258

IEEE JOURNAL OF SOLID-STATE CIRCUITS. VOL. 30. NO. 3. MARCH 1995

State Assignment for Low Power Dissipation

Luca Benini, Student Member, IEEE, and Giovanni De Micheli, Fellow, IEEE

Abstract— We address the problem of reducing the power
dissipated by synchronous sequential circuits. We target the
reduction of the average switching activity of the input and output
state variables by minimizing the number of bit changes during
state transitions. Using a probabilistic description of the finite
state machines, we propose a state assignment algorithm that
minimizes the Boolean distance between the codes of the states
with high transition probability. We formulate a general theoretic
framework for the solution of the state assignment problem,
and propose different algorithms trading off computational effort
for quality. We then generalize our model to take into account
the estimated area of a multilevel implementation during state
assignment, in order to obtain final circuits where the total
power dissipation is minimized. A heuristic algorithm has been
implemented and applied to standard benchmarks, resulting in a
16% average reduction in switching activity.

1. INTRODUCTION

S the minimum device size shrinks, traditional limiting

factors like area and speed benefit from the increased
level of integration, but power dissipation inevitably increases
as more switching devices are operating on the same active
chip area. Designers of circuits for portable devices, and
designers of high-speed processors must cope with excessive
power dissipation, intensifying the need for synthesis tools for
low-power circuits.

Recent work has generated both general guidelines and
synthesis tools for low-power circuit design [1], [2], [7], [9],
[30]. Both technology-independent and technology-dependent
logic transformations applied to the combinational part of se-
quential circuits have been shown to be effective in optimizing
circuits for low power. Optimization techniques exploiting
sequential properties have been shown to produce circuits with
reduced power dissipation, confirming that optimization of
combinatorial logic is only one face of this complex problem
[4]. The direct synthesis of sequential circuits for low power
(3], [12], [14] is an area of exploration which promises more
global power savings and is the subject of this paper.

Sythesis systems typically take an HDL model of a design,
written in a language such as VHDL or Verilog, as the initial
input. The synthesis toolset then transforms this description
into an implementation which has been optimized for some
cost metric assigned by the designer. This synthesis path is
usually composed of several independent steps that can be
summarized as follows.

* High-level synthesis: the HDL model is optimized and

compiled into one or more (possibly concurrent) finite

Manuscript received July 12, 1994; revised October 26, 1994. This work
was funded by NFS ARPA under Contract 9115432,

L. Benini and G. De Micheli are with the Center for Integrated Systems,
Stanford University, Stanford, CA 94305 USA.

IEEE Log Number 9408740.

INPUT OUTPUT
— COMBINATONAL f—
NETWORK
s
T
A
T
ak E
—_—]

Fig. 1. General sequential circuit structure.
state machines (FSM’s), expressed as tables or as state-
transition graphs.

* State assignment: the symbolic states of the FSM’s are en-
coded using a specific binary encoding, and a description
of the circuit in terms of Boolean functions is produced.

* Logic synthesis: optimizations are applied to the Boolean
functions to obtain a decomposition of the Boolean de-
scription that is minimal with respect to the original cost
metric.

* Library binding: the reduced Boolean equations resulting
from logic synthesis are mapped to elements from a
standard gate library and a final gate-level description
is produced.

Our work targets the second step of this synthesis procedure,
namely, state assignment. The FSM generated by high-level
synthesis is typically in the form of a state transition graph
(STG), where each state is represented symbolically. Our
algorithms choose the binary codes to assign to the symbolic
states such that switching activity on the input and output
state variables (Fig. 1) is reduced.

At the STG level of abstraction nothing has been decided
about the structure of the combinatorial logic implementing
the next state and output functions. Thus, the state assignment
algorithm can exploit degrees of freedom that are lost at
successive phases and produce an encoded state transition table
that is an effective starting point for further power optimiza-
tions of the combinatorial logic. However, because nothing is
known about power dissipation in the combinational logic at
that stage, reduced power dissipation on the state lines may
later lead to increased dissipation within the remaining logic.
Cognizant of that, our algorithms target a state assignment
that minimizes the switching activity between state transitions
while taking into account the estimated area of the next state
and output logic, resulting in an implementation with lower
switching activity and minimal area, and thus, lower power.

0018-9200/95$04.00 © 1995 1EEE

BENINI AND DE MICHELI: STATE ASSIGNMENT FOR LOW POWER DISSIPATION 259

Earlier approaches to state assignment have targeted area
and performance both for implementations composed of two-
level and multi-level logic ([10], [18], and [24] are good
surveys of previous work). To develop state assignment algo-
rithms targeting low power dissipation, new cost functions are
needed to drive the search for optimal assignments. Moreover,
because the quality of results is strongly influenced by the cost
function, a complex interdependence exists between the cost
estimator and the solution strategy.

The main theoretical contributions of our work are in
the formulation of a new problem that links a probabilistic
description of a finite state machine to its power dissipation
and in the study of a new class of algorithms for the search of
optimal and suboptimal solutions to the problem of finding a
state assignment that gives low power dissipation. Minimizing
the switching activity on the state lines in the FSM by itself
does not guarantee reduced total power dissipation, because
the power consumed in the combinatorial part is not accounted
for. We discuss this problem and propose a more accurate cost
metric that also factors in the complexity of the combinatorial
logic.

We implemented the algorithms proposed and ran them
on benchmark circuitsobtaining a 34% average reduction in
switching activity of the state variables, a 16% average reduc-
tion of the total switching activity of the implemented circuit
with a corresponding 14% average area increase. Although
our solution is heuristic, and does not guarantee the minimum
power dissipation, these results demonstrate that our approach
leads to a reduction in the power dissipated in the complete
circuit, not just in the part used for the computation and the
storage of the state information. Moreover, the proposed algo-
rithms can be used to explore the complex tradeoff between
area and power dissipation.

The rest of this paper is organized as follows. In Section
I we review the basic model for power estimation and give
some theoretical results on the effectiveness of a probabilistic
approach to describing the switching behavior of FSM’s
defined by signal transition graphs. In Section III we formalize
the state assignment problem targeting power dissipation and
present an exact algorithm for its solution. We implemented
heuristics based on the exact algorithm, which we describe
in Section IV, along with their limitations. In Section V we
present some experimental results on the application of the
previously described algorithms.

II. PROBABILISTIC MODELS

For CMOS circuits, average power dissipation is propor-
tional to the average switching activity. A good approximation
of the average switching activity is the switching probability
(or transition probability). Given the input switching proba-
bility it is possible to calculate the probability of the state
transitions in a FSM. This information can be used to find an
encoding that minimizes the switching probability of the state
variables. In this section we will discuss the details of the
concepts above outlined, and we will give some background
material needed to understand the algorithms that follow.

A. A Model for Power Dissipation

At the gate level of abstraction, a circuit’s power consump-
tion is proportional to its switching activity [11]. We define
the average switching activity at the output of a gate ¢ in a
time period T as the average number of signal transitions:
ni(T) = mNyrans/T. We define the transition probability
(switching probability) as p; = limr_ n;(T"), namely, the
limit value of the switching activity as the observation time
goes to infinity [5]. To find the average total power dissipated,
we consider the average power dissipated by each gate during
one clock cycle (or an arbitrarily defined T,ycie = At) and we
sum over all gates in the network.

g
Pior = %Vfd/Tcyclezoipi (1
i=1
Where V4 is the supply voltage, C; is the capacitive load at
the output of gate i, and ny is the number of gates in the
network.
Power consumption at the gate level can be reduced by
modifying one or moreof the parameters in (1).

* Voltage supply or frequency reduction (1/7yc). These
parameters are decided by circuit designers and we con-
sider them as constants. It should be noted, however,
that complex trade-offs are involved in the choice of the
optimal values for these quantities. In fact, low-energy
computation is a more realistic target, because we do not
want to simply trade-off performance with power.

» Reduction of the term .2, C;p;. Notice that keeping
this term small is particularly useful when low-energy
computation is the target, because no trade-off with speed
is involved in this case. This kind of reduction can be
obtained in two ways:

a) Resynthesize the combinatorial logic. For example,
we can reduce the number of nodes with high
switching activity during the library binding step
or we can perform ad-hoc technology-independent
logic optimizations during the logic synthesis step
[71, [9], [30]. Combinational resynthesis can reduce
power by reducing number of nodes in the network
n, and/or the load capacitance of each gate C;.

b) Resynthesize the entire sequential circuit, by deter-
mining both a register configuration and a combina-
tional structure that minimize Pjo;.

We address synthesis of the sequential circuit, which is
a complex problem because the description we start from
is at a high level of abstraction and no information on the
structure of the unoptimized network is available. We therefore
concentrate on the state assignment problem whose solution
determines the register configuration. Note again, that the state
assignment strongly affects the size and the structure of the
FSM’s combinational component.

B. Estimation of Transition Probabilities

Given the FSM description and the knowledge of the input
probabilities we want to compute the transition probabilities
for the STG. The input probability distributions can be ob-

260

Fig. 2. The STG of an FSM with four states and two input signals. The “-"
symbol represents (don’t care) entry.

tained by simulating the FSM at a higher level of abstraction
in the context of its environment, or by direct knowledge from
the designer. Transition probability information for each edge
in the STG can then be determined by modeling the STG as
a Markov chain, as we show in this subsection.

Note that transition probabilities are strongly dependent
upon the initial state. For example, if an FSM has a transition
from state s; to state s; for all possible input configurations,
we may think that this transition will happen with very high
probability during the operation of the machine. This may
not be the case: if state s; is unreachable, the machine will
never perform the transition, because it will never be in state
s;. Similarly, if the probability of being in state s; is very
low, a transition from state s; to state s; is very unlikely.
Our state assignment algorithm targets the reduction of the
switching activity by assigning similar codes to states with
very high transition probability. We must therefore compute
the correct value of the transition probabilities before applying
the optimization procedure.

An FSM with n, states can be described by an STG defined
by a vertex(state) set S = {s1,-, s, } and a related directed
edge set representing the set of transitions from one state to
another.

Example 1: Fig. 2 shows the STG for a simple FSM. The
edge labelling represents the input configurations that cause a
transition from the state at the tail of the edge to the state at
the head of the edge. For example, in state S;, an input of
either 00, 01, or 10 will cause a the FSM to transition from
51 to Sz, whereas an input of 11 results in the FSM remaining
in S1. We use this STG throughout the paper as an example
for the application of our algorithms.

We now want to use information about probabilities to
compute a static probabilistic model of the FSM which will
give the transition probabilities for the FSM. We do this by
interpreting the STG as a Markov chain. A Markov chain
is a representation of a finite state Markov process [23], a
stochastic model where the probability distribution at any time
depends only on the present state and not on how the process
arrived in that state. The Markov chain model for the STG can
be described by a directed graph with a structure isomorphic
to the STG and with weighted edges. For a transition from
state s; to state s;, the weight p; ; on the corresponding edge

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 30, NO. 3, MARCH 1995

Fig. 3. Conditional transition probabilities assuming equiprobable and inde-
pendent input signals.

represents the conditional probability of the transition (i.e., the
probability of a transition to state s; given that the machine
was in state s;). Symbolically this can be expressed as:

pi, j = Prob(Next = s; | Present = s;). 2)

Note that edges with zero conditional probability are never
drawn in the graph representation of the Markov chain.

The set of values for all conditional probabilities is called
the conditional probability distribution. The conditional prob-
ability distribution is easily found from the input probability
distribution and by observing for which input configurations
the FSM performs its state transitions.

Example 2: In Fig. 3, the conditional transtion probabilities
for our example STG are given assuming (for simplicity)
uncorrelated and equiprobable inputs. Calculation of these
values is straightforward. For example, p; 2 = P(01) +
P(00) + P(10) = 2, where P(X) represents the probability
of the input taking value X.

Although conditional transition probabilities can be used as
a rough approximation to the transition probabilities [3], we
need to know the probability of a transition taking the present
state into account. These probabilities are called total transition
probabilities, P; ;, and can be calculated [23] from the state
probabilities, where the state probability, P;, represents the
probability that the machine is in a given state 7. Namely,

P j=pi ;P (3)

Equation (3) implies that, to have high total transition
probability both the state probability and the conditional
transition probability must be high. Using only the conditional
transition probability can lead to incorrect estimates.

The next step is to show that it is possible to compute the
state probabilities and, more importantly, to show that these
values are not time-dependent. Intuitively, this implies that as
the observation time increases, the probability that the machine
is in each of its states converges to a constant (stationary) set of
real numbers. In other words, we must show that it is possible
to compute a steady state (or stationary) probability vector
whose elements are the stationary state probabilities.

It is quite easy to find STG’s for which the stationary state
probabilities do not exist, because, for example, their value

BENINI AND DE MICHELIL: STATE ASSIGNMENT FOR LOW POWER DISSIPATION 261

is oscillatory. The general theory explaining the asymptotic
behavior of the state probabilities is too involved to be
described here [23], so we want to find a large class of
STG’s whose corresponding Markov chains have a steady state
probability vector.

A fundamental theorem in Markov chain theory states that:

Theorem 1: For an irreducible, aperiodic Markov chain,
with all states recurrent nonnull, the steady state probability
vector exists and it is unique [23].

An irreducible Markov chain with all the states recurrent
nonnull is a chain where every state can be reached from any
other state, and the greatest common divisor of the length of
the possible closed paths from every state is one.

We define the reset state, sqg, as a state such that there is
a transtion (with nonzero probability) to it from every state
in the STG. A reduced STG is defined as an STG where all
unreachable states (from the reset state) in the original STG
have been eliminated. With these definitions, we can state
the following theorem (see the Appendix for the proof, if
interested):

Theorem 2: The Markov chain corresponding to a reduced
STG with reset state sqg and known conditional transition
probabilities is irreducible, aperiodic, with all states recurrent
non null.

In other words, we can find the transition probabilities for
an STG that has a reset state, and this is the case for a large
number of practical applications. Note that this theorem is
a only sufficient condition; that is, there are STG’s without
a reset state for which we can successfully compute the
transition probabilities.

Let P be the conditional transition probability matrix whose
entries p; ; are the conditional transition probabilities, and v
the steady state probability vector whose components are the
state probabilities F;. Then we can compute the steady state
probabilities by solving the system of (n; + 1) equations:

vip=vT

)

Y P=1)

i=1

The problem of finding the steady state probability vector
is thus reduced to finding the left eigenvector of the transition
matrix corresponding to the unit eigenvalue, and normalizing
it in order to make the sum of its elements equal to unity [23].

Example 3: The stationary state probabilities calculated
solving the system above are shown in Fig. 4 besides the
nodes in the STG. Recall that the matrix P is known, and
contains the conditional transition probabilities (see Example
2). The figure shows the total transition probabilities (the
products p;, ;P;) on the edges. Note that the probabilities for
self-loops are not shown only because we are not interested
in edges that do not imply any state transition. Note also that
although our STG does not have a reset state, its stationary
probability vector can be calculated.

C. Transformation of the STG

Once the total transition probabilities have been calculated,
we can transform the original STG into a weighted graph

Fig. 4. State probabilities and total transition probabilities.

which preserves only the relevant information needed for state
assignment. For each pair of connected states, we only need
to know the probability of a transtion from one state to the
other and vice-versa. Therefore, all input related information
and self loops can be eliminated.

The transformations of the STG can be summarized as
follows:

 Eliminate all unreachable states, if any.

« Calculate the state stationary probability vector and, from
that, calculate the total transition probabilities.

* Remove any self-loops and label each remaining edge
with a weight representing its total transition probability
(the weights are normalized to integers for simplicity).

¢ Collapse all multiple directed edges between two states
into a single undirected edge with weight w’ ; equal to

the sum of the directed edges probabilitics. Note that this

step can be performed only if the weights are based on
total transition probabilities.

The STG is thus transformed into a weighted undirected
graph where the weights on the edges are proportional to
the total probability of a transition between the two states
connected by the edge. This will be the starting point for the
state assignment algorithms.

Example 4: The transformation of the STG is illustrated in
Fig. 5. Note that an edge with high conditional probability
(like s; + S3) can have a weight (proportional to the total
transition probability) equal or even smaller than an edge with
small conditional probability (like s4 < s2).

As a concluding remark for this section, we observe that
the calculation of the total transition probability requires
solving a system of equations of size proportional to the
number of states. This can become a computational problem
for large systems whose state graph is extracted from an
existing synchronous network, because the number of states
is exponential in the number of storage elements used. In
this case symbolic techniques described in [15] can be used,
allowing calculation of the steady state probabilities for very
large sequential circuits.

III. STATE ASSIGNMENT FOR LOW POWER

The main idea in our approach to this problem is to find a
state assignment that minimizes the number of state variables
that change their value when the FSM moves between two

262

S1 sS4

Fig. 5. Weighted graph used as a starting point for the state assignment. The
weights on the edges are proportional to the total state transition probabilities.

adjacent states. Ideally, if we can guarantee that each state
transition results in a single state variable change, we will
have optimally reduced the switching activity associated with
the registers in the given STG. We now give some examples
of possible specific solutions for restricted classes of STG’s,
then we discuss the general problem and its exact solution.

Given an STG representing a counter, a state assignment
that gives the minimum switching activity in the circuit is
a Gray encoding (an encoding used for binary numbers that
guarantees that two successive numbers always have adjacent
codes [25]) of the states. Gray encoding is a solution only for
this particular form of STG, for which the problem is quite
trivial (note that in a counter inputs are irrelevant, and all
transitions are equiprobable).

Given a STG of arbitrary structure, good performance in
terms of reduced switching activity results from using a One-
Hot encoding [24] of the states. One-hot encoding guarantees
that exactly two state variables will switch for every state
transition, thus achieves good results with no algorithmic
effort. However, the number of state variables needed is equal
to the number of states. It has been shown that shorter codes
correlate to smaller area for both two-level [19] and multi-level
[13] implementations and larger areas often lead to higher
power dissipation. In addition, with One-hot encoding, two
state variables switch for every state transition, while other
codes can lead to a change of a single state variable for most
transitions.

For a general solution, we need to find a method that does
not assume a particular STG structure and is not heavily
constrained on the number of state variables to use. We will
use the probabilistic model developed in the previous section
to obtain state assignments that minimize the average number
of signal transitions on the state lines for a general STG.

A. Problem Formulation and Exact Algorithm

Our algorithm must be valid for an arbitrary STG, and must
avoid constraints on the number of state variables used. The
algorithm should be able to find the number of state variables
that gives the minimum number of transitions and is close to
the minimum [log, n,], to keep the size of the combinational
part small.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 30, NO. 3, MARCH 1995

We can describe a state encoding as a Boolean matrix
with rows corresponding to state codes and columns
corresponding to state variables. Our problem of finding a
state encoding that results in minimum switching activity
can then be formalized as:

Find a set of Boolean row vectors (e} ---ef**"), i =
1, 2,--,n, that are solutions to the integer linear program-
ming (ILP) problem:

Mear

Min(Z wﬁj Zeﬁ & e}) such that (6)
=1

k=1

MNyar
ei @eé >1 Vs, s,
=1

si # 5 %

where @ represents the X OR operation, w,’f ; 1s the weight on
the edge between states s;, s;, and nq, is the number of state
variables used. The cost function expresses the desire to assign
adjacent codes to states with high-probability transitions. The
inequalities (7) express the fact that no two states can be
allowed to have the same code.

Example 5: If we decide to use a minimum length encoding
for our example STG, two state variables are needed (log, 4 =
2). The encoding matrix has therefore 4 rows and 2 columns.
The constraint equations are:

el®es+eldel >1
el del+eldel>1

esPelt+elddel>1
while the cost function to minimize is

Cost = 6(el @ el +e2 Del) + 9(es el +e2 D ed)
+9(er B eg +e3 B ef)
+27(el el +e2@e?).

The problem involves 2+4 = 8 variables and 3+2+1 =6
equations.

Note that the number of state variables used, nyqr, is
an additional degree of freedom. In theory, the ILP should
be solved more than once to find the n,,~ that gives the
minimum cost. Because we know that the optimum lies
between {log, ns] and n,, we can use a binary search on nyq,
to find the minimum. However, in practice area considerations
(to be discussed later) force n,,4, to be close to the minimum,
keeping the number of iterations on n,q, small.

For small FSM’s, the exact solution of the ILP problem can
be found by using either a traditional approach [28] or BDD
based techniques [29]. For larger STGs, the exact ILP solution
may be unattainable, being the problem NP-complete, since
the number of inequalities is O(n2), and the solution space
to be explored is O(n42":). However, the exact formulation
is still interesting because it gives insights into more practical
heuristic solutions.

Two more observations are of interest. First, for several
problems a solution with distance one between all connected
states is impossible; the presence of an odd cycle in the
graph is an example of constraint not satisfiable with any

BENINI AND DE MICHELI: STATE ASSIGNMENT FOR LOW POWER DISSIPATION 263

distance-one encoding. However, we do not need a distance-
one encoding to reach the minimum cost. Second, although the
exact solution of the problem always yields the exact minimum
of the cost function, it does not guarantee that the power
dissipation of the synthesized circuit is minimum, because
our cost function does not model the switching activity in
the combinational part.

IV. ALGORITHMS FOR STATE ENCODING

The high computational complexity of the general state
assignment problem has motivated the use of many heuristic
approaches to its solution [10], [13], [21], [24]. We propose a
column-based approach [17], [20] that takes a single state vari-
able (one column of the encoding matrix) and tries to assign
its value for each state in the graph, such that the switching
activity will be minimal for the complete assignment. This is
carried out iteratively for each state variable until the codes
have been completely specified. The algorithm tries to give
states that are linked by high-weight edges the same value
for most state variables, while ensuring that each state has a
unique code.

We present a semi-exact algorithm for solving the state-
encoding problem in the manner described above. The algo-
rithm performs well but is too complex to be used on large
examples. We therefore derive from it a heuristic which we
have used to get good results on many benchmark examples.

A. Semi-Exact Algorithm

Our semi-exact algorithm relies on the notion of indistin-
guishability classes. Two states having the same partial code
are said to belong to the same indistinguishability class. If
the maximum number of state variables that we want to use
iS nyqr and we are assigning bit codes for the [-th variable,
the maximum number of indistinguishable partial state codes
after the assignment variable, the maximum number of indis-
tinguishable partial state codes after the assignment must be
less than 2"ve~~!), otherwise we cannot create unique codes
for this set of states with the remaining unassigned variables.

A solution to this problem can be once again formulated
as an ILP. Let ¢! be the [-th variable 1 < [< ny,, of the
state array. We call code bit, eé, its value (1 or 0) for the
state s;. Moreover, we call indistinguishability classes, Ck, 1,
k=1, ,ncass the groups of states with equal partial codes
after the assignment of the preceding [— 1 variables:

Medges

Min Z wﬁj(eﬁ ® elj) such that ¥)
h=1

zs ei S 2"““"‘—‘1
{ 1€k YOy, 1. ©)

1 n -l
ZSlGCk,l €; S 2

This formalism can be clarified through an example.

Example 6: Consider the weighted graph in Fig. 5. We
select n,4 = 2. Initially, no state variable has been assigned,
so all states belong to the same indistinguishability class Cy .
We want to assign the codes for the first state variable (the first
column in the encoding matrix). Since we have four states, the

St|[x |x St |0 x
S2fix Ix —_ 0 x
S3|x ix S3 i1 x
S4|{x {x 1 x

Fig. 6. (1.1 is the first indistinguishability class when no codes have been
assigned. Assigning the first variable, states s3 and s4 are given the same bit
node. They form the class C'; 2. The other two states form the class C2.2.

Vi V.

27
x 00 2
$1 0
s2
S3
sS4

(@) (b)

Fig. 7. (a) New edge weights after first variable assignment. (b) Final code
assignment.

10

«=00

1
1
o

constraint inequalities in (9) require that we assign 0 to a pair
of states and 1 to the other pair. One assignment that minimizes
(8)is e} = e} = 1 and e} = e3 = 0, as depicted in Fig. 6.

This approach reduces the size of the problem that must
be solved at each step. However, because the column-based
ILP solution does not consider the impact that the choice of
one state variable has on the other state bits, the solution not
globally optimal.

To improve the final outcome, we can bias the decision
at each step by the results of preceding assignments, by re-
computing the weights in the cost function after each variable
(column assignment) using the following formula:

h h (di,; +1);

Wy G = Wi (10

where d; ; is the Hamming (Boolean) distance! between the
partially assigned codes for states s; and s;.

Example 7: In Fig. 7(a) the new weights after assignment
of the first variable are shown. The final solution is found by
assigning the second variable in a way that gives the minimum
cost and distinguishes all states. This is shown in Fig. 7(b).

The column based approach produces a simpler set of ILP
problems than the global ILP problem used in the exact

I The Hamming distance, d_p, between two Boolean vectors a. b € B™

is defined to be the number of bits in the same position with opposite phase:
dg p = Z?:l a; = b;.

264

method. Therefore, it can be successfully applied to medium-
sized FSM’s. Nevertheless, for large FSM’s the number of
states can be high enough to make even the semi-exact solution
impractical. For this reason, we need an algorithm whose
worst-case complexity is such that a good solution can be
found quickly even for large and complex FSM's.

B. Heuristic Algorithm

In this section we propose a sub-optimal polynomial time
state assignment algorithm that is applicable to very large
FSM’s. We want to eliminate the exponential complexity still
remaining in the column assignment step of the semi-exact
solution. Therefore, we use a much simpler heuristic that
considers pairs of states and tries to assign the same state
variable value to states with high transition probability. We
first describe the structure of the proposed algorithm, then we
discuss its performance and rationale. This is the pseudocode
of the algorithm:

assign($){
sort edges by weight in decreasing order;
for each edge {si, s;} {
/* consider pairs of states
with high transition probability %/
if(si and s; not assigned) {
if(no Class violations) {
/* if the number of states
with the same bit code is not tco
high */
z = select-bit(s;, s;);
/* chooses a code for the pair
of states %/
ei =T e; = x;
/* the same bit code is given to both
the states x/

else {
T = select-bit(s;, s;)
e; =1 e; = x';

/* different bit codes are given to the
two states x/

}
else if(s:; or s; not assigned) {
sh = unassigned(s;, s;);
/* state whose bit code is unassigned */
sy = assigned(s, s;)
if(no Class violations) {
z = select~bit(sy);
/* choose a bit code for the unassigned
state */
er = z;
/* choose a bit code for the unassigned
state x/

else
en = €y;
/* only one choice available
because of the class constraints x/

The algorithm is based on a greedy choice of the constraint
to satisfy; if it is impossible to assign the same bit code to two

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 30, NO. 3, MARCH 1995

states because an indistinguishability class becomes too big,
a different code is assigned. The function select—bit makes a
choice between two possible assignments based on the already
assigned neighbor states. Given a pair of states (or a single
state), select-bit calculates the total edge violation caused by
the possible assignments (0 or 1) of the current state variable
for the codes of the two states. The total edge violation for a bit
code is defined as the sum of weights on all edges connecting
one of the considered states with other states that have already
been assigned a different bit code. The selected bit code is
the one resulting in a smaller edge violation. At the end of
the outermost iteration, the value (bit code) of the [th state
variable (corresponding to a column of the encoding matrix)
has been assigned for all states.

Example 8: For our simple STG, the greedy algorithm
gives the same result as the semi-exact ILP based approach.
In this case both heuristics find an exact minimum for the cost
function:

Cost=6%14+9%2+27+1=>51

The minimality of the solution can easily be verified by
inspection; note that the solution is not unique.

The structure of the algorithm is very simple and its exe-
cution time is always small, in fact no backtrack mechanisms
are present and we do not iterate to improve a solution. The
complexity of the algorithm is O(n,nedges). The dependence
on the number of states, ng, is from the outermost iteration,
while the dependence from the number of edges, Nedges, is due
to the iteration needed in select-bit to compute the total edge
violation. One can envision cases where the greedy choice of
the constraints leads to suboptimal solutions, but, in general,
this heuristic gives good results.

In particular, notice that if our heuristic is run on a weighted
graph where all the edges have equal weight, and n,,, is
chosen equal to n,, the final encoding will be One-hot (all
the states will have a single one in their codes and only one
state will have the all-zero code), the reason being that we
force the largest indistinguishability class to be reduced of at
least one element at each step. One-hot encoding is therefore
a particular case of the class of codes that we can generate
with our algorithm.

We can now describe a general framework for the solution of
the stateencoding problem using the column based approach:

for 1=1 to nuar {

adjust Class constraints; (9)
assign(S);
adjust the edge weights; (10)

where the procedure assign is either the semi-exact ILP
formulation or the fast heuristic described above. Note that
the greedy heuristic can be easily improved and an entire new
class of algorithms can be generated. We could, for example,
employ local search techniques like genetic algorithms [14]
or simulated annealing to improve the results within the
framework we have provided.

If we are not constrained to use the minimum number
of state variables, as if often the case, we can try different

BENINI AND DE MICHELI: STATE ASSIGNMENT FOR LOW POWER DISSIPATION 265

solutions for multiple values of 7,,,. Although increasing the
number of state variables will likely violate fewer constraints,
the n,qr should still be kept close to the minimum to avoid an
explosion in complexity of the combinational part of the FSM.
Another approach is to use the greedy heuristic for fast
iteration over n,q, to find its optimal value. Once the best
Tyqer has been found, more powerful and expensive algorithms
can be applied in order to improve the optimality of the result.
For extremely large FSM’s the number of states could
become too large even for the simple polynomial heuristic.
In this case symbolic techniques similar to those presented
in [15] should be used. Notice however that in this case the
computational bottleneck is mainly in the calculation of the
probability vector that has a complexity super-linear in the
number of states and requires floating point computation.

C. Area-Related Cost Metrics

Up to this point, we have used the weighted sum of the
Boolean distances between state codes as the cost function.
This only minimizes the switching activity in the sequential
portion of the FSM (the latches). The power dissipation is
also dependent on the structure of the combinational part of
the final synthesized FSM. Neglecting area considerations in
the cost function may lead to non-minimal area implemen-
tations with total power dissipation close to that obtained
using traditional area-related state-assignment techniques. By
adding an area constraint to our cost metric, we can obtain
additional power savings from more efficiently implemented
combinational logic.

We therefore need to introduce additional constraints to
obtain an area-minimal realization of the combinational part of
the network. To tackle this problem, we incorporated metrics
for minimal area into our cost function, similar to those
proposed in MUSTANG {21] and later upon improved in JEDI
[16]. Two different metrics are provided: a fanout-oriented
metric, well suited for FSM’s with a small number of inputs
and a large number of outputs, and a fan-in-oriented metric
that performs better in the opposite case.

Details of how the metrics are computed are presented in
[21]. However two points are worth remarking on:

* The area constraints are expressed with edge weights
exactly like the power constraints, and we can allow spec-
ification of different trade-offs in terms of their relative
importance according to the overall design objectives. To
do that, a new parameter o < 1 has been introduced,
specifying the relative importance of power with respect
to area constraints. The edge weights on the graph are
then calculated using the following equation:

j— area ower
w;, ;= (1 - a)wi’; +aw£j

an

where the weights w[°"“" are calculated with the algo-

rithms presented earlier, while w{"?* are calculated using
the heuristics described in [21].

» Even if our edge weight calculation for area minimization
is similar to the one proposed in MUSTANG, our state
assignment algorithm is column based, and this allows to
dynamically adjust the weights, resulting in a potentially

more effective state assignment.

TABLE I
CoMPARISON BETWEEN POW3 AND JEDI AFTER MULTIPLE LEVEL
OPTIMIZATION: CIRCUIT NAME, NUMBER OF STATE VARIABLES, RATIO OF TOTAL
NUMBER OF TRANSITIONS, PERCENT REDUCTION IN TOTAL TRANSITIONS, RATIO
OF NUMBER OF STATE TRANSITIONS AND REDUCTION IN STATE TRANSITIONS

Circuit | nyar Area Total % Re- State % Re-
JEDI/POW3 | transitions |[duction{ transitions | duction
JEDI/POW3 JEDI/POW3
bbara 4 67/69 3630/3448 5 327/294 10
bbsse 4 126/131 8871/7970 11 1033/851 18
bbtas 3 25/25 2971/2690 10 610/456 26
dk14 4 120/114 7296/7083 3 1403/1104 22
dk17 5 76/77 5548/5463 2 1337/1081 19
dk512 5 67/87 7650/4825 38 2355/1538 35
donfile 5 102214 5231/4573 14 1743/1378 62
planet 6 697/665 | 27859/19771 30 3204/1240 62
planetl 6 708/697 |25735/16306) 38 3205/1278 61
51488 6 742/727 | 14073/13123 7 628/341 55

In conclusion, to obtain low power dissipation in the final
circuit, area must sometimes be taken into account. However,
our experiments have shown that using high values of « in
(11) typically give the best results, implying that there is a
strong correlation between the power-related cost metric and
the actual power dissipation.

V. IMPLEMENTATION AND RESULTS

We implemented the heuristic algorithm and applied it to
some benchmark circuits. We used a standard linear alge-
bra package [26] to find the total transtion probabilities in
the STG’s. We then applied our state assignment algorithm,
POW?3, on the weighted graph to obtain a state encoding. We
then used the SIS [27] standard script script.rugged to obtain a
multi-level implementation of the state-assigned FSM. We ran
an area-oriented state assignment program, JEDI [16], on the
same benchmarks, following the same procedure to generate
an implementation. The implementations were then simulated
with random patterns using the MERCURY [8], a delay-based
gate-level simulator, to measure the circuit activity, which
gives a good estimate of the power consumption of the real
circuits. The results are shown in Table I.

For all benchmarks, our state assignment algorithm pro-
duced circuits with less switching activity than those produced
by JEDL In most cases, the area penalty (linked to the number
of literals in the network) was small.

Fig. 8 compares area overhead with power reduction. If we
call M,.;» o the minimal area implementation obtained with
JEDI and M,,,;,, p the minimal power implementation obtained
with POW3, the plot shows:

» The area ratio Ay, ,/Am,... . (Literal increase).

» The total transition count ratio PTuy,,., ,/PTm

(Decrease in total transitions).

« The state transtion count ratio PSys,.; . .

crease in state transitions).

min P

/PSM (DC-

min P
It is clear that if the area overhead is large, the reduction
in power dissipation is less significant, thus showing that the
power dissipated in the combinatorial part plays an important
role in the total power balance.

Fig. 9 plots the average reduction in power dissipation as a
function of the number of state hits. The reader can observe

25 F T g

2F 4
15 F 4
o
&
1
L " . . . " N L . .
bbara bbsse bbtas dkl4 dk17 dkS12 donfile planet planet] s1488
Fig. 8. Increase in area of the low-power implementation and corresponding

decrease in transition count (for both the complete circuit and the state
variables only).

Average power reduction (%)

) 5)
N. of state variables

Fig. 9. Average power reduction as function of the number of state variables.

that our methods produce in the average better results for
larger circuits, for which low power consumption is even more
important.

All results use transition count as the estimate of power,
because we have not mapped the circuits using a technology
library. The algorithm described above is intended to be a
preprocessing step in a complete synthesis tool that includes a
low-power driven technology mapper, which we did not have.
At this regard, notice that the power in the combinational
part of the FSM can be divided in power dissipated in useful
transition and glitch power. The reduced switching activity of
the state lines can be used to decrease both these quantities, in
fact the intuition suggests that a network with low switching
activity on part of the inputs and outputs could be synthesized

1EEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 30, NO. 3, MARCH 1995

with also reduced internal switching activity. This is still an
open problem, but accurate power estimation techniques such
as those presented in [6] could allow combinational synthesis
and library binding tools to exploit the low-activity property
of our state assignments.

The last column of Table I shows the reduction in switching
activity on the state lines. Note that if power dissipation in
the memory elements is significantly higher than the power
dissipated in combinational gates, the power reduction of our
implementation becomes more significant. Also, because the
state lines have low activity, algorithms for optimization of the
combinational logic can exploit this information for further
power savings.

Two additional parameters help our algorithms in the search
for optimal resuits. First, we can control the number of state
variables used in the encoding. In all the examples we tried,
the minimum number of state variables gave the best result,
because increasing the number of state variables resulted in an
area overhead that overcame the (small) reduction in average
number of transitions on the state lines. Second, our algorithms
can accept different values of the parameter «, controlling the
relative importance of power and area in the cost function.
Our experiments with different values of a showed that setting
a > 0.7 produced the lowest power implementations. In fact,
in some cases, setting o = 1 resulted in a final implementation
that was as small as the implementations obtained by using
JEDI for state assignment. This confirms that the area-related
cost metrics used are not very accurate, and more work has
to be done in order to better estimate the area of multilevel
implementations.

VI. CONCLUSIONS

We have presented a general framework for state assignment
for low-power. Within that framework, we described a set of
state assignment algorithms targeting low power consumption,
varying in their exactness and computational complexity. We
implemented one of the algorithms described, and ran it on
standard benchmark circuits. We found that it compares fa-
vorably with existing state assignment tools targeting minimal
area implementation, achieving a 16% average reduction of
total switching activity, and a 34% average reduction of state
variable related switching activity. We also explored the trade-
offs between power-related and area-related cost metrics in
the context of our algorithm. Our resuits confirm that state
assignment has a large impact on power dissipation in the
overall circuit.

The framework we have developed is general enough to
open the way for exploration of new algorithms for the
optimization of the FSM’s combinational part that take into
account the reduced switching activity on the present state
inputs (latch outputs). It is our opinion that even larger power
savings can be attained if new cost metrics are employed that
relate more directly the power dissipated in the combinational
part with the codes assigned to the states. Moreover, the
state assignment step should be integrated with logic synthesis
and library binding algorithms that can optimally exploit the
reduced switching activity of the state variable inputs.

BENINI AND DE MICHELIL: STATE ASSIGNMENT FOR LOW POWER DISSIPATION 267

ACKNOWLEDGMENT

We especially would like to thank P. Siegel for her invalu-
able feedback and her suggestions.

PROOF OF THEOREM 2

First, we prove that the Markov chain is irreducible. Since
every state has a transition to the reset state sq, and every state
is reachable from sg, we can always reach a state from any
other state using a path through sg.

Second, we need to show that the chain is aperiodic. The
reset state is aperiodic, because it can be reached from every
other state and from itself in one step. It is possible to show
that, if a Markov chain is irreducible and one of its states is
aperiodic then all its states are aperiodic [23], therefore the
aperiodicity of the chain is proven.

Finally, all the states are recurrent non null because they
are reachable and from every other state including themselves
with probability greater than zero.

Notice that the assumptions on the STG can be relaxed.
We do not need to impose that all the states can be reached
from so if we assume that the initial state is always sq.
In this case the states that cannot be reached from sg are
unreachable, consequently their probability is zero. Again this
is a reasonable assumption because it means that the machine,
upon powerup, starts in a known reset state. For a more
general class of FSM’s, the notion of steady state probabilities
needs some modifications in order to cope with disconnected
components and periodic states. A complete treatment of this
topic is given in [12].

REFERENCES

[1] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-Power CMOS
digital design,” IEEE J. Solid-State Circuits, vol. 27, no. 4, pp. 473-484,
Apr. 1992.

D. Liu and C. Svensson, “Trading speed for low power by choice of

supply and threshold voltages,” IEEE J. Solid-State Circuits, vol. 28,

no. 1, pp. 10-17, Jan. 1993.

[3] K. Roy and S. Prasad, “Circuit activity based logic synthesis for low

power reliable operations,” IEEE Trans. VLSI Syst., vol. 1, no. 4, pp.

503-513, Dec. 1993.

J. Monteiro, S. Devadas, and A. Gosh, Retiming sequential circuits for

low power, in Proc. IEEE Int. Conf. Computer-Aided Design, Nov. 1993,

pp. 398-402.

[5] K. Kentzer, A. Ghosh, S. Devadas, and J. White, “Estimation of average
switching activity in combinational and sequential circuits, in Proc.
Design Automation Conf., June 1992, pp. 253-259.

[6] C. Y. Tsui, M. Pedram, and A. M. Despain, “Exact and approximate
methods for calculating signal and transition probabilities in FSMs,” in
Proc. Design Automation Conf., June 1994, pp. 18-25.

[7] S. Devadas, A. Shen, A. Ghosh, and K. Keutzer, “On average power
dissipation and random pattern testability,” in Proc. IEEE Int. Conf.
Computer-Aided Design, Nov. 1992, pp. 402-407.

[8] G. De Micheli, D. Ku, F. Mailhot, and T. Truong, “The Olympus
synthesis system,” IEEE Design Test Comp., vol. 7, no. 5, pp. 37-53,
Oct. 1990.

[91 M. Pedram, C. T. Tsui, and A. Despain, “Technology decomposition and

mapping targeting low power dissipation,” in Proc. Design Automation

Conf., June 1993, pp. 68-73.

B. Eschermann, “‘State assignment for hardwired control units,” ACM

Computing Surveys, vol. 25, no. 4, pp. 415-436, Dec. 1993.

M. A. Cirit, “Estimating dynamic power consumption of CMOS cir-

cuits,” in Proc. IEEE Int. Conf. Computer-Aided Design, Nov. 1987, pp.

534-537.

[12} G. Hachtel, E. Macii, A. Pardo, and F. Somenzi, “Symbolic algorithms

to calculate steady-state probabilities of a finite state machine,” in Proc.
IEEE European Design Test Conf., Feb. 1994, pp. 214-218.

2

=

[10]
[11]

[13} X. Du, et al., “MUSE: A MUltilevel Symbolic Encoding Algorithm for
State Assignment,” IEEE Trans. Computer-Aided Design, vol. 10, no.
1, pp. 28-38, Jan. 1991.

[14] E. Olson and S. Kang, “State assignment for low-power synthesis using
genetic local search,” in Proc. IEEE Custom Integrated Circuit Conf.,
May 1994, pp. 140-143.

[15] G. Hachtel, et al., “Re-encoding sequential circuits to reduce power
dissipation,” in 1994 Int. Workshop Low Power Design Napa, Apr. 1994,

. 69-73.

[16] gp Lin and A. R. Newton, “Synthesis of multiple-level logic from
symbolic high-level description languages,” in Proc. IEEE Int. Conf.
Comp. Des., Aug. 1989, pp. 187-196.

{17} G. De Micheli, “Symbolic design of combinational and sequential
logic circuits implemented by two-level logic macros,” IEEE Trans.
Computer-Aided Design, vol. 5, no. 4, pp. 597-616, Oct. 1986.

[18] P. Ashar, S. Devadas, and A. R. Newton, Sequential Logic Synthesis.
Norwell, MA: Kluwer Academic, 1992.

[19] G.De Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Optimal
state assignment for finite state machines, IEEE Trans. Computer-Aided
Design, vol. CAD-4, no. 3, pp. 269-284, July 1985.

[20] T. Dolotta and E. McCluskey, “The coding of internal states of se-
quential machines,” IEEE Trans. Electron. Comput., vol. EC-13, pp.
549-562, Oct. 1964.

[21] A. R. Newton, S. Devadas, H. Ma, and A. Sangiovanni-Vincentelli,
“MUSTANG: State assignment of finite state machines targeting multi-
level logic implementations,” IEEE Trans. Computer-Aided Design, vol.
7, no. 12, pp. 1290-1300, Dec. 1988.

[22] A. Sangiovanni-Vincentelli and T. Villa, “NOVA state assignment of
finite state machines for optimal two-level logic implementation,” IEEE
Trans. Computer-Aided Design, vol. 9, no. 9, pp. 905-924, Sept. 1990.

[23] K. Trivedi, Probability and Statistics with Reliability, Queuing and
Computer Science Applications. Englewood Cliffs, NJ: Prentice-Hall,
1982.

[24] G. De Micheli, Synthesis and Optimization of Digital Circuits.
York: McGraw-Hill, 1986.

[25] E. McCluskey, Logic Design Principles.
tice-Hall, 1986.

[26] The Math Works, Inc. The Student Edition of MATLAB. Englewood
Cliffs, NJ: Prentice-Hall, 1992.

[27] E. Sentovich, et al, “Sequential circuit design using synthesis and
optimization,” in Proc. IEEE Int. Conf. Comput. Design, Oct. 1992, pp.
328-333.

{28] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization.
New York: Wiley, 1988.

[29] S.-W. Yeong and F. Somenzi, A new algorithm for 0-1 programming

based on binary decision diagrams,” in Logic Synthesis Workshop, Japan,

1992, pp. 177-184.

S. Malik, V. Tiwari, and P. Ashar, “Technology mapping for low

power,” in Proc. Design Automation Conf., June 1993, pp. 74-79.

New

Englewood Cliffs, NJ: Pren-

(301

Luca Benini (5’94) received a Laurea degree in
electrical engineering from University of Bologna,
Italy, in 1991 and received and the M.S. degree
in electrical engineering from Stanford University,
Stanford, CA, in 1994.

He is a Ph.D. candidate in electrical engineering
at Stanford University, where his dissertation is
on synthesis for low power. Prior to arriving at
Stanford, he worked as a Research Assistant on
simulation techniques for power estimation at the

’ Department of Electronics and Computer Science of
the University of Bologna during 1991-1992. His current research interests are
in the area of computer-aided design and simulation of digital IC’s, specifically
in the design of low power-systems, algorithms for the automatic synthesis
of low-power circuits, and in tools for accurate estimation of the power
dissipation in large digital systems. He is also interested in multiple-level
logic synthesis, algorithms for optimal state assignment, technology mapping,
and probabilistic simulation.

268

Giovanni De Micheli (S’79-M"79-SM’89-F94) received the nuclear engi-
neer degree from Politecnico di Milano, Italy, in 1979 and the Ph.D. degree
in electrical engineering and computer science from University of California
at Berkeley, in 1983.

He is the Associate Professor of Electrical Engineering, and by courtesy, of
Computer Science at Stanford University. Previously he held positions at the
IBM T. J. Watson Research Center, Yorktown Heights, N, at the Department
of Electronics of the Politecnico di Milano, Italy, and at Harris Semiconductor,
Melbourne, FL. His research interests include several aspects of the computer-
aided design of integrated circuits and systems, with particular emphasis on
automated synthesis, optimization, and validation.

Dr. De Micheli is the author of Synthesis and Optimization of Digital
Circuits (New York: McGraw-Hill, 1994), co-author of High-level Synthesis of
ASICs under Timing and Synchronization Constraints (Norwell, MA: Kluwer,
1992), and co-editor of Design Systems for VLSI Circuits: Logic Synthesis and
Silicon Compilation (Martinus Nijhoff Publishers). He was also co-director of
the Advanced Study Institute on Logic Synthesis and Silicon Compilation,
held in L’Aquila, Italy, under the sponsorship of NATO in 1986 and in
1987. He was granted a Presidential Young Investigator award in 1988. He
received the 1987 Best Paper Award for the best paper published in IEEE
TRANSACTIONS ON COMPUTER-AIDED DESIGN and two Best Paper awards at
the Design Automation Conference, in 1983 and 1993.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 30, NO. 3, MARCH 1995

