Design for testability of gated-clock FSMs

M. Favalli, L. Benini* and G. De Micheli*

DEIS - University of Bologna - Viale Risorgimento, 2, 40136 Bologna, Italy
* CIS - Stanford University - Stanford CA-94305 USA

Abstract

Gated clocks allow significant power savings in syn-
chronous systems, but are generally considered an un-
safe design practice because they decrease testability. In
this paper we present two methodologies that guaran-
tee full single-stuck-at testability for gated-clock finite-
state machines. The first technique, increased observ-
ability, can be used in conjunction with redundancy-
removal techniques to obtain fully-testable gated clock
FSMs with high performance. The second technique,
increased observability and controllability, is applicable
to large FSMs for which redundancy removal is not pos-
stble and produces fully-testable gated-clock FSMs with
a moderate decrease in performance.

1 Introduction

Recently, the portable consumer electronics market
has undergone a period of explosive growth. Con-
straints on battery operation times have forced design-
ers to consider power dissipation as a major design pa-
rameter. Even for high-performance non-portable sys-
tem, the increasing cost of packaging and cooling sys-
tems imposes stringent requirements on the maximum
allowable power consumption.

Several techniques have been proposed for the reduc-
tion of the power consumption in digital systems, and
good overviews can be found in [1, 3, 4]. Numerous
approaches are based on the down-scaling of the power
supply voltage. Unfortunately, the choice of the sup-
ply voltage is often not under the designer’s control.
In such cases the power consumption in CMOS circuits
can be reduced by decreasing the switching activity
and/or the switched capacitance.

In synchronous systems, a common way to reduce the
circuit activity is to stop the local clock of inactive sub-
systems. The local clock must be gated with an activa-
tion signal. The dynamic power management schemes
implemented in many state-of-the-art microprocessors
[9, 10, 11] and signal-processing systems [1, 2] heavily
rely on gated clocks to achieve low power consumption.
Circuits with gated clocks can be designed by skilled

1066-1409/96 $5.00 © 1996 IEEE

589

designers or automatically synthesized [7, 5, 6].

Unfortunately, the extensive use of gated clocks cre-
ates major difficulties in testing and verification. The
circuitry used to gate the clock is functionally redun-
dant: it is not needed for correct functionality, but its
failure can have disastrous effects. Intuitively, if the
circuit performs correctly, the gating circuitry is trans-
parent. In the presence of faults, some malfunctioning
in the gating circuitry may be masked by the controlled
sub-system or vice-versa. This behavior poses relevant
testability problems.

The concerns about the diminished testability of cir-
cuits with gated clocks have been a major obstacle to
the diffusion of dynamic power management schemes.
In this work we describe a set of methodologies that
allow the designer to produce gated-clock circuits with
high testability. We show that the synthesis of testable
circuits with gated clocks does not impose large over-
head or performance losses with respect to the original
implementation.

We also explore the subtle relationship between re-
duction in testability and logic redundancy introduced
by gated clocks, and show that highly testable gated-
clock circuits may have better performance in speed,
area and power consumption than their low-testability
counterparts.

Although we will base our analysis on the implemen-
tation style presented in [7, 8], our conclusions are gen-
eral and can be extended to other dynamic power man-
agement schemes. Our work focuses on sequential sys-
temns described as FSMs. Pipelined circuits without
feedback, such as those found in signal processing sys-
tems, can be treated as particular cases in our method-

ology.

2 Power management schemes

It is a well known fact that large sub-blocks of digital
systems may be unused for a substantial fraction of the
total operation time. If the result of the computation
performed by a sub-block during a given clock cycle
is not necessary for the correct functional behavior of

the system, the sub-block is idle. During idle cycles
power is wasted not only on the clock lines, but also
in the logic that performs computation whose result is
not needed.

In synchronous systems, the useless power dissipa-
tion can be eliminated by selectively stopping (gat-
ing) the clock in portions of the circuit where use-
ful computation is not being performed. Gated clocks
are commonly used in large power-constrained systems
[9, 10, 11} as the core of dynamic power management
schemes. Notice however that it is usually responsibil-
ity of the designer to find the conditions that disable
the clock. Three approaches to the automatic synthe-
sis of logic circuits that can be conditionally disabled
by environmental signals have recently been reported
[5, 6, 8]. The results obtained by these methods are
promising: power reductions ranging between 10% and
70% have been reported on standard benchmark cir-
cuits.

In [5] Alidina et al. have described a pre-computation-
based approach, where a block of redundant logic is
added before the flip-flops that separate two successive
stages of a sequential circuit. The function of the pre-
computation logic is to disable the flip-flops at some of
the inputs of the second stage if the result of opera-
tions that it must perform in the next clock cycle can
be computed using only part of the inputs.

The pre-computation approach has been extended
to deal with combinational circuits: in [6] Tiwari et
al. showed that it is possible to selectively disable
parts of a combinational logic network without be-
ing restricted to stop the computation only at latch
boundaries. This extended pre-computation strategy
has been called guarded evaluation.

In {7, 8] the authors have presented a method for the
automatic synthesis of FSMs with gated clocks. Our
approach is based on the observation that self-loops
on the STG of a Moore machine are idle conditions,
because the state and the output do not change when
the machine is in a self-loop. A block of redundant
logic can then be synthesized whose function is to stop
the clock of the machine when a self-loop is detected
observing the input and state lines.

Despite some important differences, all dynamic
power management schemes based on gated clocks rely
on the presence of a redundant logic block whose pur-
pose is to stop the clock and to guarantee functional
equivalence with the original system. The size, delay
and power of the clock-stopping circuitry must be much
smaller than the size of the controlled system.

In this work we will adopt the implementation style

590

STATE STATE

- 1 i 1
m|®.{ | CombinationalloyT & | |Combinationalloyt

— ™N I
EM Loge & Logic I~
]]
b fa &

CLK] CLK

@® ®)

Figure 1: (a) Single clock, flip-flop based finite-state
machine. (b) Gated clock version.

presented in [8]. The model of a FSM with gated clock
is shown in Figure 1 together with the original FSM
without gating on the clock. The block labeled “L” in
Figure 1 represents a level-sensitive latch, transparent
when the global clock signal is low. Its presence is
needed to avoid malfunctioning due to glitches on the
output of f, [7].

The combinational function of input and state vari-
ables that stops the clock when the FSM is idle is called
activation function. The activation function f, detects
when the machine is in a self-loop. Since we want to
keep the size of the activation function’s implementa-
tion as small as possible, we may choose only a subset
of all self-loops to be included in the ON-set of f,.
The chosen self-loops must have high probability, in
order for the activation function to stop the clock with
maximum efficiency. A probabilistic algorithm that se-
lect optimal activation functions is described in [8]. In
this work we focus on the testability properties of a
FSM with gated clock. Our starting point will be the
gated-clock FSM implementation including the activa-
tion function, the flip-flops and the combinational logic
block.

Example 1 The FSM in Figure 2(a) is implemented
by the synchronous network shown in Figure 2(b). The
FSM has two self-loops. Clocking the machine when it
15 in a self-loop is useless, because the output and the
state do not change (in this case output and state are
the same). Notice that even if the output and state do
not change, clocking the machine dissipates power on
the clock line, the flip-flops and possibly on the internal
capacitances of the combinational logic.

Assume that the algorithms for the synthesis of the
activation function decides to stop the clock only in the
self-loop leaving state I (shaded in Figure 2(a)). The
resulting gated-clock FSM is shown in Figure 2(c).

It is important to observe that when f; = 1 the inputs
of the combinational logic of the FSM do not. change.
Consequently, all input-state configurations in the ON-
set of f, are not propagated to the input of the combi-
national logic of the FSM. In other words, the ON-set
of f, becomes an additional controllability don’t care

CLK

©)

Figure 2: (a) STG of a simple two-state FSM. (b)
Implementation of the FSM. (c) Gated-clock imple-
mentation.

set for the FSM logic, and can be used to simplify its
implementation. This is an important property from a
practical point of view, because it allows the designer to
recover some of the area used for the activation func-
tion, obtaining a smaller circuit that will likely have
diminished power dissipation.

Notice however that this optimization is an optional
step in the synthesis procedure of gated-clock FSMs.
The don’t care set represents a degree of freedom in the
implementation of a logic function. The designer may
choose to avoid using it for many reasons such as reuse
of optimized macro blocks or insufficient computational
resources. The use of f, as don’t care set has important
implications when testability is considered, as we will
discuss in following sections.

3 Testable design of Gated-Clock FSMs

In the case of gated-clock FSMs, the clock is stopped
only when the outputs of the FSM do not change,
therefore there is complete input-output equivalence
between the original FSM and its gated-clock coun-
terpart.

We adopt the stuck-at logical fault model to rep-
resent physical faults. Moreover, we focus on static
single-fault testability, disregarding transient, intermit-
tent and multiple faults. In this work, a fully testable
FSM is one in which there exist a test sequence that
reveals any given single stuck-at fault.

591

The automatic synthesis of fully testable FSMs is con-
siderably more difficult than the synthesis of testable
combinational logic. Nevertheless effective tools have
been developed and are commonly used in industrial
and academic [15, 16] environments.

In many practical cases, full testability for single
stuck-at faults is considered a minimum safety require-
ment. We show that the addition of clock-gating cir-
cuitry makes the FSM not fully testable. Assume that
we have modified our original FSM implementation by
adding the clock-gating circuitry. Let us consider a s-
a-0 fault on the output wire of the activation function.
In this case, the clock will always be enabled, and the
FSMs will have the same behavior as in the original
implementation. Observing the outputs, it is not pos-
sible to detect the fault. In general, we cannot reveal a
fault ¢ that transforms the activation function f, into
a faulty function f¢ with a smaller ON-set.

ff C fo — ¢ is untestable (1)

This property implies the existence of at least one
untestable fault in the gated-clock FSM (the s-a-0 on
the output of f,). The gated-clock FSM is never fully
testable.

While the existence of untestable faults in the acti-
vation function logic is quite intuitive, it may be pos-
sible to overlook that the insertion of clock-gating cir-
cuitry can decrease the testability of the combinational
logic of the FSM as well. The activation function is
active (one) in a sub-set of the self-loops. If a fault
in the original FSM can be tested only with input se-
quences that imply traversing a self-loop in the ON-set
of the activation function, the fault becomes untestable
in the gated-clock FSM. This statement can be clarified
through an example.

Example 2 In the FSM of Figure 2(b), consider a s-
a-0 fault on wire A. In the original FSM, the fault is
testable. Assuming that the initial (reset) state is 0, an
inpul sequence that reveals the fault is (11,01).

The s-a-0 fault on A is uniestable in the gated-clock
version of the FSM shown in Figure 2(c). The input
value required at the AND gate to activaie the fault
is 01, but this value never appears on the output of
the flip-flops. This is because the activation function
is high when INI1 and the state are both one. When
the activation function is high the clock is stopped and
the value required for the activation of the fault is not
propagated to the output of the flip-flops.

We call I the set of possible input values for the com-
binational logic of the FSM. The presence of the activa-

tion function reduces the size of set I. In other words,
the controllability don’t care set for the combinational
logic of the FSM is increased, and we can exploit only
a subset of the STG arcs to generate test vectors.

In application where testability is a primary require-
ment, the untestable faults generated by the clock-
gating logic are not acceptable. We will show that it
is possible to generate testable gated-clock FSMs with
minimum overhead and no loss in performance. We
will assume that the original FSM is fully testable, be-
cause in the following discussion we want to focus only
on untestable faults that are created by the insertion
of the activation function.

3.1 Increasing observability

We first address the problem of the s-a-0 untestable
fault on the output of f,. Since we have shown that
it is impossible to propagate the effect of such fault
to the output, the only way to solve the problem is to
increase the observability. If we make the output of the
activation function observable, the s-a-0 fault becomes
trivially testable: any input-state configuration in the
ON-set of the activation function is a valid test vector.

The penalty of increasing the observability is due to
additional wiring needed to route the output of f; to
the closest observation point. This penalty is not ex-
cessive, especially for large FSM that are often idle (for
which the activation function allows substantial power
savings). We call observability increase the addition
of one observable output in the FSM. Notice that the
combinational logic of the FSM and the activation func-
tion are not modified. We now discuss the effect of the
observability increase on the activation function logic.

The observability of f, makes the generation of tests
for faults in f, not harder than the test generation for
faults in the combinational logic of the original FSM.
This can be intuitively understood observing that the
inputs of the activation function are exactly the same
as those of the combinational logic of the original FSM
(anticipated by one clock cycle). Notice that the inputs
of the activation function do not come from the out-
put of conditionally enabled flip-flops, therefore they
can assume any value in the original set of allowed in-
put values. If the activation function is synthesized
without internal redundancies, the presence of the ad-
ditional observation point is sufficient to guarantee its
full testability.

Once the activation function has been synthesized,
we want to generate a test set for the gated-clock FSM
with observability increase. This cannot be done using
standard ATPG programs, because they assume a stan-
dard synchronous implementation, where clock-gating

L
0 —>
I_x Combinational
Logic
I |
gr‘lux | D S
| —
CLK
fa

592

Figure 3: Multiplexed model of a gated-clock FSM.

is not allowed. We propose here a multiplezed model
of the gated-clock FSM: it is a sequential circuit with
standard clock distribution that is equivalent for test
generation purposes to the gated-clock FSM.

The multiplexed model of a gated-clock FSMs can be
obtained explicitly accounting for the effect of f, in the
equations of the flip-flops:

yn+1 — pD* fa + y”fé (2)

that is the equation of a multiplexer with f, as control
variable. We can then obtain a synchronous network
without gated-clock by eliminating the circuitry at the
output of f,, placing the multiplexers at the inputs of
the flip-flops and clocking the flip-flips with the global
clock (CLK). The structure of the multiplexed model
for the FSM with increased observability is shown in
Figure 3. Notice that the insertion of the multiplexers
requires the addition of two additional wires for each
state and input variable, marked with “X” in Figure 3.

Faults on these wires do not correspond to any actual
fault in the gated-clock FSM.

The main advantage of the multiplexed model for
gated-clock FSMs is that standard sequential ATPG
programs can be used for test generation. The mul-
tiplexed model can easily be automatically generated
from the gated-clock FSM implementation, then fed to
the sequential ATPG program with no need of dedi-
cated tools or error-prone hand-crafted procedures.

3.2 Eliminating redundancy

While the use of an additional observation point
solves the problem of testing the activation function,
it still does not guarantee full testability of the gated-
clock FSM, as we can see in the following example.

Example 3 Consider the gated-clock FSM of Figure
2(c). Requiring the observability of f, guaraniees the
testability of the s-a-0 fault on its output. Unfortu-
nately, the s-a-0 fault on line A is still untestable. The
only input-state configuration that reveals it is never
observed by the inputs of the combinational logic of the
FSM, because the activation function freezes the clock
when it occurs at flip-flop inputs.

The gated-clock FSM with increased observability is
not fully testable because even if the additional obser-
vation point makes the activation function irredundant,
it does not improve the testability of the combinational
logic in the FSM. The activation function reduces the
set I of allowed input values to a set I’ C I. We as-
sumed full testability of the original FSM when the full
I can be used for test generation, but nothing can be
said on testability with respect to I’. Insertion of more
observability points is not a viable solution, because
the untestable faults are caused by the lack of fault
activation conditions. ‘

Fortunately, we can solve this problem employing
the same tools used for the synthesis of the original
fully testable FSM. Synthesis for testability of FSMs
can be performed using standard redundancy removal
techniques. Given a synchronous network, the redun-
dancy removal algorithm attempts test generation for
all faults in the network, using a collection of ATPG al-
gorithms, with increasing computational requirements.
In this approach, faults that are not detectable after the
application of a technique are inserted into the fault list
for the next more powerful ATPG algorithm.

As a last resource ezact state enumeration techniques
[16) are used. If the fault is proven untestable, the
wire with the untestable fault is replaced by a constant
corresponding to the type of fault. The constant is
then propagated if possible, to simplify the transitive
fan-out network and eliminate other untestable faults.

The approach above outlined can be applied to the
multiplexed model associated with the gated-clock
FSM (with increased observability). The exact al-
gorithm will locate and remove all redundancies in
the FSM’s combinational logic, making the gated-clock
FSM fully testable. Notice that redundancy removal is
always beneficial for performance: if the constant value
is propagated, we may be able to reduce the number
or the complexity of gates in the transitive fan-out of
the wire replaced by a constant. Moreover if the wire
replaced by a constant is the only fan-out stem of a
gate, the gate can be eliminated without changing the
functional behavior.

Example 4 In the gated-clock FSM of Figure 2(c) the

IN1

593

D
>
N2,
D[L{ &
1l& | D
o
&[1L Tj &
e, OB CLK

Figure 4: Optimized and fully-testable gated-clock
FSM with increased observability

s-a-0 fault on wire A is untestable. The redundancy
removal algorithm detects it ad replaces wire A with a
connection to the constant value 0. The constant can
then be propagated to further simplify the circuit. The
OR gate on the output can then be eliminated, and the
and gate whose output has been blocked at 0 can be
removed as well,

The final optimized circuit is shown in Figure 4. It is
not only fully testable, but has also better performance
that the original gated-clock FSM, in terms of area, de-
lay and power dissipation.

It is important to notice that the multiplexed model
contains faults not corresponding to actual faults in the
gated-clock implementation. The multiplexers shown
in Figure 3 on the inputs and state variables are in-
serted only for the purpose of modeling the effect of
the activation function. The fault at the outputs of the
multiplexers and at the inputs that are selected when
the activation function is one should not be inserted in
the initial fault list, because they do not correspond to
any actual wire in the gated-clock implementation. We
call these faults ezternal faults. The exclusion of exter-
nal faults from the initial fault list is not necessary for
the correctness of our procedure, but it is important
for efficiency reasons.

It is also important to notice that the redundancy
removal algorithm can be applied to the multiplexed
model only if the activation function is made observ-
able. If this is not the case, the activation function
becomes redundant, and it will most likely be removed.

In the previous section we mentioned the possibility
of using the activation function as additional don’t care
set for the synthesis of the FSM. Conceptually, this
operation is similar to redundancy removal: instead of
removing logic in a post-processing step, the synthesis
algorithm exploits the don’t care information to avoid

STATE

ol |
N .| |Combinationaljpyt
2 [Logic —
g g
f, 1L d& >
CLK
CT OB

Figure 5: Gated-clock FSM with increased control-
lability and observability.

the synthesis of useless logic.

Practically, however there is an important difference.
Since don’t care-based optimization is computationally
expensive, reduced don’t care sets are often employed
[13]. Generally, don’t care-based optimizations improve
the testability of the gated-clock FSM reducing logic
redundancies, but do not guarantee full testability, un-
less the full don’t care set is applied on every gate of
the final mapped network. In this case don’t care op-
timization becomes equivalent to redundancy removal,
but it is generally much less efficient [14].

3.3 Increasing controllability

Eliminating redundancy from a gated-clock FSM with
increased observability is an effective way to obtain
fully testable implementation with improved perfor-
mance. Unfortunately, there are two important cases
in which this procedure cannot be applied.

First, in many applications the combinational logic of
the machine consists of blocks that cannot be modi-
fied. This is often the case when gated-clock synthe-
sis is applied to data-path circuits: the combinational
logic may consist of adders, multipliers, comparators
or other standard components implemented by highly
optimized cells that the designer is not allowed to mod-
ify. Faults inside the standard components may become
untestable and they cannot be removed.

Second, the redundancy removal process may become
very computationally expensive. Even if symbolic tech-
niques for FSM traversal are effective for small and
medium sized circuits, they still are impractical for
large circuits or for classes of moderate sized circuit for
which the BDD representation is exponentially large.
If the redundancy removal algorithm fails, we do not
have guarantees on the testability of our implementa-
tion. This is an unacceptable limitation for a general
design methodology.

This problem can be avoided by adding an extra con-
trollability input CT that inhibits the effects of the clock
gating, as shown in Figure 5. When such input is set

594

at logic 1, the combinational part of the FSM can be
tested without worrying about the effects of the activa-
tion function. When the activation function becomes
active, the clock is not stopped if CT = 1, and the
flip-flops of the FSM sample the input and state value.
Thus, the allowed input set I is exactly the same as the
one of the original FSM. The availability of the com-
plete I guarantees that no untestable faults exist in the
combinationallogic (under the assumption of full testa-
bility for the original FSM). If the activation function
is observable (through the observability output OB), we
can also guarantee the full testability of f,, as discussed
in the previous section.

The insertion of an additional controllability input
has two advantages. First, since we do not need to
modify the combinational logic of the FSM in the
gated-clock version, the test set developed for the orig-
inal FSM can be used to test the gated-clock FSM as
well. More test vectors can just be appended to fully
test the activation function. Second, while testing the
gated-clock FSM without added controllability may be
substantially harder than testing the original FSM, the
test generation process in the added controllability case
is generally very efficient. The reason for this differ-
ence is that a large amount of time is spent in the first
case to prove the untestability of redundant fault, and
to subsequently remove the redundant wires, while the
FSM with added controllability does not have redun-
dant faults (if the original FSM is fully testable).

The price paid when adding controllability is obvi-
ously in increased number of inputs and in the need to
access the controllability input during testing. Notice
also that during testing the power dissipated by the
gated-clock FSM is larger than the power consumed
in the original FSM, because the clock is not gated
and the activation function dissipates additional power.
Another disadvantage is that one more gate is on the
critical path in the activation function.

In summary, adding controllability to the gated-clock
FSM (with increased observability) makes the test gen-
eration task not harder than in the original FSM, while
still allowing substantial power savings during normal
operation. The performance penalty for this implemen-
tation style is quite small, while the main disadvantage
is in the increased number of inputs and outputs (one
additional input and output).

4 Experimental results

The methodology for the design of gated-clock FSMs
described in section 2 has been applied to the MCNC
logic synthesis sequential benchmarks. We report here
the results on a subset of the benchmark suite that rep-

benchmark | test. no | CPU
bbtas 41 0.6

bbara 178 10.6
bbsse 177 72
lion9 104 3.4
keyb 281 257
styr 146 168
s420 218 108
test 157 7.6

scf 934 693

Table 1: Test length and CPU time for the original
(non-gated) FSMs.

resents different kinds of FSMs. Benchmarks such as
bbsse and bbara are reactive FSMs with many self-
loops and activation functions with large ON-set. We
included larger FSMs such as scf and styr to give a
flavor of the problems encountered in the test genera-
tion process when the circuit complexity increases.

The combinational logic of the FSM and the activa-
tion function of each benchmark have been mapped
on a CMOS library. We have then automatically gen-
erated the multiplexed model of the gated-clock FSM
needed in the ATPG step.

We first generated complete test sets for the FSMs im-
plementations without gated clock using the sequential
ATPG algorithms [15] included in SIS [12]. The test
vectors have been generated assuming the availability
of a reset state for each flip-flop, as required by the
ATPG algorithms provided by SIS. The length of the
test set and the CPU time in seconds (on a SUN-station
IPX) are reported in Table 4. The redundancy removal
algorithm provided by SIS was applied after test gen-
eration to obtain full testability (100% fault coverage).

We have then generated the test vectors for the gated-
clock FSMs. The multiplexed models used for test gen-
eration in the case of added observability have multi-
plexers whose operation is functionally equivalent to
the gating of clock. Notice that these multiplexer are
not present in the real circuit, and must not be ac-
counted for in the fault coverage of the synchronous
network. Even if the multiplexers are not used in
the actual circuits, the current implementation of SIS
ATPG does not allow to exclude faults from the initial
fault list.

The last three columns of Table 4 show the achieved
results. First, the computation time needed to gen-
erate the test sets is substantially increased, because
of the presence of untestable faults in the combina-
tional logic of the FSMs. The fault coverage, evaluated

595

without taking into account the faults in the multiplex-
ers, is not 100%, showing that in all cases the activa-
tion function actually creates redundancies. If we have
the freedom to modify the combinational logic of the
FSM, we can employ the redundancy elimination pro-
cedure provided by SIS to obtain fully testable circuits.
The performance improvement obtained by eliminat-
ing redundancy is strongly dependent on the number
of untestable faults. The high fault coverage obtained
(because don’t cares are partially exploited during syn-
thesis) shows that only a small number of redundancies
can be eliminated, and the performance improvement
is generally a second-order effect.

The second and third columns of Table 4 show the size
of the test sets and the test generation times for the
gated-clock FSMs with increased controllability and
observability. These FSMs are fully testable by con-
struction, because they are generated starting from
fully testable implementations without clock-gating.
The number of test vectors required to fully test these
FSMs is larger than the test length requited for the
original implementation. This increase is caused by
the need of generating tests for the activation function
logic. The computation times show clearly that the
test generation process for the gated-clock FSMs with
increased controllability and observability is not harder
than in the original implementation.

5 Conclusions

This work introduced two transformations that in-
crease the testability of gated-clock circuits. The first
transformation, namely increased observabilily, allows
the synthesis of fully testable gated-clock circuits with
improved performance. An observation point is added
to make the activation function logic fully testable. A
redundancy removal step follows, whose purpose is to
eliminate untestable faults in the combinational logic of
the FSM. The test generation and redundancy removal
steps for increased observability circuits are computa-
tionally expensive and should be applied in aggressive
implementations.

The second transformation, namely increased control-
lability and observability, guarantees the full testability
of the gated-clock circuit if the initial implementation
was fully testable. This transformation is slightly more
expensive than the previous one but does not require
any modification of the logic in the gated-clock sub-
system. Moreover, the test generation process is does
not require substantially higher computational effort
compared to the original implementation.

These transformations allow the designer to safely
apply power-saving techniques based on clock-gating

Benchmark | Cells no. Obs. and Contr. Observability
Tests no. | CPU (s) | Tests no. | CPU (s) || Coverage
bbtas 28 28 0.6 49 1.2 08.1
bbara 63 109 2.9 187 10.8 99.0
bbsse 129 187 70 241 815 98.7
lion9 41 102 1.9 133 2.3 98.3
keyb 127 302 39 315 403 100
styr 491 818 1228 882 34128 98.0
5420 90 288 50 310 1213 98.7
test 11 111 3.4 197 8.4 99.2
scf 491 1020 514 1125 4008 98.2

Table 2: Comparison between the testability characteristics of the gated clock version with increased con-
trollability and observability vs. the version with increased observability only. The first column shows the
circuit size in number of library cells.

without renouncing to the high testability requirements
typical of industrial designs.

References

(1]

2

(3]

[4]

(6]

[7]

A. Chandrakasan Low-Power digital CMOS de-
sign. Kluwer, 1995.

T. Meng, B. Gordon, et al., “Portable Video-on-
Demand in wireless Communication,” Proceedings
of the IEEE, no. 4, pp. 659-680, April 1995.

S. Devadas and S. Malik, “A survey of optimiza-
tion techniques targeting Low Power VLSI circuit-
s”,in DAC, Proceedings of the Design Automation
Conference, pp. 242-247, June 1995.

D. Singh, J.M. Rabaey, et al., “Power conscious
CAD Tools and methodologies: a perspective,”
Proceedings of the IEEE, no. 4, pp. 570-594, April
1995.

M. Alidina, J. Monteiro, et al., “Precomputation-
based sequential logic optimization for low power,”
IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 2, no. 4, pp. 426-436,
Jan. 1995.

V. Tiwari, S. Malik and P. Ashar, “Guarded eval-
uation: pushing power management to logic syn-
thesis/design,” International Symposium on Low
Power Design, pp. 221-226, April 1995.

L. Benini, P. Siegel and G. De Micheli, “Auto-
matic synthesis of gated clocks for power reduc-
tion in sequential circuits” IEEFE Destgn and Test
of Computers, pp. 3240, Dic. 1994.

596

(8]

(9

[10]

[11]

(12]

(13]

(14]

(15]

(16]

L. Benini and G. De Micheli, “Transformation and
synthesis of FSMs for low power gated clock im-

plementation ” International Symposium on Low
Power Design, pp. 21-26, April 1995.

N. Yeung, et al., “The design of a 55SPECin92
RISC processor under 2W,” in IEEE International
Solid-State Circuits Conference, pp. 206—-207, Feb.
1994.

B. Suessmith and G. Paap III, “PowerPC 603
microprocessor power management,” Communica-
tions of the ACM, no. 6, pp. 43—46, June 1994.

J. Schutz, “A 3.3V 0.6um BiCMOS superscalar
microprocessor,” in I[EEFE International Solid-
State Circuits Conference, pp. 202-203, Feb. 1994.

E. Sentovich, et al., “Sequential circuit design us-
ing synthesis and optimization,” in /CCD, Pro-
ceedings of the International Conference on Com-
puter Design, pp. 328-333, Oct. 1992.

G. De Micheli. Synthesis and optimization of dig-
ttal circuits. McGraw-Hill, 1994.

S. Devadas, A. Ghosh and K. Keuzer, Logic Syn-
thesis. McGraw-Hill, 1994, '

S. Devadas and K. Keutzer, “A unified approach
to the synthesis of fully testable sequential ma-
chines,” IEEE Transactions on Computer-Aided
Design, vol. 10, no. 4, pp. 39-51, Jan. 1991.

H. Cho, G. Hachtel and F. Somenzi, “Redundancy
Identification/Removal and Test Generation for
Sequential Circuits Using Implicit State Enumera-
tion,” IEEE Transactions on Computer-Aided De-
sign, vol. 12, no. 7, pp. 935-45, July 1993.

