291

A Synthesis Framework Based on Trace and Automata Theory

Jérome Fron Jerry Chih-Yuan Yang
Center for Integrated Systems
Stanford University,

Stanford, CA 94305, U.S.A.

Maurizio Damiani |
Dip. Elettronica ed Informatica
Universita di Padova,
Via Gradenigo 6/A, 35131 Padova, Italy

Giovanni De Micheli

Center for Int

Stanford

rated Systems

niversity,
Stanford, CA 94305, I?I.S.A.

Abstract

In this paper we present a method for modeling don’t
cares at high-level in a form that can be used by se-
quential logic synthesis. Behavior is specified by a set
of concurrent, interacting processes. Each process is de-
scribed formally by its set of ezecution iraces [5] and
represented by an w-automaton [2]. This type of spec-
ification is formally precise and allows the inclusion of
don’t cares by allowing multiple execution traces for a
given input. Moreover, it allows us to cast the synthesis
problem into a language containment problem, and to
provide a formal description of these don’t cares .

We have developed a prototype synthesis system
based on this framework, targeting the synthesis of the
control portion of a circuit. Starting from a hardware
description language HardwareC, a specification is ex-
pressed in terms of a set of interconnected w-automata .
We demonstrate the feasibility of the approach by show-
ing the possibility of traversing the state space of the
specification automata.

1 Introduction

Logic synthesis systems have proven themselves effective
for the optimization of complex functional blocks at the
logic level. Theoretical understanding and engineering
approaches have been thoroughly explored and provide
effective tools for optimization at the combinational as
well as at the sequential level. A relevant component of
the success of combinational and sequential logic synthe-
sis is due to the availability of precise formal models.

The overall effectiveness of a synthesis system would
be improved by the possibility of extracting don’t care
conditions from a high-level description. For example,
the knowledge that a particular operation can be sched-
uled at different time points represents a degree of free-
dom for the control unit, and can be used for its opti-
mization.

The problem of extracting don’t care information from
high-level specifications is receiving increasing interest.
Several observations to this regard have been made by
Bergamaschi in [1]. He presents a description of don’t

cares associated with the various structural elements of
an RTL description of a circuit. Such don’t cares were

derived, however, mostly by a structural analysis of the
circuit rather than a formal approach.

Wolf introduces in [10] the concept of behavioral finite
state machine. Unlike ordinary FSMs, BFSMs allow the

compact modeling of slacks in the scheduling of opera-
tions. Other degrees of freedom, however, such as the
reordering of those operations, cannot be represented.

In this paper, we consider specifications in terms of
concurreni, interacting, synchromous processes. This
specification style is used in several Hardware Descrip-
tion Languages, such as VHDL (8] and HardwareC [6].

Following Hoare [5], we formalize the notion of process
by resorting to trace theory. Each process is described
by a set of input and output variables (the process ter-
minals), and by a set of ezecution traces. Informally, a
trace of a process is a sequence of symbols, recording the
values taken by its terminals over time L

The appeal of trace theory lies in the fact that the
enumeration of all the acceptable execution traces for a
system implies capturing all the degrees of freedom on its
functionality. A circuit satisfies the specifications if its
execution traces are acceptable to the specifications, z.€.
if they are contained in the trace set of the specifications.
The synthesis problem for a circuit can then be cast into
that of finding a minimum-cost realization that satisfies
this containment property.

In order to make a synthesis system practical, it is
necessary to provide compact descriptions of trace sets.
In [2] and (7], the use of finite w-automata was proposed
for describing trace sets. These automata describe the
desired functionality as well as the degrees of freedom.
They can be used to perform synthesis by exploring di-
rectly the design space, or can be used as external don’t
cares for the local optimization of an already existing
design.

Currently, we are targeting control synthesis. There-
fore w-automata specify the control schedules and com-
munication protocol constraints among the various pro-
cesses. We implemented a preliminary version of a syn-

thesis tool based on the use of w-automata . The lan-
guage HardwareC is used as a front-end for entering a
specification in terms of a set of interacting processes,
each described by an w-automaton . We show empiri-
cally that automata of reasonably complex circuits can
be efficiently represented and manipulated, and that it
is possible to traverse efficiently their state space. The
specification can then be used as a method to synthesize
a design from high-level specifications or to optimize an
existing design by extracting relevant don’t care condi-

1Hoare was actually interested in asynchronous systems, and
therefore traces represented sequences of events.

tions from the automata. .
The rest of the paper is organized as follows. The

next Section introduces the terminology associated with
traces and processes. Section (8) presents the set of
transformations that generate the automata specification
of a circuit from a high-level sequencing graph model.
We give experimental results in Section (4). Conclusions
are drawn in Section (5).

2 Hardware specifications by in-
teracting processes.

Hardware specifications in terms of interacting processes
are common. Processes are typically described in a pro-
gramming language style:

Example 1. The following code specifies the behavior
of two units sharing a bus. Each unit uses the bus to
fetch an instruction, and then to write a result after an
execution step. O

P1,P2: repeat {

send (bus_request);
vhile ('bus_rdy) wait;
fetch_bus;

execute;
send(bus_request) ;
while('bus_rdy) wait;
write_bus;

A more formal view of a process is obtained by exam-
ining directly the signals through which it communicates
with the environment. In the case of the process P1 of
Example (1), these signals are for example the bus re-
quest signal s; and the bus ready signal r{. Over time,
the pattern these signals follow can be used to describe
the process itself. For example, assuming one clock pe-
riod per instruction, a pattern

s1 1.0 00 1 0

rr 01 0 0 00
is a possible trajectory for s; and ry, while

s1 1. 01 0 1 0

rn 01 0 00 0
is not, because two bus requests must be separated by
at least three clock cycles, and by one bus ready signal.

2.1 Terminology.

The notion of process is formalized here in the context of
trace theory. A process is described by a set of input and
output variables (for short, the process terminals), and
by a set of ezecution traces. For example, the variables
of process P1 of Example (1) are s; and ;.

Informally, a trace of a synchronous process is an in-
finite sequence of values taken on its input and output
ports over each clock cycle.

Definition 1. Let B = {0,1}. The set of all possible
sequences over B is denoted by B*. To model a system
with inputs and outputs, let T and O denote the sets of
input and output variables, repsectively. Let A = (ZuoO).

A synchronous trace T, or trace for short, is an
element of the set & = (BlA1). A process P is a set of
traces, i.e. a subset of (B4, DO

Finite representations of processes are necessary for
their rapid manipulation. w-Automata have been pro-
posed for this purpose in a verification context [71.

292

Figure 1: Automata for the processes P1 and P2 of Ex-
ample (1). F indicate initial states.

An w-automaton is described by a finite set S of
states, a subset Sy C S of initial states, and a tran-
sition relation § : § x & — 2%, computing the set of
possible next states corresponding to each state and in-
put symbol. A run of an automaton over a sequence
00,---,0n,... of input symbols is a sequence of states
50,...,8n,... such that sy € Sy and for every n > 0
Sn41 € 6(sn,05). The description of an automaton is
completed by an acceptance rule. The acceptance rule
decides if a sequence of symbols belongs to a trace set,
based on which states are visited during a run of the se-
quence. Several flavors of acceptance rules exist in the
literature [2]. Their distinction is immaterial for our pur-
poses, as long as the intersection of the two processes can
be computed essentially by the traditional product rule

for automata. .

The product of two w-automata A; and As is indicated
by A = A; ® A,. Informally, a product machine A has
the state space that is the Cartesian product of 4; and
Ay, and the transition function is the logical conjunction
of A; and A,. A formal definition for a product can be
found in [7]

Example 2. The automata of Fig. (1) describe the
behavior of the processes P1 and P2 of Example (1).
At each clock tick, each process can decide whether to
execute the line or to idle. The idling transitions are
represented by the unlabeled self-loops 1n the state dia-
gram. Labels indicate the execution of the corresponding
instruction. 0O

2.2 Environment constraints.

When synthesizing a system, it is necessary to take into
account its interactions with the environment. A system
needs to communicate with other modules through hand-
shaking protocols, or may need to use memory and hard-

ware resources that are shared with the environment.
Such interactions impose constraints on the systems

(i-e. protocols must be satisfied), as well as information
that can be used during synthesis. For example, knowing
that the design interfaces by means of a specific protocol
implies that only certain input sequences will be received
through the input pins.

Example 3. The two processes P1 and P2 interface
to a bus. To prevent simultaneous reads and writes on
the bus, the bus protocol forces r; and r to be mutually
exclusive. Again, only some sequences of values of 7; and
9 can occur. The possible execution traces for the bus
are represented by the w-automaton of Fig. (2). O

stawe
Figure 2: Automaton for the bus of Example (3).

Example (3) outlined that environment constraints
can be modeled by processes (trace sets) as well. The
specifications S can therefore be cast in general in the
form of a product of several w-automata S;, each of which
represents a process or a constraint:

S=0®K,S (1)
The end result of synthesis is a circuit implementation
whose terminal behavior satisfies the specifications. In
a synchronous environment, such circuits are described
by finite-state machines. In general, more than one state
machine satisfies the specifications.

3 Implementation.

An implementation of the framework presented above is
under development using HardwareC as the input HDL
[6]. HardwareC describes hardware in terms of concur-
rent processes, with the possibility of specifying timing
and data-dependent synchronization constraints. These
processes are translated into an w-automaton representa-
tion. This latter representation constitutes a part of the
eventual formal specification of the hardware under syn-
thesis. Each process P is in particular associated a pair
of input and output signals, named startp and donep,
respectively. Each process is idle until receiving a pulse
on its input startp. The termination of execution is
signaled by a pulse on donep, after which the process
returns to its idle state. A timing constraint between
two processes P1 and P2 is any constraint placed on the
traces of donep; and startp,.

The timing constraints considered in HardwareC are
of interval type: a process P2 must be started no sooner
than I 3 clock periods and no lafer than uy,2 clock pe-
riods after P1 is done. Timing constraints are summa-
rized in a sequencing graph. The HardwareC sequencing
graph also supports control structures (i.e. conditional
and loop structures). The detailed description of the se-
quencing graph can be found in [6]. In the rest of this sec-

tion we illustrate the transformation of these constraints
into an automata format.

3.1 w-automaton construction.
The rest of this sectign illustrates the construction of w-
automata corresponding to the following building blocks
of the sequencing graph:
¢ An interval-type timing constraint;
¢ The conditional execution of a process;
¢ The modeling of an OR-scheduled process. An OR-
scheduled process is a proces activate upon termi-
nation of at least one of a set of other processes.

Timing constraints.

Interval-type timing constraints are represented by au-
tomata like the one shown in Fig. (3). The automa-
ton recognizes sequences of values on Donep;, Startp;
formed by a pulse on Donep; followed by a pulse on
Startp;. The duration of each pulse must be exactly 1
clock cycle. Startp; must trail Donep; by at least Min
clock cycles and at most Maz clock cycles.

293

Interval = {0,Max—Min }
A
7 —~

DowoViStatVj DomoViStrtVy DoadViSaav)

*?’)w

Figure 3: Automaton for timing constraints between two
processes v; and v;

()

DoneV1.StartV2
DoneV1.8tartv2.C.

9

DoneV1.8tartvV2.C

O'TAUBIS T AUO

DoneV1.StartV2
DoneV1.StartV2

Figure 4: Firing of V2 conditional to a Boolean flag C.

Conditional ezecution of processes.

Data values can impose conditions on the execution of
processes: a process -P; (associated with V;) can fire only
if it satisfies its timing constraints and the result of some
, say if, statement is TRUE. This is represented by a
labeled edge on the sequencing graph, as shown in Fig.
(4-a). The corresponding automaton is shown in Fig.
(4-b). The condition for firing P2 is sampled at the time
point where Donep; = 1.

The “OR” activation constraint.

The following construction is employed. The activation
condition for an ”OR” activated process P, is the union
of the Done signals of its activators: In this case,

Startp, = Donep, + Donep, (2)

We want, however, only one firing, regardless of how
many activators issue a "done”. So the automaton is
more complex than the other ones.

3.2 System representation.

Having translated each process and each execution con-
straint into an automaton, the specifications reduce to a
collection of w-automata . Each automaton is mapped
into a synchronous circuit, whose output takes value 1
corresponding to valid transitions.

Example 4. The circuit of Fig. (5) implements
the automaton for a timing constraint on Startp, after
1 clock cycle of Donep,. 0O

Given a collection of automata, the only valid transi-
tions are those for which all output functions take value
1. The function describing the valid transitions of the
system are therefore the logic AND of the functions Out
of the individual automata.

294

Figure 5: Synchronous circuit implementation of a con-
straint automaton.

4 Experimental Results.

The traversal of the state space of the product automa-
ton is performed by a state traversal of the correspond-
ing circuit constrained to valid transitions only. In this
section we present experimental results on state-space
traversal. To be able to traverse the state-space is im-
portant since it implicitly representis the design space of
control.

We adopt implicit state enumeration of FSMs using
BDDs [3][9]. The key figure of merit is the size of the

BDD for the reachable states. The number of states
reachable is also important, since traversal through those

states to find a minimum cost solution will be an issue
1n optimization.

The benchmarks were initially written in HardwereC.
Their sequencing graphs were derived and the automata
modeling the timing and synchronization constraints
were constructed. In Table (1), column Nb. edges
indicates the number of edges in the sequencing graph,
corresponding to the number of automata that were con-
structed. Most benchmarks implement control or com-

Example states | BDD size | cpu
ged 97 146 | 124
decode 2351 540 | 492.5
encode 16273 1071 | 242.7
CPUQUEUE 124 205 | 10.1
DMA revd 356985 265 | 13.8
xmit_bit 509 238 | 26.3
revd_bit 22722 232 | 295.3
_parker86 6762 413 | 384.6
daio_phase_dec. | 79808 501 | 198.5
daio_receiver 104 210 | 61.8
diff_eq 5866 1151 | 265.1

Table 1: Automata characteristics

munication protocols. For example, encode and decode
perform the handshaking and computation for an error
correcting system([6]. DMA_rcvd, tmit_bit, rcvd_bit and
others are all communication processes for an ethernet
controller. Table (1) indicates that for all such bench-
marks, the state space can be traversed quickly and rep-
resented compactly, as the sizes of the BDDs are all less
than 1000 nodes. The major bottleneck in traversing the
automata is the construction of the BDD corresponding
to the set of valid transitions.

This can be overcome, however, by adding automata
one at a time and traversing each partial product. We are
also investigating better variable ordering heuristics for
thehBlle construction, tailored to the type of problem
at hand.

5 Conclusions and future work.

In this paper we have presented a framework for model-
ing degrees of freedom at the behavioral level based on
automata. We model hardware as a set of interacting
sequential processes, where a process is defined by a set
of acceptable execution traces.

We have presented a preliminary implementation of
this approach, in which we translate a hardware descrip-
tion language (HardwareC) into an automata-based spec-
ification. We show that the state space of the resulting
automaton can be traversed quickly and manipulated us-
ing implicit state enumeration methods based on BDDs.

. We have shown that this formulation can model suffi-
ciently complex systems, consisting of several processes

and synchronization constraints.

We are currently developing a set of algorithms to per-
form synthesis and optimization by extracting the don’t
care information that exist in the automata [11, 4].

6 Acknowledgments.

The authors thank Jerry Burch and David Filo for the
discussions on trace-based models. This research is spon-
sored in part by NSF/ARPA under grant MIP 91-15-432.

References

[1] R. A. Bergamaschi and D. Lobo A. Kuehlmann. Con-
trol optimization in high-level synthesis using behavioral
don’t cares. In Proceedings of the Design Automation
Conference, pages 657-661, Anaheim, CA, June 1992.

Y. Choueka. Theories of automata on omega-tapes, a
simplified approach. Journal of Computer Systems Sci-
ence, 8:117-141, 1974.

O. Coudert and J.C. Madre. A unified framework for the
formal verification of sequential circuits. In JCCAD, Pro-
ceedings of the International Conference on Computer-
Aided Design, pages 126-129, November 1990.

M. Damiani. Nondeterministic finite-state machines and
sequential don’t cares. In EDAC, Proceedings of the Eu-
ropean Design Automation Conference, February 1994.

C. A. R. Hoare. Communicating Sequential Proceses.
Prentice Hall International, 1985.

D. C. Ku and G. De Micheli. High Level Synthesis of
ASICs Under Timing and Synchronization Constraints.
Kluwer Academic Publishers, June 1992.

R. P. Kurshan and K. L. McMillan. Analysis of digital
circunits through symbolic reduction. JEEE Transactions
on CAD/ICAS, Vol. 10(No. 11), November 1991.

R. Lipsett, C. Schaefer, and Cary Ussery. VHDL: Hard-
ware Description and Design. Kluwer Academic Pub-
lishers, 1989.

H. Touati, H. Savoj, B. Lin, R.K. Brayton, and
A. Sangiovanni-Vincentelli. Implicit state enumeration
of finite state machines using BDD’s. In ICCAD, Pro-
ceedings of the International Conference on Computer-
Aided Design, pages 130-133, November 1990.

W. Wolf, A. Takach, C.-Y. Huang, R. Manno, and
E. Wu. The princeton university behavioral synthesis
system. In Proceedings of the Design Automation Con-
ference, pages 182-187, Anaheim, CA, June 1992.

J. C.-Y. Yang, G. De MIcheli, and M. Damiani. Schedul-
ing with environmental constraints based on automata

representations. In EDAC, Proceedings of the European
Design Automation Conference, February 1994.

(2]

3

—

(5]
(6]

(9]

(10]

(11]

