Papers, pp. 50-53.

A. Ohba, H. Sato et. al,, “New Decoding Architecture to
Reduce Peak Current and Its Implementation to 4M ECL
SRAM” 1992 Symposium on VLSI Circuits Digest of Tech-
nical Papers, pp. 30-31.

Actel, FPGA databook and design guide, 1994.

S. Chowdury and J. Barkatullah, “Estimation of Maximum
Currents in MOS IC Logic Circuits,” IEEE Transaction on
CAD, vol. 9, no. 6, pp. 642 — 654, 1990.

K. G. Murty, Linear Programming, Wiley, 1983.

R. Horst, P. M. Pardalos, ed. Handbook of global optimiza-
tion, Kluwer, 1995.

E. Lawler, Combinatorial optimization: networks and ma-
troids, Holt, Rinehard and Winston, 1976.

D. Goldberg, Genetic Algorithms in search, optimization
and machine learning, Addison-Wesley, 1989.

J. J. Grefenstette, A user’s guide to GENESIS, 1990.

A. Bogliolo, L.. Benini, and B. Riccd, “Power Estimation of
Cell-Based CMOS Circuits,” DAC, 1996.

A. Bogliolo, L. Benini, G. D. Micheli, and B. Riccd, “Gate-
level current waveform simulation,” ISLPD, 1996.

J. Yoo, G. Gopalakrishnan et al., “High speed Counterflow-
Clocked pipelining illustrated on the design of HDTV sub-
band vector quantizer chips,” Advanced Research on VLSI,
Chapel Hill, 1995.

