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Abstract

Inthis paper we describe a paradigm for integrating EDA
tools running on distributed platformsunder a common user
interface. We focus on interactive remote execution more
than on simple information retrieval. Minimum support is
required on the user side to access the features offered by
a large and diverse set of tools: the user’'s WWW browser
is the interface for all interactions. Integrating new tools in
the environment is a straightforward process that does not
require any effort from the end users. The learning curve is
extremely short because the well-kinown user interface pro-
vided by the WWW browser is exploited. PPP is a prototype
we implemented to show the feasibility of WWW-based rool
integration. We describe the features of PPE, its architecture
and its implementation.

1 Imtroduction

Computer-aided design tools have become an essential
part in the design flow of any complex VLSI system. At
the same time, design teams are realizing that the number
of tools needed to implement complex systems is ever in-
creasing, and such tools are generally provided by many
different suppliers. Integration of EDA tools into unified
frameworks prompts for an increasing effort in the creation
of standard interfaces {1, 2]. The definition of standard for-
mats for design descriptions such as VHDL and EDIF has
been an important milestone in this direction. However, the
user interfaces provided by different EDA vendors still lack
in uniformity and compatibility.

Moreover, as computer networking becomes pervasive,
design teams will be geographically dispersed, and the need
for reliable and straightforward communication paradigms
will steadily grow. Computationally demanding tasks (op-
timization and/or simulation of large circuits) could be per-
formed on high-performance servers remotely connected to
the designers by Internet links. Again, a uniform user inter-
face should be provided in this concurrent and distributed
engineering environment.
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The opportunities for commmercial EDA vendors are
promising as well. New tool usage paradigms may emerge:
users could temporarily connect to a tool provider, perform a
specific task and be billed on a usage-time basis. Similarly,
demos can be performed across the network, a much more
effective form of advertisement because it gives the perspec-
tive user direct hands-on experience. Necessary conditions
for such new paradigms to be successful is again the ex-
istence of a general and friendly user interface for remote
connections and execution control.

The explosive diffusion of an user-friendly and power-
ful interface such as the World Wide Web [5] (WWW) has
prompted several attempts directed to exploit its features in
the CAD-EDA area. Virtually every computer user is famil-
iar with the WWW, and Web browsers provide a uniform
interface to a number of different communication protocols.
A Web-based interface to CAD tools is an important step
toward standardization and distributed tool integration. Pre-
liminary results in this direction have been reported in [3]
and [4]. Both these works are focused on an information-
centric perspective, that reflects the original purposes of the
WWW development [3]. '

In the information-centric perspective, the designer’s
need for geographically disperse and heterogeneous infor-
mation is addressed. The designer can retrieve background
material (i.e. algorithms, bibliography, benchmarking in-
formation, etc.) and design libraries simply by activating
a hyperlink on a WWW page. Multiple data formats can
be transferred and viewed without the need of complex in-
teractions. Security issues are addressed and privacy is
guaranteed by encrypted transactions. The complexity of
the communication among remote sites is hidden, and the
exchange of data among users becomes straightforward.

In this work we extend the ideas proposed in [3, 4]
by adopting an application-centric perspective, where the
needs of EDA tool users are more directly addressed. The
end-~user of CAD tools not only necessitates to access in- -
formation and data, but mainly he/she needs to process and
modify the data, by executing the available CAD programs.
We mainly focus on execution paradigms, in an effort to pro-
vide an effective interface not only for information retrieval
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and exchange but also for interactive execution control.

Simple protocols for remote execution have been de-
scribed in [3] and {4]. Both approaches focused on batch
execution: the user can request services to remote tools,
that will perform the required tasks and return the results.
The interaction between user and tools is sparse and loose.
Effective execution of remote tools requires a much higher
level of interaction: the user should be allowed to change
the setting of a parameterized tool run, preview partial re-
sult, access visual information like waveforms and network
schematics, modify networks and update design databases.

We have developed PPP, an integrated simulation and
synthesis environment with a modular and highly interactive
‘Web-based interface. In this paper we describe the architec-
ture of PPP, its main features and the innovative aspects of
its implementation. The main target of PPP is the synthesis
and the simulation of low-power CMOS circuits [6, 7], but
its modularity allows us to interface with general-purpose
commercial and academic tools. PPP is work in progress,
therefore we will describe a paradigm for distributed tool
integration, more than a product.

The rest of the paper is organized as follows. In the next
section we will give an overview of the key concepts and
goals that lead to the design of PPP. In the third section
the architecture of PPP is described in detail. The fourth
section contains an example of a synthesis and simulation
session on PPP. Starting from the example we will illustrate
some of the features of our tool and relevant aspects of its
implementation. Finally, in section five we will discuss the
future developments of PPP.

2 Anoverview

Primary target of the PPP project is to develop a fully
integrated synthesis and simulation environment with short
learning curve and architecture-independent Web-based in-
terface. PPP is a modular system composed of interacting
tools that may run on different machines and be provided
by different vendors or contributors. The user accesses PPP
using his/her own Web browser, with no additional require-
ments on hardware or software installation. The tools can
reside on remote servers or on the local users’ machine. This
is fully transparent to the user. The graphical user interface
(GUI) of PPP is exactly the same used for Web navigation
and no additional effort needs to be spent in familiarizing
with a new GUI when the user first accesses the system.

In the design of PPP, we focused on two key ideas: plug-
and-play modularity and architecture-independent interac-
tive remote execution. Plug-and-play modularity allows new
tools to be integrated in PPP with little effort and no modifi-
cations. The impact on other tools already embedded in the
environment is negligible. Remote execution can be seen as
an advanced caching strategy. Upon invocation, a resource
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. Figure 1, User interaction with PPP .
in PPP can maintain its state throughout a sequence of in-

teractions. The state information is not necessary saved on
files to avoid the penalty of iterated disk accesses (or, worse,
of sending data across the Internet), but it is kept in memory
because the resource does not terminate its execution after
every interaction with the user.

From the user’s point of view, PPP appears as a remote
HTTP server and each user can access it by simply inserting
a pointer to the PPP URL in his/her bookmark file. This
is the only setup operation required. Figure 1 -depicts the
user interaction with PPP. The rectangles represent different
machines connected to the Internet. PPP is the core of
a distributed architecture. It manages two different kinds
of interface: connection to the client and connection to
the resources (tools and databases). The arrows represent
Internet protocols (FTP, HTTP, mail, etc).

Multiple users are allowed to concurrently access PPP,
similarly to a traditional WWW server. Figure 1 depicts a
centralized structure. The PPP kernel manages all interac-
tions between the users and the tools. In the next section
we will describe the organization of the PPP kernel and the
overall architecture.

3 Architecture

PPP is build upon a layered architecture, following a
well-known software engineering paradigm. The three lay-
ers are: application, communication and interface. The
organization of PPP is shown in Figure 2. The top two lay-
ers are embedded in the kernel, while the application layer is
distributed. Applicationis at the bottom of the hierarchy and
manages the interaction with the tools and the information
sources.

3.1. Application

The synthesis and simulation tools embedded in PPP
represent the bulk of the application layer and are called re-
sources. No constraint is posed on the target architecture and
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Figure 2. The layered architecture of PPP. Re-
sources represented with shaded rectangles
require an high degree of interactivity.

on the programming language used for the implementation
of the resources. The resources may run on different ma-
chines. Two level of interaction between resources and the
above layers are possible. The simplest interaction is state-
less connection: the tool performs some manipulation on the
input data, produces an output and terminates the execution.
Information about previous invocations may be stored in
files. Unfortunately, retrieving the state from files imposes
heavy performance penalties when highly interactive op-
eration is required (for example, during an user-controlled
optimization session). Stateless connection resembles the
batch execution features described in [3, 4].

For applications where higher interactivity is required,
we provide a novel paradigm called interactive remote ex-
ecution. Once started, the resource does not terminate its
execution after every command, but it simply waits for an-
other command to be issued. The resource becomes a server
that awaits for service requests from the client (the user)
keeping complete information about past requests and their
results. Resources that provide interactive remote execution
must satisfy some requirements on their external interface.
In particular, it must be possible to interactively receive
data from another process without terminating the execu-
tion. Interactive remote execution is required for running
optimization and validation tools that perform user-assisted
tasks. ‘

Example 1 An application requiring interactive remote ex-
ecution 1s logic optimization, where the user can decide
among different optimization strategies by observing the
quality of intermediate results. In contrasi, a long simu-
lation is a typical example of batch execution. After setting
up the simulation parameters, the user dispatches the run
and does not need to interact with the tool until the run
terminates.

450

3.2. Communication

The communication layer represents the core of the PPP
architecture. Its purposes are the following.

@ Process users’ requests and translate them in a format
that is accepted by the resources. '

Collect the results produced by the resources and pro-

vide them to the users in a readable/downloadable
format.

Manage data files provided by the users and/or created
by the resources and store them where retrieval will
be faster.

Provide security. Different users work on private
space and should not be allowed to interact unless
they explicitly require to work on a shared design.
Access identification should be enforced.

Manage server’s resources. If PPP runs on multi-
ple machines, the commmunication layer can direct the
requests of the users toward unloaded machines.

All functionalities listed above are in some degree imple-
mented in PPP. Each user works in a separate space, where
input files and results are stored. User access authentication
is enforced by a password mechanism. All format conver-
stons are performed transparently. Since the resources run
on different machines, the communication layer must be im-
plemented as a distributed multiprocess application. In the
current implementation, scheduling of resources, conflicts
and mutual exclusion are managed using simple message
files on a shared file system.

Example 2 Formar conversion is a typical function per-

formed in the communication layer. For instance, in PPP-
part of the synthesis process is performed by SIS [11]. The

output format provided by SIS is BLIF. The simulation tool
embedded in PPP is a customized version of Verilog-XL [7],

that accepts files in Verilog HDL. The conversion between

BLIF and Verilog is performed by a process in the commu-

nication layer. The conversion is completely transparent to

the user.

3.3. Interface

Interface is the uppermost layer, with which the user in-
teracts. The largest part of the interface layer is directly
supported by the WEB browser. If the interacticn is lim-
ited to simple menu-based communication, the form feature
provided by HITML [9] is sufficient. The same holds for
small images and graphs. This is however not sufficient in
general. In many cases; the users wants to specify the input
or examine the output in more complex ways.



We call high-bandwidth the kind of interaction for which
the WEB browser does not provide satisfying performance.
Examples of high-bandwidth interactions are transfers of
large input files (i.e. the networks that the user wants to
simulate/optimize) and interactive graphical output (such as
waveform or network browsing). In these cases alternate
mechanisms for interaction must be provided. For user-
originated communication such as the transfer of input files,
we currently use the FTP protocol.

For resource-originated communication, such as wave-
form display, more advanced mechanisms are needed. The
resource generates output data files, the communication
layer then takes care of transforming the data in a graph-
ical output that is sent to the user. The user can view the
graphical output using helper programs or directly through
the limited image display capability of the WEB browser.

Example 3 After simulation, the users specifies the signals
he/she wants to view. This information is communicated to
PPP (this is a typical low-bandwidth interaction) using a
form. From the simulation output files, the relevant signal
transitions are extracted and a waveform image is gener-
ated to be sent back to the user. This is a high bandwidth
interaction.

3.4. Bandwidth management

A fundamental issue in the design of all layers of PPP
is bandwidth management. Although local area networks
(LAN) can usually provide the bandwidth required for most
data transfers, PPP is not limited to run on LANs. When
some of the connections are supported by a wide area net-
work (WAN), the bandwidth of the data transfer has to be
reduced as much as possible. In the current implementation,
the only critical connection is between the PPP kernel and
the client. On this connection, bandwidth-critical applica-
tions are those involving massive data transfer and a high
degree of interactivity. In this case, the level of interaction
with the resource is so high that we may want to transfer the
resource itself on the client’s side.

An example of critical application is waveform display.
In the current implementation of PPP, we try to minimize the
bandwidth required by sending to the client compressed im-
ages of the waveforms. This solutionis satisfying only if the
user does not need to dynamically update the waveform view
very frequently. The advantage of this approach is that the
user does not need any dedicated support for waveform dis-
play. More aggressive bandwidth reduction can be achieved
without requiring the user to install dedicated programs. To
this purpose. it is necessary to enable the transmission of ex-
ecutable code across the network. Languages such as JAVA
[8] and TCL [10] allow this kind of interaction.
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4 Functionality

To give a more concrete understanding of the features
provided by PPP, we now describe a simulation session.

User identification is enforced to access PPP. The access
point is an HTML form asking for user’s name, password
and e-mail address. When the form is applied, the main
menu of PPP appears and two directories are created on
the server file-system to allow the user to work in a private
space: an I/O directory that can be accessed from the client
for explicit file transfers based on FTP, and a (hidden) work
directory used by the system to store intermediate results.

Several interacting tools can be accessed from the main
page of PPP: The tools are embedded into a unified frame-
work that hides to the user the details of their interaction. A
typical user session consists of running the tools, possibly it-
eratively, directly from the Web-browser. Partial results are
always available and visible. In the following we describe
step by step a simulation session.

4.1. Circuit specification and optimization

PPP contains (but is not limited to) a cell-based gate-level
simulator [7]. The circuit to be simulated is first mapped
onto a pre-characterized cell library. Three fields need to
be specified: i) the name of the file containing the circuit
description (slif, blifand Verilog are supported), ii) the name
of a pre-characterized cell library, and iii) the optimization
options that will be used during the mapping. The circuit
is read from the user I/O directory, where the user can put
his/her.own circuits using a standard file transfer protocol.

Optimization options can also be specified for the map-
ping, and a batch run of logic optimization and library bind-
ing is run. A form-based menu is available to select the
optimization options. When applying the form, SIS [11] is
remotely run to map the circuit onto the library. Since PPP
uses Verilog-XL as simulation platform, a Verilog descrip-
tion of the mapped circuit is also created and stored in the
work directory.

Alternatively, the user can start an interactive optimiza-
tion session. If this option is selected, a command prompt
is displayed. The user issues optimization commands at
the prompt, the synthesis tool executes them and reports to
the user. Notice that the interactive optimization session is
an example of a tighter interaction level than that allowed
by batch run. Between two consecutive optimization com-
mands, the synthesis tool does not terminate execution, thus
the structure of the network is kept in the memory of the
machine running the tool. For large networks, this kind
of interaction is paramount to obtain acceptable latency be-
tween two successive user cornmands.

After specification and optimization, the simulation must
be set up. The simulation setup can be either read from a file
in the user’s I/O directory or specified using the interactive



Figure 3. User interaction with PPP: simula-
tion setup

interface of PPP. In this case, three main HTML forms are
available to specify: i) global parameters, i) constant and
clock signals and iif) generic inputs. Global parameters
include the simulation style (either random or deterministic),
the test size and the time step between input patterns. The
constant and clock signals specification form (shown in Fig.
3) allows the user to specify some signals (selected among
the list of current circuit inputs) to behave eitheras a periodic
waveform or as a constant.

4.2. Power simulation

The PPP simulator is accessed by choosing the power
simulation option of the main menu. From the first page of
the simulation interface the user is allowed to: i) look at the
circuit statistics, i7) look at the current simulation setup, #i7)
run the simulator by applying the current simulation setup
to the current circuit, and iv) analyze the results of the last
simulation run.

A simulation run consists of a remote execution of the
PPP simulator and causes the updating of simulation results.
CPU and memory. consumptions are reported at the end of
each simulation run.

There are two sets of simulation results: time-domain
waveforms and statistical analysis. The Web-based wave-
form display is shown in Fig. 4. The waveform plotis saved
in a GIF file and a hyperlink is created to access the GIF file
from the Web-browser. Fig. 4 shows the result of two sub-
sequent applications of the interface form on the same set of
data (namely the results of a PPP simulation of sequential
benchmark s344). Current, power and energy waveforms
are displayed together with the clock and the input signal
Al.

A similar interface is available for statistical results. In
particular, statistical data are collected about the peak supply
current per input vector, the local average power consump-
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Figure 4. User interaction with PPP: waveform
display

tion (i.e., the power consumption of each cell} and the total
energy drawn by the circuit corresponding to each input
transition.

4.3. Implementation

During a typical user session, PPP appears as a tree of
HTML forms that can be navigated by the user. In re-
ality, the HTML pages are dynamicalily created by PERL
scripts controlled by the user’s commands. The set of PERL
scripts that generates the HTML forms for the user is the
interface layer of PPP. Although the interaction allowed by
HTML forms is limited and not very flexible, the GUI is
straightforward and familiar to any user. As a consequence,
a completely inexperienced user can obtain results after a
single PPP session.

The communication layer is composed by another set of
PERL scripts. The user does not directly access the commu-
nication layer, but its commands are parsed by the scripts in
the interface layer, translated, and sent to the communica-
tion layer. The scripts in the communication layers perform
mainly translation and setup tasks to prepare the environ-
ment needed for tool execution. Another important function
performed in the communication layer is the choice of the
machine on which the requested tool will run.

Finally, the environment is ready for the execution of the
tools. Tool execution is managed by the application layer.
If basic¢ batch runs are requested, the tool is simply executed
with the input information provided by the communication
layer. Tools that execute in batch mode can be incorporated
in PPP with minimal effort: the interface and communica-
tion layers are modified to allow the user to access the tool
and to provide the files needed for the batch rumn.

‘When interactive remote execution is required, the pro-
cess of linking the tool to PPP is less straightforward. The
standard input and output channels must be re-directed to a
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Figure 5. An example of interactive remote
execution: SIS session

script that manages the interaction with the interface layer.
The scriptis run when the user specifies a command, it trans-
lates the input format and it sends the command to the tool.
The script then waits for the results of the command to be
sent back by the tool. The results are saved on files or sent
directly to the user after being translated to HTML. Finally
the script terminates the execution, closing the contact with
the tool and the interface layer. Notice that the tool does
not terminate the execution, thus the state of the program
remains in the main memory until the user explicitly asks to
terminate the session. Whenever a new command is issued.
by the user, the interaction with the tool is managed by a
new run of the communication script.

Seiting a tool for interactive remote execution requires
i) the ability of redirecting the standard input and output
of the tool, ii) the implementation of the communication
script with the characteristics described above. In the cur-
rent implementation of PPP, interactive remote execution is
available for SIS.

Example4 In Figure 5 we show a diagram representing
multiple commands during a SIS session performed with the
interactive remote execution paradigm. Time proceeds from
left to right. Arrows represent the duration of processes.
Dots represent their start and termination points.

When the user issues a command a process in the inter-
face layer is started to translate the command in the format
required by SIS (the duration of this process is very short,
therefore it is represented as a single dot). In the commu-
nication layer a process is started (with the label Script)
to manage the interaction between SIS and the user The
command is then passed to SIS. When SIS returns the result
the script will pass it to the interface layer that will translate
it to HTML and serve it to the users. Then the communi-
cation process terminates, but the execution of SIS does not
terminate until the user issues the quit command.
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5 Conclusion

The implementation of PPP demonstrates the feasibility
of one key concept: a uniform user interface for a hetero-
geneous set of EDA tools based on the WWW. We believe
that PPP is an example of a new paradigm for distributed
network-based applications, where the connectivity offered
by Internet is exploited not only for retrieving information
but also to dispatch and control execution. The second
version of PPP that is under development, will exploit the
features of the JAVA [8] programming environment for in-
creasing the interactivity, the robustness and the efficiency
of the current implementation.

We envision the birth of a new paradigm for the usage of
EDA tools. The computational power required to run com-
plex simulation and synthesis tasks can be concentrated in
few dedicated servers, but all users will be able to access it
through a familiar graphical interface that is efficiently sup-
ported by cheap personal communication devices optimized
for Internet access.
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