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Abstract— This paper presents a set of new techniques for
the optimization of multiple-level combinational Boolean net-
works. We describe first a technique based upon the selection
of appropriate multiple-output subnetworks (consisting of so-
called compatible gates) whose local functions can be optimized
simultaneously. We then generalize the method to optimize larger
and more arbitrary subsets of gates, called unate subsets. Because
simultaneous optimization of local functions can take place, our
methods are more powerful and general than Boolean optimiza-
tion methods using don’t cares, where only single-gate optimiza-
tion can be performed. In addition, our methods represent a
more efficient alternative to Boolean relations-based optimization
procedures because the problem can be modeled by a unate
covering problem instead of the more difficult binate covering
problem. The method is implemented in program ACHILLES and
compares favorably to SIS.

I. INTRODUCTION

OGIC synthesis has traditionally addressed optimiza-

tion problems for two-level forms and multiple-level
networks. Two-level synthesis has been intensely researched
from theoretical and engineering perspectives, and efficient
algorithms for exact [8], [13], {15], [17] and approximate [3],
[10], [18] solutions are available.

Exact optimization algorithms for multiple-level logic net-
works have also been considered [12]. They are, however,
generally impractical even for medium-sized networks. For
this reason, many efficient approximation algorithms have
been developed over the past decade. In [2], global-flow
analysis is used to optimize a logic network. Other popular ap-
proaches can be classified according to the algebraic/Boolean
type of operations they perform. Algebraic techniques, such
as factoring and kerneling, are described in [4].

As algebraic methods do not take full advantage of the
properties of Boolean algebra, a spectrum of Boolean op-
timization techniques has been developed in parallel. Such
techniques consist mainly of iteratively refining an initial
network by identifying subnetworks to be optimized, deriving
their associated degrees of freedom (expressed by so-called
don’t care conditions), and replacing such subnetworks by
simpler, optimized ones.
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The independent optimization of the local function of a
network, called single-gate optimization, lies at one end of
the spectrum. It has been shown [1], [16] that the degrees of
freedom associated to a single gate can be represented by a
don’t care set. Once this set is obtained, two-level synthesis
algorithms can be used to optimize the subnetwork [1].

The concurrent optimization of several local functions,
called multiple-gate optimization, lies at the other end of
the spectrum. Multiple-gate optimization has been shown to
offer potentially better quality networks as compared to single-
gate optimization because of the additional degrees of freedom
associated with the redesign of larger blocks of logic.

Exact methods for multiple-gate optimization, first analyzed
in [5]. have been shown to best exploit these degrees of
freedom. Unfortunately these methods suffer from two major
disadvantages. First, even for small subnetworks, the number
of primes that have to be derived can be remarkably large.
Second, given the set of primes, it entails the solution of an
often complex binate covering problem, for which efficient
algorithms are still the subject of investigation. As a result, the
overall efficiency of the method is limited, and only relatively
small networks can currently be handled.

Approximations to multiple-gate optimization include the
use of compatible don’t cares [16] which allows us to ex-
tend don’t care based optimization to multiple functions by
suitably restricting the individual don’t care sets associated
with each function. Although such methods are applicable to
large networks, the restriction placed on don’t care sets reduces
the degrees of freedom and hence possibly the quality of the
results.

The binate nature of the covering problem arises essentially
from the arbitrariness of the subnetwork selected for optimiza-
tion. In this paper, we develop alternative techniques for the
optimization of multiple-output subnetworks. These techniques
are based upon an accurate choice of the subnetworks to be op-
timized. The difficult binate covering step is avoided, and yet
an optimization quality superior to don’t care achieved because
multiple local functions can be optimized simultaneously. To
this regard, first we introduce the notion of compatible set of
gates as a subset of gates whose optimization can be solved
exactly by classical two-level synthesis algorithms. We show
that the simultaneous optimization of compatible gates allows
us to reach optimal solutions not achievable by conventional
don’t care methods. We then leverage upon these results and
present an algorithm for the optimization of more general
subnetworks in an internally unate network. The algorithms
have been implemented and tested on several benchmark
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Fig. 1. Example of a logic network.

circuits, and the results in terms of literal savings as well as
CPU time are very promising.

II. TERMINOLOGY

Let B denote the Boolean set {0, 1}. A k-dimensional
Boolean vector x = [z1,...,7x|T is an element of the set B*
(bold-facing is hereafter used to denote vector quantities. In
particular, the symbol 1 denotes a vector whose components
are all 1).

A n;-input, n,-output Boolean function F is a mapping
F:B" — B™. We use x to denote the set of primary inputs,
and F to denote the set of primary output functions. A literal
function, or literal, is the function expressed by a variable or
its complement. A cube c is the product of some literals. A
logic network is a collection of local single-output functions
called gates. A set of local functions is denoted by y(x) where
y; is the variable associated with the output of each gate g;, and
in general can be expressed as a function of primary inputs.
Fig. 1 illustrates a logic network.

The cofactors (or residues) of a function F with respect to a
variable z; are the functions F,, = F(zq,...,2, = 1,...,1,)
and F,: = F(z;,...,z; = 0,...,z,). The universal quan-
tification or consensus of a function F with respect to a
variable z; is the function V, F = F, F_ . The existential
quantification or smoothing of a function F with respect to
x; is defined as 3, F = F,. + F,.. A scalar function F
contains F, (denoted by F; > F5) if F, = 1 implies F; =
1. The containment relation holds for two vector functions if
it holds component-wise.

A function F is termed positive unate in z; if F,, > F,
and negative unate if F,, < F,.. Otherwise the function is
termed binate in z;. A function F positive (negative) unate
in a variable z; can always be expressed without using the
literal z}(z;) {14].

The desired terminal behavior of a combinational network
is specified by two functions, ON(x) and DC(x), the latter
in particular representing the input combinations that either
do not occur or such that the value of some of the network
outputs is regarded as irrelevant [1].

The functions ON and DC identify the set of possible
terminal behaviors for the network: specifications are met by
an implementation, realizing a function F(x) if and only if
F(x) = ON(x) for every input x not in DC.

Another, equivalent, description of the set of terminal be-
haviors is in terms of the functions F;, = ON - DC’ and
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Frnax = ON + DC. Specifications are met by F if
Fmin S F S Fmax- (1)

We consider hereafter specifications directly in terms of a
Paif Fmins Fmax-

III. PREVIOUS WORK

Most Boolean methods for multiple-level logic synthesis
rely upon two-level synthesis engines. For this reason and in
order to establish some essential terminology, we first review
some basic concepts of two-level synthesis.

A. Two-Level Synthesis

Consider the synthesis of a (single-output) network whose
output y is to satisfy (1), imposing a realization of y as a sum
of cubes c

N
FminSy:chSFma.x- (2)
k=1

The upper bound in (2) holds if and only if each cube ¢
satisfies the inequality

Ck S Fmax- (3)

Any such cube is termed an implicant. An implicant is termed
prime if no literal can be removed from it without violating
the inequality (3). For the purpose of logic optimization, only
prime implicants need be considered [14, 18]. Each implicant
ci has an associated cost wy, which depends on the technology
under consideration. For example, in PLA minimization all
implicants take the same area, and therefore have identical
cost; in a multiple-level context, the number of literals can be
taken as cost measure [4]. The cost of a sum of implicants is
usually taken as the sum of the individual costs.

Once the list of primes has been built, a minimum-cost cover
of Flin 1s determined by solving

N N
minimize:Zakwk; subject to: F, < E QrCk

k=1 k=1
“
where the Boolean parameters «y are used in this context to
parameterize the search space: they are set to 1 if ¢; appears
in the cover, and to 0 otherwise. The approach is extended
easily to the synthesis of multiple-output circuits by defining
multiple-output primes [14], [18]. A multiple-output prime
is a prime of the product of some components of F,,x. These
components are termed the influence set of the prime.
Branch-and-bound methods can be used to solve exactly the
covering problem. Engineering solutions have been thoroughly
analyzed, for example in [18], and have made two-level
synthesis feasible for very large problems [8], [15].
The constraint part of (4) can be rewritten as

N
Vayan (Z akck(x) + Fr’nin(x)> =1. )
k=1
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The left-hand side of (5) represents a Boolean function F,
of the parameters «; only; the constraint (4) is therefore
equivalent to

F,=1. ©)

The conversion of (4) into (6) is known in the literature as
Petrick’s method [14].

Two properties of two-level synthesis are worth remarking
in the context of this paper. First, once the list of primes has
been built, we are guaranteed that no solution will violate
the upper bound in 1), so that only the lower bound needs
to be considered [as explicited by (4)]. Similarly, only the
upper bound needs to be considered during the extraction of
primes. Second, the effect of adding/removing a cube from a
partial cover of F n;,, is always predictable: that partial cover is
increased/decreased. This property eases the problem of sifting
the primes during the covering step, and it is reflected by the
unateness of F,: intuitively, by switching any parameter c;
from 0 to 1, we cannot decrease our chances of satisfying (6).
These are important attributes of the problem that need to be
preserved in its generalizations.

B. Don’t Care-Based Multiple-Level Optimization

Two-level optimization is the basic engine in don’t care-
based multiple-level logic optimization, where it is used to
iteratively optimize single-output gates in the network.

Consider a single-output subnetwork, with local output y, to
be resynthesized. The primary output F of the overall network
can be expressed in terms of the signal y

F =F(x,y) = y'Fy +yF,
= (Y1 + Fy)(y'1 4+ Fy). (7
By replacing (7) in (1), it follows that y must satisfy
Froin < y/Fy’ + yFy < Frax- (8)

A constraint on y similar to (1) can be obtained from
(8) as follows: The upper bound in (8) holds if and only if
y'Fy < Frax and yFy < Fray, ie.

yl S Fmax + F’y’; y S Fmax + F;' (9)
Equation (9) can be rewritten as
FI

Fy <yl < Foax + F). (10)

Similarly, the lower bound holds if and only if F» + y1 >
Fmin and Fy + yll Z Fmim i.e.
FoinFy <yl <F,;, +F,. 11
Equations (10) and (11) can be merged together, to obtain
meF;, + Fl . Fy
S yl S (Fmax + F;)( :nin + Fy) (12)

Equation (12) represents the exact degrees of freedom avail-
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able in the synthesis of the signal y, and is formally identical
to (1): the value of y is undetermined corresponding to those
points for which the lower bound differs from the upper bound.
Such points are the local don’t cares for y, and are denoted by
DC, (x). Once the bounds (or, equivalently, the don’t cares)
for y are computed, ordinary two-level synthesis algorithms
can be applied.!

C. Boolean Relations-Based Multiple-Level Optimization

Don’t care-based methods allow us to optimize only one
single-output subnetwork at a time. It has been shown in [5],
[9] that this strategy may potentially produce lower-quality
results with respect to a more general approach attempting the
simultaneous optimization of multiple-output subnetworks.

work, to be resynthesized, and let F(x,y) denote the network
outputs, expressed in terms of the variables y;. From inequality
(1), the functional constraints on y are expressed by

Fmin(x) S F(XY) S Fmax(x)~ (13)

An inequality like (13) describes a Boolean Relation.’ The
synthesis problem consists of finding a minimum-cost real-
ization of y1,...,ym such that (13) holds. An exact solution
algorithm, targeting two-level realizations, is presented in [5].
We illustrate the additional difficulties of the covering step
with respect to the ordinary two-level synthesis process by
means of the following example.

Example 1: Consider the optimization of gates g; and g2,
with outputs y1 and yo, in the circuit of Fig. 2. Assuming no
external don’t care conditions, Foin = Fax = o'V + (ac +
bd) @ (a/c’ + a'b'), while F = y; @ yo2 + a'b’. Equation (13)
then takes the form

a'b + (ac+ bd) @ (a'c’ + a'b')
<y Dys+a'b <a'b + (ac+bd) @ (o' +d'l).

By the symmetry of the network with respect to y; and ¥,
cubes a’c’, ac, bd, a’t’ would be listed as implicants for both
y1 and yp. Consider constructing now a cover for y1 and y2
from such implicants. An initial partial cover, for example
obtained by requiring the cover of the minterm abed of F pin,
may consist of the cube ac assigned to y;. Consider now
adding bd to yo, in order to cover the minterm abcd'd of
Finin. Corresponding to the minterm abcd, now y1 @ y2 = 0,
while F,,;, = 1; that is, the lower bound of (13) is violated.
Similarly, with the input assignment a = 0, b= 1, ¢ =0, and
d = 1, the network output changed from the correct value 0
to 1, while Fiayx = 0. Thus, also the upper bound is violated.

Contrary to the case of unate covering problems, where the
addition of an implicant to a partial cover can never cause the
violation of any functional constraints, here the addition of a
single cube has caused the violation of both bounds in (13).0

Un practice, y is resynthesized by taking advantage also of the other internal
signals available in the network. Implicants and primes are in this context
expressed in terms of primary inputs and other network variables.

2An alternative formulation of a Boolean relation is by means of a
characteristic equation: R(x.y) = 1, where R is a Boolean function. It
could be shown that these two formulations are equivalent [6].
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Fig. 2. Boolean relations optimization example
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Fig. 3. Network with selected gates.

The difficulties of multiple-gate optimization are two-fold:
first, the interplay of the various variables y; that makes it
impossible to isolate individual bounds for each function.
Secondly, when trying to express (13) in a form similar to
(2), that is, representing individual bounds on the signals y;,
each bound may depend on other variables y;. In turn, it could
be shown that this results in a binate covering step. Fast
binate covering solvers are the subject of ongoing research
[11]; nevertheless, the binate nature of the problem reflects
an intrinsic complexity which is not found in the unate case.
In particular, as shown in the previous example, the effect
of adding/removing a prime to a partial solution is no longer
trivially predictable, and both bounds in (13) may be violated
by the addition of a single cube. As a consequence, branch-
and-bound solvers may (and usually do) undergo much more
backtracking than with a unate problem of comparable size,
resulting in a substantially increased CPU time.

IV. COMPATIBLE GATES

The analysis of Boolean relations points out that binate
problems arise because of the generally binate dependence of
F on the variables y;. In order to better understand the reasons
for this type of dependency, we assume that the vertices of the
logic network actually represent individual elementary gates
(AND’s, NAND’s, OR’s, NOR’s, inverters).

We introduce the notion of compatible gates in order to
perform multiple-gate optimization while avoiding the binate
covering problem. In the rest of the paper, given a network
output expression F(x,y), x is the set of input variables and
y is the set of gate outputs to be optimized. This relationship
is shown in Fig. 3.

Definition 4.1: In a logic network, let p; = p;(z1,...,z,)
and q = q(z1,...,2,), where j = 1,2,...,m, represent
functions that do not depend on y, ..., ymn. A subset of gates

S = {91,----,gm} with outputs y; ---y,, and functions P;j
and q is said to be compatible if the network input-output
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Fig. 4. Gates g; and go are compatible.

behavior F can be expressed as

F=Y ypi+q (14)
7j=1

modulo a phase change in the variables y; or F.

As shown below, compatible gates can be optimized jointly
without solving binate covering problems. Intuitively, com-
patible gates are selected such that their optimization can only
affect the outputs in a monotonic or unate way, and thereby
forcing the covering problem to be unate.

Example 2: Consider the two-output circuit in Fig. 4. Gates
g1 and g, are compatible because F' and H can be written as

F=(z1+z3+z)y1 + (21 + 75 + 73)y2
H =0y + O0y2 + (1 + =3 + z4) (21 + 25 + z3))'.

g
The compatibility of a set S of gates is a Boolean property.
In order to ascertain it, one would have to verify that all
network outputs can indeed be expressed as in Definition 4.1.
This task is potentially very CPU-intensive. In the next section,
we describe the optimization algorithm. In Section VI, we
present algorithms for constructing subsets of compatible gates
from the network topology only.

V. OPTIMIZING COMPATIBLE GATES

The functional constraints for a set of compatible gates can
be obtained by replacing (14) into (13). From (14) we obtain

Fmin < Z Yip; +q S Fmax- (15)

Jj=1

Equation (15) can be solved using steps similar to that of two-
level optimization. In particular, the optimization steps consist
of implicant extraction and covering.

A. Implicant Extraction

Assuming that q < Fy,,, the upper bound of (15) holds if
and only if for each product y,p; the inequality
YiPj S Fmax

is verified, i.e., if and only if

yj]-SFmax"‘p;':, J=1...,m (16)
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TABLE 1
MULTIPLE-OUTPUT PRIMES FOR EXAMPLE 5.3
Primes | Influence sets
a | zyz5zs YL, Y2
¢y | 2257 v
c3 | 71Z3%s Y, 42
Cq 2T4 Y, y2
cs | 12225 v, ¥2
¢ za2y 2
e | Zyz57y )
cg z\z) n
Co ziZ4 128
or, equivalently
y]' SFmax,j:, j:l,...,m (17)

where Fax ; is the product of all the components of Fyax +
p;. A cube ¢ can thus appear in a two-level expression of y;
if and only if ¢ < Finax ;. As this constraint is identical to (3),
the prime-extraction strategies [14], [18] of ordinary two-level
synthesis can be used.

Example 3: Consider the optimization problem for gates
g1 and g¢o in Fig. (4). From Example 2

p1 = (71 + 73+ 7))
p2 = (z1 + x5 + z3)".

We assume no external con’t care set. Consequently, Finin =
Fuax = T1727% + 222374 + 2iz5(x3 + o). The Karnaugh
maps of Fuin and Fp,.x are shown in Fig. 5(a), along with
those of p; and po. Fig. 5(b) shows the maps of Finax1 =
Fpax + 9} and Fipax 2 = Fnax + Y, used for the extraction of
the primes of y; and yo, respectively. The list of all multiple-
output primes is given in Table I. Note that primes 1 through
5 can be used by both y; and ys. O

B. Covering Step

Let N indicate the number of primes. For example, in the
problem of Example (3), N = 9. We then impose a sum-of-
products representation associated with each variable y;

N
i = § QjkCk
k=1

with the only restriction that aj;, = 0 if y; is not in the
influence set of c¢i. Since the upper bound of (15) is now
satisfied by construction (i.e., by implicant computation), the
minimization of yi. ..., ¥, can be formulated as a minimum-
cost covering problem

m N
Frnin < q+ Zzajkckpj
j=1k=1

whose similarity with (4) is evident, the products cip; now
playing the role of the primes of two-level synthesis.

(18)
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Fig. 5. (a) Maps of Frnin . Fmax-p1.p2. (b) Maps of Finax.1+ Fiax, 2 and
of the product Finax.1 Fiax.2. Primes of y; and y» are shown in the maps
of Fnax.1 and Finax 2, respectively. The map of Fiax.1 Fiax.2 shows the
primes common to y; and y2.
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Fig. 6. A minimum-cost solution for the covering of Frin.

Example 4: In the optimization problem of Example 3, we
are to solve the covering problem

Pwmin S P11 + D2Yy2.

Using the set of primes found in Example 3, y; and y, are
expressed by

Y1 = 1.1€1 + ®12¢2 + 1 33 + (1 4C4
+ aq 505 + 1,868 + 01 9Cy
Yo = (1€ + (g 2¢2 + Q2 3C3 + (2 4C4

+ ag5¢5 + 266 + Q2 7C7.

The optimum solution has cost 6 and is given by y1 =
TiTh + Toxs: Y2 = xaxh, corresponding to the assignments

1= =a3=as=a19=0 aa=ag=1

Qg1 =apo =3 =04 =025=07=0; aze=1

The initial cost, in terms of literals, was 12. The solution
corresponds 1o the cover shown in Fig. 6, and resulting in the
circuit of Fig. 7. O

It is worth contrasting, in the above example, the role of y;
and y, in covering Fy,i,. Before optimization, p1y; covered
the minterms 172747, T122&43T4, T1T22374 Of Fiyin, while
poye covered z)rhrhrl, T\Thrsry, T)\T2T3Ly, TITHTIT4.
After optimization, y; and y» essentially “switched role” in
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Fig. 7. Network resulting from the simultaneous optimization of compatible
gates ¢g; and go.
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Fig. 8. don’t care conditions associated with y; and ys: only 1 literal can
be removed.

the cover: pays is now used for covering z1z,257), T1227%14,
while p;y; covers all other minterms.

In the general case, the possibility for any of y;,..., ¥ to
cover a minterm of Fy;, is evident from (15). Standard single-
gate optimization methods based on don’t cares [1] regard the
optimization of each gate g1, .. ., g,,, as separate problems, and
therefore this degree of freedom is not used. For example, in
the circuit of Fig. (4), the optimization of g; is distinct from
that of g». The don’t care conditions associated with (say)
y1 are those minterms for which either p; = 0 or such that
P2y2 = 1, and are shown in the map of Fig. 8, along with the
initial cover. It can immediately be verified that y; can only
be optimized into z,z2z% + T224, saving only one literal.

The don’t cares for y, are also shown in Fig. 8. No opti-
mization is possible in this case. Note also that the optimization
result is (in this particular example) independent from the order
in which g; and g, are optimized. Unlike the compatible gates
case, it is impossible for the covers of y; and ¥, to “switch”
role in covering Fip.

VI. FINDING COMPATIBLE GATES

In this section, we describe an algorithm for finding com-
patible gates based on network topology.

Definition 6.1: A network is termed unate with respect to
a gate g if all reconvergent paths from g have the same parity
of inversions. We call gate g a u-gate. A network is internally
unate if it is unate with respect to each of its gates. All paths
from g to a primary output z; in an internally unate network
have parity 7;, which is defined to be the parity of g with
respect to z;.

In the subsequent analysis, we make the assumption that
the network is first transformed into its equivalent NOR-only
form. In this case, the parity of a path is simply the parity of
the path length.
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(b

Fig. 9. Internally Unate Example: (a) Network not internally unate due to
gate g,; (b) Internally unate network after duplication (Duplicated gates are
shaded).

In defining (14) for compatible gates, it is evident that the
dependency of F on ¥,...,y, must be unate. In order to
increase the chances of finding sets of compatible gates, it is
thus convenient to transform a network into an internally unate
one. This is done by duplicating those gates whose fanouts
contain reconvergent paths with different inversion parity.

Example 5: Consider the logic network shown in Fig. 9(a).
The network is not internally unate because the reconvergent
paths from gate g; to the output y do not have the same parity
of inversions. We duplicate gate g; and its fan-in cone into g7,
shown by the shaded gates in Fig. 9(b). Now gates g; and g
are u-gates since there are no reconvergent paths of different
parity from these gates. The same procedure is then repeated
on go, which is split into go and g(,. The network is eventually
internally unate (noting that the two reconvergent paths out of
gp are of the same (even) parity). The increase in size is two
gates. O

Note that the unfolding process is not recursive; rather,
starting from the primary outputs, gates with incorrect fanout
are duplicated. Therefore each gate is duplicated at most once.
The resulting network is therefore at most twice the size of
the original one. In practice, the increase is smaller.

Theorem 6.1 below provides a sufficient conditions for a
set S of gates to be compatible. The following auxiliary
definitions are required:

Definition 6.2: The fanout gate set and fanout edge set
of a gate g, indicated by FO(g) and FOE(g), respectively, are

e i et <



the set of gates and interconnections contained in at least one
path from g to the primary output. The fanout gate set and
fanout edge set of a set of gates S = {g1..... gm }. indicated

by FO(S) and FOE(S). respectively, are

FOE(S) = | J FOE(g:).  (20)
i=1

Theorem 6.1 In a NOR-only network. let S = {g;.....

gm } be a set of gates all of even (odd) parity and not in each

FO(S) = U FO(g;):
=1

others’ fanout. Let ;... .. ym denote their respective outputs.
Suppose that for all gates g € FO(S) has at most one input
in FOE(S).

The outputs of all gates in the even (odd) network can then
be expressed by equations in the form of (14)

F = Z Yjp; +d
Jj=1

Moreover, the output of each gate g in the network can be
expressed by one of the following two equations: For gates
of even parity

9=qg+ZPjgyj- 20

j=1

For gates of odd parity.

9= a0+ pig¥s (22)
j=1
Consequently, S is a set of compatible gates.

Proof: Assume the network gates to be sorted topologi-
cally, so that each gate precedes its fanout gates in the ordered
list. Let NGATES denote the total number of gates. We prove
the above proposition inductively, by showing that if it holds
for the first 7 — 1 gates, then it must hold for the rth gate,
r = 1..... NGATES.

Consider the first gate, g;. If g; € S, its output is simply y1,
which can be obtained from (21), by setting ¢4, = 0, p1,4, =
L pjg, =0;5 =2..... m. If g; does not belong to S, by
the properties of topological ordering, its inputs can only be
among the primary inputs, and consequently its output is still
expressed by (21), by setting p;4, = 0.

Consider now the rth gate, g,. Again, if g, € S, the output is
expressed by a single variable in {y1,...,ym}, and therefore
it satisfies the proposition. If g, does not belong to S, all
its inputs are either primary inputs or gates g,.,7’ < r, for
which the proposition is true by the inductive assumption. We
distinguish two cases:

1) ¢, is of even (odd) parity. Consequently, all its inputs
have odd (even) parity, and only one of them is a
function of the internal variables y;. For simplicity, let go
denote the input that (possibly) depends on y1,....¥Ym.
The output of g, is then expressed by

7 /

Z 4y,

gi€FI(gr)

g0 t ijgoyj +
j=1

m

=gy + ijgv-yj
j=1
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Fig. 10. Example of compatible gates.

where
Q9. = g0 H Pjgr = Pigo H
9i€FI(g,) gi€FI(gr)
2) g, is of odd (even) parity, and consequently all its inputs
are from gates of even (odd) parity and are expressed
by (21); therefore the output of g, is expressed by

2

9:€FI(g,)

/., 7
qu ' qgi'

m
qg, + ijgl Yj
j=1

!
m

=g+ ijgryj
i=1

>

9i€FI(g,)

Z Pjg:-

g:€FI(g,)

Pjg. =

By induction, the output of each gate (in particular, each
primary output) is expressed by (21) or (22); therefore, the
gates in S are compatible. O

Theorem 6.1 states that the gates of a subset S are compati-
ble if all paths from the gates of S to the primary outputs meet
only corresponding gates of opposite parity. The following
theorem states a symmetric result, namely, that gates of S
are compatible if their paths to the primary outputs meet
only corresponding gates of the same parity. The proof is
essentially the same as for Theorem 6.1, and it is therefore
omitted.

Theorem 6.2: In a NOR-only network let & =
{91:---. gm} denote a set of gates of even (odd) parity,
and not in each other’s fanout. Suppose that for all gates
g € FO(S) of odd (even) parity, g has at most one input
interconnection from FOE(S). The gates of S are then
compatible.

It can also be verified that in a multiple-output network, the
gates of a set S are compatible if and only if Theorems 6.1
and 6.2 hold with respect to each output.

Example 6: In the internally unate, NOR-only network of
Fig. 10, consider the set S = {g1,92,94}. All gates of S
are of odd parity and not in each other’s fanout. Moreover,
FO(S) = {g5,97.9s. 99, 910. 911,912} and for all gates in
FO(S) of odd parity (namely, gs. g9, g10), there is only
one input interconnection that belongs to FOE(S). S then
represents a compatible set by Theorem 6.1.

Similarly, the set & = {g3.g4} is compatible by Theorem
6.2. as in this case FO(S) = {g¢.97- go- g10. g12}. and the
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gates of FO(S) with even parity (namely, g¢ and g-) have
only one input interconnection in FOE(S).
Other compatible sets are, for example, {g1,g10} (by The-
orem 6.1) and {gs, g7} (Theorem 6.2).
It is worth noting that some gates (in this case, g4) can
appear in more than one compatible sets. O
Theorem 6.1 also provides a technique for constructing a
set of compatible gates directly from the network topology,
starting from a “seed” gate g and a parameter rule that specifies
the desired criterion Theorem 6.1 or 6.2 to be checked during
the construction. The algorithm is as follows:
COMPATIBLES g, rule)
label-fanout(g, FO);
S ={g}
for(i = 1;¢ < NGATES;i + +) {
if ((is_labeled(g;) == FALSE) &
(parity(gi) == parity(g))) {
label_fanout(g;, TMP);
compatible = dfs_check(g;, parity(g), rule);
if(compatible) {
label_fanout(g;, FO);
S=8U{g};

}
}
return (S);
dfs_check(gate, parity, rule)
if (incorrect_fanin(gate, parity, rule)) {
return (FALSE);

if (gate — label == TMP) {
result = TRUE;
Sfanout = gate — fanout_list;
while ((result == TRUE) & (fanout # NULL)) {
result = dfs_check(fanout, parity, rule);
Sfanout = fanout — next,
}:
return result;
}
else {
return (TRUE);
}

COMPATIBLES starts by labeling “FO” the fanout cone
of g, as no gates in that cone can belong to a compatible
set containing g. Labeled gates represent elements of the set
FO(S). All gates g; that are not yet labeled and have the
correct parity are then examined for insertion in S. To this
purpose, the fanout of g; that is not already in FO(S) is
temporarily labeled “TMP,” and then visited by dfs_check in
order to check the satisfaction of rule. The procedure dfs_check
performs a depth-first traversal on gate g;. The traversal returns
0 whenever a violation of rule is detected. Otherwise, if the
traversal reaches the primary outputs, or gates in FO(S), then 1
is returned indicating that g; is compatible. If g; is compatible,
it becomes part of S and its fanout is merged with FO(S).

Example 7: Refer again to Fig. (10) for this example.
Consider constructing a set of compatible gates around g,
using rule (1). Gates gs. gs. gg. g11. and g;7 are labeled first,
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because they belong to FO(g;). The first unlabeled gate is
therefore go. The depth-first scan of its fanout reaches gs first,
which has parity opposite to g;. The check of the fanin of g;
is therefore not needed. Gates g7 and g;p are then reached.
In particular, since g;o has the same parity as g;, its fanin is
checked to verify that there is indeed only one interconnection
[in this case, (g7,910)] to gates in S. Procedure dfs_check
returns in this case a value TRUE for the compatibility of
g2 to g1. O

VII. UNATE OPTIMIZATION

In the previous section, we showed that in the case of
compatible gates, the functional constraints expressed by (13)
can be reduced exactly to an upper bound [expressed by
(17)] on the individual variables y; and by a global covering
constraint, expressed by (19). These could be solved by a
two-step procedure similar to that of two-level optimization.
We now sacrifice exactness and generalize this result to the
optimization of more general, appropriate subsets S of u-gates.
These subsets are hereafter named unate subsets.

A. Optimizing Unate Subsets

Let S = {g1,...,9m} denote a set of gates of the same
parity and not in each other’s fanout. Assume that F is, say,
positive unate with respect to {y1,...,ym }. We can perform
optimization on the subset of u-gates in a style that is totally
analogous to compatible gates by dividing it into implicant
extraction and covering steps.

B. Implicant Extraction

In this step, for each y; to be optimized, a set of maximal
functions is extracted. In particular, the maximal functions of
each each y; can be expressed as (23), which is similar to (17)

Y. SGmax,j; jI 1,...,m. (23)
Appropriate implicants can then be extracted from (23).

Intuitively, the maximal functions are the largest functions
that can be used while satisfying the bound F < F,.,.
Therefore, they represent the upper bounds on y;. We introduce
the following definition

Definition 7.1: A set of local functions

{Gmax,l(x)a Gmax,2(x)7 sy Gmax,m (X)}
is said to be maximal if
F(X, Gmax.l(x)v Gmax,Z(x)y ceey Gmax,m (X))

< Frae(x)  V¥xeB™ 4)
and the inequality (24) is violated when any G ,ax; is replaced
by a larger function F' > Gpay ;.

The idea behind the notion of maximal functions is that by
substituting each y; by any function ¢; < Gpaxj, We are

guaranteed that the upper bound

F(x.¢1(x)....,¢m(x)) < Frax(x) (25)
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will not be violated. The conditions
Yi S Gmax,i

therefore represent sufficient conditions for this bound to hold.

The following theorem provides means for finding a set
of maximal functions. It also shows that computing such
functions has complexity comparable with computing ordinary
don’t care sets.

Theorem 7.1: Let us consider a network with a totally
ordered set of gates. Let S = {¢1,...,9m} be a set of u-
gates. The set of maximal functions, as defined by (24), with
respect to a set of u-gates S can be obtained by

Gmax.j = fyl + DC] (26)

where f¥ denotes the output function of g; in the unopti-
mized network. DC; represents the don’t care set associated
with g; calculated with the following rule: the output func-

tions for gates g),...,gj—1 are set 10 Gumax,:---> Gmax,_,»
respectively, and the output functions for gates g;,...,gm,
are set to fY%: k = j,....m.

Proof: The proof is divided into two parts. First, it is
shown that the bounds Grax ; = f¥ + DC; satisfy (24). It
is then shown, by contradiction, that these bounds are indeed
maximal.

To prove the first part, suppose that maximal functions for
the variables ¥, ...,y;-1 have already been computed. They
are such that

Fmin S F(X, Gmax.la sees Gmax,j—h Y, ny+1 soeey fym)
< Fmax

and is satisfied as long as y; satisfies
f¥-DC} < y; < f¥ + DC;

where DC; is the don’t care set associated to y;, under the
theorem’s assumptions. It is then guaranteed that

for j = 1,...,m.

To prove maximality, it is sufficient to show that G,y ;
cannot be replaced by any larger function. Suppose, by con-
tradiction, that a different bound F' can be used, such that
for some input combination xo we have Grax,j(X0) =0
but F(x¢) = 1. Notice that Gpax,;(Xo) = O implies that
f¥(x0) = 0 and DC;(x0) = 0. Corresponding to Xo, it must
then be

F(XO-, Gmax,l(XO)s ey Gmax,j—l(x())t
07 s Gmax,m(x(])) =0

F(X()., Gmax,l(x0)7 ey Gmax,j—l(XO)v
1,....Gmax.m(Xg)) =1

and

Fmax(xo ) =20
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x4

Fig. 11. Network for Example 8.

(or otherwise a change in the value of y; could not affect the
F and result in DC;(x0) = 0.) If a larger bound F; could be
used, this would mean that we could replace y; by a function
@; such that, in particular, ¢;(X¢) = 1, and replace all other
functions 41, . - -, Ym bY Gmax.1+ - - - » Gmax,m- Butin this case,

we would have

F(XO, Gmax.l(XO)a e Glnax,j—l(XO)a
1,... Gmax,m(x[])) =1

while F(xy) = 0, violating the specifications. O

Note that the computation of each maximal function corre-
sponds to finding the local don’t care for the associated gate.
Therefore, the maximal functions computation has the same
complexity as computing the don’t care conditions for each
gate.

This theorem states that the maximal function for gate %
depends on the maximal functions already calculated (j < 7).
This means that unlike the case of compatible gates, the
maximal function for a given gate may be not unique.

Example 8: For the network of Fig. 11, assuming no ex-
ternal don’t care conditions, we find the maximal functions for
Y1, Y2, and ys3. The DCyJ terms correspond to the observability
don’t care at y;, computed using the Fp,. of the previous
gates
Ys = ThTo + )T,

/ / s Y.
Y = ;10384 Y2 = x3(2g + 22);

Maximal functions derived by Theorem 7.1 are

Gmax.1 = 217574 + DCy, = zyzs + (2 + 14)71 75
Grax2 = fl?fo,(% + x2) + Dcyz (y1 = Gmax71)

= x4+ ThTh + 21T + T3T2
Gmax,3 = Ifil/Q + "Lll'r2 + DCys (yl = Gmax,la Y2 = Gmax,Z)

! 1,0 /
= X3Lo + L Ty + T4Ty3. 0

C. Covering Step

Equation (23) allows us to find a set of multiple-output
primes for yi,...,Ym. The covering step then consists of
finding a minimum-cost sum such that the lower bound of
(13) holds.

We now present a reduction for transforming the covering
step to the one presented for compatible gates. We first
illustrate the reduction by means of an example.
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Example 9: In Fig. (11), consider the combination of in-
puts x resulting in F,;;;,(x) = 1. With each such combination
we can associate the set of values of yq,ys,y3 such that
F(x,y) = 1. For instance, for the entry z,xoz3z4 = 1001,
it must be Fy .002,(y) = y1 + y2y3 = 1. Let us now
denote with G(y) the left-hand side of this constraint, i.e.,
G(y) = y1 + y2ys. Notice that G(y) is unate in each y; and
changes depending on the combination of values currently
selected for z,,x92, 3, T4.

Any constraint G(yy) = 1 can be represented in a canonical
form

G(y) = (Gyypys + 1+ 92+ ¥3)(Gyryyys + 91 +92)
s (Gy1yzyg + ys)Gy1y2y3 =1

which, in turn, is equivalent to the eight constraints

Gyiyéyg +tnitytys=1

Gyiyjys T 91+ 42 =1

Gyly‘zyé + Y3 =1

Gylyzys =1L
27)

By introducing an auxiliary variable z; for each y;, we can
rewrite (27) as

G(z)+ 2191 + z9y2 + 24ys = 1 V21,20, 23

or, equivalently
G'(2z) < 2191 + 2392 + 233
In this particular example, we get

(21 + 2223)" < 2191 + 29y2 + 25y3. 0

Example 9 shows a transformation that converts the cover-
ing problem of arbitrary u-gates into a form that is similar to
optimization of compatible gates, i.e., (15).

More generally, corresponding to each combination x such
that F;;n(x) = 1, the constraint F(x,y) = 1 can be reex-
pressed as

F(x,2)+ 2191 + 25y2 + - - + 21, Ym = L.

The resulting covering problem to find the minimum-cost
solution is analogous to the compatible gates case. The trans-
formation is formalized in the following theorem.

Theorem 7.2: Given F(x), let y be a set of u-gates with
respect to F. Let z = [z1, . .., 2,,,] denote m auxiliary Boolean
variables. The lower bound of (13) holds if and only if

Fuin <F(x,2)+ Y _y;(2}1) V. (28)
j=1
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Proof: We first show by contradiction that
F(x,y) < F(x,z) + Z yi(2;1), Vz,y,z. (29
j=1

Equation (29) can be violated only by a combination xg, yo, Zo
such that one component of F(xg,y,) takes value 1, the same
component of F(xg, zo) takes value 0, and the rightmost term
of (29) takes value 0. In any such combination, there must be
at least one value y; o = 1 and z; o = O (or otherwise, by the
unateness of F, we would have F(xg,yo) < F(xq,2¢)). But
if there exists an index ¢ such that y; o = 1,2, 0 = 0, then the
rightmost term of (29) takes value 1, and the right-hand side
of the inequality holds, a contradiction.
Therefore, F i (x) < F(X,y) together with (29) implies

Fomin(x) < (x,2) + Y _ y;(21).

Jj=1

To complete the proof, it must now be shown that F;,(x) <
F(x,z) + 37 y;(2;1), Vz implies Fpjs(x) < F(x,y).
Suppose, by contradiction, that this is not true. There exists
then a value X¢, yo such that some component of Fp;,(xg)
takes value 1, F(xo,yo) takes value 0, but Fin(x0) <
F(x0,2) + Y.7-1¥50(2j1), Vz. In this case, it must be
F(x0,2) + 32,2, ¥5,0(2;1) = 1, regardless of z. But this
implies that, for z = yo, F(x0,2) = 1, i.e.,F(xp,y0) = 1,
a contradiction. O

Equation (28) has the same format of (15), with q and p;
being replaced by F(x, Z) and 271, respectively. Theorem 7.2
thus allows us to reduce the covering step to the one used
for compatible gates. Theorems 7.1 and 7.2 show that the
algorithms presented in Section V can be used to optimize
arbitrary sets of gates with the same parity, without being
restricted to sets of compatible gates only.

VIII. IMPLEMENTATION AND RESULTS

The implementation of the algorithms presented in Sections
V and VII is as follows: The original networks are first
transformed into a unate, NOR-only description. All internal
functions are represented using BDD’s {7]. For each unopti-
mized gate g;, the following heuristic is used. First, we try to
find a set of compatible gates for g;, called S.. In the case
where not enough compatible gates can be found, we find a
set of gates that are unate with respect to g;, called S,.

In the case where S, is optimized, we use (14) to extract
the functions p; and q. In particular, q is computed by setting
y; to 0. The functions p; are then computed by setting y; to
1, with y;;2 # j stuck-at-0.

In the case of optimizing arbitrary unate network S,
Theorem 7.1 is used to determine the maximal functions for
each y;. Note that optimizing S, is preferable because for a
set of m compatible gates, m + 1 computations for p; and q
are needed to obtain all the required don’t cares. For S,, two
computations (with y; stuck-at-0 and stuck-at-1) are required
for the extraction of the don’t care set of each variable y;,
resulting in a total of 2m computations.
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TABLE 11
OPTIMIZATION RESULTS. RUNTIMES ARE IN SECONDS ON DEC5000/240
Initial Stat. Interconn. Literals(fac) Gates CPU time
Circuit Int. | Gates | Achilles | SIS | Achilles | SIS | Achilles | SIS | Achilles SIS
cm85a 108 63 67 7 42 | 46 31| 34 15 1.2
cml62a 113 60 99 102 47 | 49 41 52 1.8 1.3
pml 130 60 67 78 47 | 52 311 36 1.6 1.3
9symml 375 152 288 | 325 163 | 186 88 | 101 108.4 64.2
alu2 924 262 366 | 570 303 | 362 215 | 231 309.7 | 403.0
alu4 1682 521 902 | 1128 612 | 703 420 | 487 | 1612.6 | 1718.5
apex6 1141 745 1009 | 1315 687 | 743 589 | 639 115.1 30.3
C499 945 530 913 | 945 505 | 552 498 | 530 202.1 133.6
C880 797 458 643 | 731 355 | 409 295 | 342 340.6 30.7
C1908 936 489 828 | 891 518 | 542 445 | 482 422.1 138.8

A set of primes for the gate outputs is then constructed.
Because of the large possible set of primes, we limit the
number of primes considered to n. As a greedy heuristic,
we first choose single-literal primes to fill ». The limit n is
decided experimentally, and set to 300 in the results presented
here. The BDD of F(x,z) is then built, and the covering
problem solved. Networks are then iteratively optimized until
no improvement occurs, and eventually folded back to a
binate form. The algorithms presented in this paper were
implemented in C program called ACHILLES, and tested against
a set of MCNC synthesis benchmarks.

Table II provides a comparison of ACHILLES with SIS
using script.rugged. The column Initial Stat. lists the network
statistics before optimization, where /nt. is number of internal
interconnections and gates is the gate count. The column /n-
terconn. shows number of interconnections after optimization.
The gates column compares final gate counts. Literal column
shows the final literals in factored form. The results in the table
show that ACHILLES performs better than SIS for all figures of
merit. In particular, ACHILLES does 11% better than SIS in
factored literals.

Note that script.rugged was chosen because it is the most
robust script of the SIS script suite, and it matches closely
to our type of optimization. Our objective was to compare
optimization results based only on Boolean operations, namely
compatible gates versus don’t cares. The script.rugged calls
Sfull_simplify [19], which computes observability don’t cares to
optimize the network.

The table shows that the ACHILLES runtimes are competitive
with that of SiS. In this implementation, we are more interested
in the quality of the optimization than the efficiency of the
algorithms, therefore an exact covering solver is used. We
can improve the runtime in the future by substituting a faster
heuristic or approximate solvers (such as used in ESPRESSO

[18)).

IX. CONCLUSION

In this paper, we presented a comparative analysis of
approaches to multilevel logic optimization, and described new
algorithms for simuitaneous multiple-gate optimization. The

algorithms are based on the notion of compatible gates and
unate networks. We identify the main advantage of the present
approach over previous solutions in its capability of exact
minimization of suitable multiple-output networks, by means
of traditional two-level optimization algorithms. Experimental
results show an improvement of 11% over existing methods.
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