Constrained Software Generation for Hardware-Software Systems

Rajesh K. Gupta

Department of Computer Science

University of Illinois, Urbana-Champaign
1304 W. Springfield Ave. Urbana, IL 61801.

Abstract

Mized systems are composed of interacting hard-
ware components such as general-purpose processors,
application-specific circuits and software components
that ezecutes on the general purpose hardware. The
software component consists of application-specific rou-
tines that must deliver the required system functional-
ity and a runtime environmenl. Further, the software
is required to deliver functionality under constraints on
timing and memory storage available. In this paper, we
consider methods to achieve software generation under
imposed constraints and demonstrate the utility of our
approach by examples.!

1 Introduction

In recent years there has been a surge of interest in
digital system implementations that use microproces-
sors, along with memory and logic chips [1, 2, 3, 4]. The
primary motivation for using predesigned processors is
to reduce the design time and cost by implementing
functionality using a program on the processor. How-
ever, a purely software implementation often fails to
meet required timing performance which may be on the
time to perform a given task, and/or on the ability to
sustain specified throughput at system ports. There-
fore, dedicated hardware is often needed to implement
time-constrained portions of system functionality [4].

This work considers a constraint-driven synthesis ap-
proach to explore mixed system designs. It is built
upon high-level synthesis techniques for digital hard-
ware [5, 6]. There are several sub-problems that have
to be addressed in order to achieve the synthesis goal
for mixed systems. For an exposition of the related
problems the reader is referred to [4]. Here we focus on
the problem of software generation under constraints,
given that the portion of system functionality to be im-
plemented in software has been identified.

We briefly describe the inputs followed by a cost
model of the processor in Section 2. We then present

1Supportedby a grant from the AT&T Foundation and a grant
from NSF-ARPA No. MIP 9115432.

0-8186-6315-4/94 $04.00 © 1994 IEEE

Giovanni De Micheli

Departments of EECS
Stanford University
Stanford, CA 94305.

an overview of the steps in generation of the software
component. In Section 3 we present a model of software
that ensures satisfaction of timing constraints while still
allowing for a serial execution of all operations by suit-
ably overlapping input/output operations to computa-
tions. Estimation of software performance in view of
the cost model of the target processor is presented in
Section 4. Software performance is affected by the al-
location and management of storage for program and
data portions of the software. We present a scheme for
estimation of software storage and its effect on software
performance. We conclude in Section 5 by presenting a
summary of the contributions and open issues.

2 The Inputs and Synthesis Flow

The input to our co-synthesis system consists of a
description of system functionality in a hardware de-
scription language (HDL) called HardwareC [7]. The
choice of this language is due to practical reasons and
other languages such as VHDL, Verilog can be used as
well. (Though additional language semantic considera-
tions for synthesis may be needed, see [8]). The input
description is compiled into a flow graph model [9] that
consists of a set @ of acyclic polar graphs G(V, E). The
vertex set V represents language-level operations and
special link vertices used to encapsulate hierarchy. The
link vertices induce a (single or multiple) calls to an
another flow graph model which may, for instance, be
body of a loop operation. The unified semantics of loop
and call operations makes it possible to perform effi-
cient constraint analysis {0 ensure existence of a feasi-
ble hardware or software implementation [9]. The edge
set £ in flow graph represents dependencies between
operation vertices.

Operations in a flow graph present either a fixed or
variable delay during execution. The variation in delay
is caused by dependence of operation delay on either
the velue of input data or on the timing of the input
data. Example of operations with value-dependent de-
lay are loop (link) operations with data-dependent iter-
ation count. An operation presents a timing-dependent
delay only if it has blocking semantics, for example, the

wait operation that models communication and syn-
chronization events at system ports. Since loop (link)
and synchronization operations introduce uncertainty
over the precise delay and order of operations, these op-
erations are termed as non-deterministic delay or N'D
operations.

The timing constraints bound either the time inter-
val between initiation of any two operations (min/max
delay constraints), or the successive initiation inter-
val of the same operation (rate constraints). For con-
straint analysis purposes the rate constraints are trans-
lated into one or more min/max delay constraints by
means of constraint propagation techniques [9]. The
resulting min/max constraints are represented as addi-
tional weighted edges on the flow graph model. The
flow graph model with constraint edges is called a con-
straint graph model, Gp(V, E; U Ey, A) where the edge
set contains forward edges E representing minimum
delay constraints and backward edges E; representing
maximum delay constraints. An edge weight §;; € A
on edge (v;, v;) defines constraint on the operation start
times t; as tg(v;) + 8 < te(v;) for all invocations k.

2.1 Implementation Attributes

A hardware or software implementation of a flow
graph G refers to assignment of delay and size prop-
erties to operations in G and a choice of a runtime
scheduler 7 that enables execution of source operation
in G. For non-pipelined hardware implementations,
the runtime scheduler is trivial as the source opera-
tion is enabled once the sink operation completes. For
software implementation the runtime scheduler may be
more complex and is discussed further in next section.

The size attributes refer to the physical size and
pinout of an implementation. The size of a hardware
implementation is expressed in units of gates or cells
(using a specific library of gates) required to implement
the hardware. Each hardware implementation has an
associated area that is determined by the outcome of
the physical design. We estimate hardware size assum-
ing a proportional relationship between size and area.
"The size attribute for software consists of program and
data storage. In general, it is a difficult problem to ac-
curately estimate the size of an implementation from
the graph models. Estimation in this context refers
to relative sizes for implementations of different flow
graphs, rather than an absolute prediction of the size
of the resulting hardware or software.

Memory Side-effects: The operational semantics of
the graph model requires use of an internal storage in
order to facilitate multiple-assignments in HDL descrip-
tions [10]. The resulting memory side-effects created by
graph models are captured by a set M(G) of variables
that are defined and used by the operations in a graph
model G. M(G) is independent of the cycle-time of the

57

clock used to implement the corresponding synchronous
hardware and does not include storage specific to struc-
tural implementations of G (e. g., control latches). Fur-
ther, M (G) need not be the minimum storage required
for correct behavioral interpretation of G.

The size S(G) of a software implementation consists
of the program size and the static storage to hold vari-
able values across machine operations. The static data
storage can be in the form of specific memory locations
or on-chip registers. This static storage is, in general,
upper bounded by the size of variables in M(G) de-
fined above. Estimation of software size requires, in
addition to the flow graphs, knowledge of the processor
and the runtime system to be used, as discussed in the
next section. Pinout, P(G) refers to the size of inputs
and outputs in units of words or bits. A pinout does
not necessarily imply the number of ports used. A port
may be bound to multiple input/output operations in
a flow graph.

The flow graph model is input to a set of partition-
ing transformations that generate set of flows graphs
to be implemented in hardware and software [10]. The
hardware implementation is carried out by high-level
synthesis tools [6]. The objective of software imple-
mentation is to generate a sequence of processor in-
structions from the set of flow graph models. Due to
significant differences in abstraction levels of the graph
model and processor instructions, this task is performed
in steps as shown in Figure 1. A detailed discussion of
these steps can be found in {10]. We first create a lin-
earized set of operations collected into program threads.
The dependencies between program threads is built
into the threads by means of additional enabling op-
erations for dependent threads. Further, overhead op-
erations are added to execute program threads either by
means of subroutine calling, or as coroutine transfers.
Finally, the routines are compiled into machine code.
We assume that the processor is a predesigned general-
purpose component with available compiler and assem-
bler. Therefore, the important issue in software synthe-
sis is generation of the source-level program. Most of
this paper is devoted to this step of software synthesis.
For details on assembly, linking and loading issues the
reader is referred to [10]. For the choice of processor,
we assume the DLX processor [11] for which simula-
tion and compilation tools have been integrated into
our synthesis system. However, the analysis routines
can use any other processor abstracted by means of a
cost model described next.

2.2 Processor Cost Model

To a compiler, a processor is characterized by its
instruction set architecture (ISA) which consists of its
instructions and the memory model. We assume that
the processor is a general purpose register machine with
only explicit operands in an instruction (i.e., there is no

Markod flow graphs

— corvexity inearization

- generate program flow graph
— add tread dependencies

- {iwead trarsiormations

Generate [ogram roulines

~ add scheduler operations

- generaie ocode for thread
‘dependency operations.

Genorste C code

- variable: binding
~ generaie main program

DLX COMPILER
Comgie C code

I

Simudation code

Figure 1: Generation of the software component.

accumulator or stack). We also assume that the mem-
ory model uses a byte-level addressing scheme. This is
consistent with the prevailing practice in the organiza-
tion of general-purpose computer systems.

A processor instruction consists of an assembly lan-
guage operation and a set of operands on which to per-
form the specified operation. While the actual instruc-
tion sets for different processors are different, a com-
monality can be established based on the types of in-
structions supported. For our purposes we assume a
basic set of instructions consisting of memory opera-
tions (load, store), ALU operations and control trans-
fer operations. It is important to note that some of
these instructions may refer to macro-operations that
may not be available as single machine instructions but
as a group of instructions, for example, call and return.
These (macro-)assembly instructions are often needed
for compilation efficiency and to preserve the atomicity
of certain operation in the flow graph. These operations
also help in software delay estimation by providing ad-
ditional information which may not be readily available
purely from looking at the instruction set of a processor.

Based on this understanding of processor and in-
struction set architecture we represent the target pro-
cessor as, /T = (T,p, Tea, tm, ti) where the execution
time function, 7,p, maps assembly operations to positive
integer delays. The address calculation function, r.q,
maps a memory addressing mode to the delay (in cy-
cles) encountered by the processor in computing the ef-
fective address. When generating programs from HDL
descriptions only a limited number of addressing modes
are used. For example, a computed reference (register
indirect) usually occurs when the data value is created
dynamically or a local variable (stack) is referred to by

58

means of a pointer or an array index. These conditions
can generally be avoided when generating code from
HDL. t,, represents memory access time. The inter-
rupt response time, ¢;, is the time that processor takes
to become aware of an external hardware interrupt in a
single interrupt system (that is, when there is no other
maskable interrupt running).

Storage alignment is a side-effect of the byte-level
addressing scheme assumed for the processor/memory
architecture. Because the smallest object of a memory
reference is a byte, references to objects smaller than a
byte must be aligned to a byte. Further, for memory
efficiency reasons, the objects that occupy more than a
byte of storage are assigned an integral number of bytes,
which means their addresses must also be aligned. For
example, address of a 4-byte object (say integer) must
be divisible by 4. In case of a structure declaration, the
size is determined by the total of size requirements of
its members. In addition, the structure must end at an
address determined by the most restrictive alignment
requirement of its members. This may result in extra
storage for ‘padding’. Variables with size greater than
32-bits, are bound to multiple variables represented by
an array. The size and alignment requirements are then
multiplied by the number of array elements.

Example 2.1. Variable storage assignments.

The following shows the set of variables used in the
definition of a flow graph and the corresponding stor-
age assignments in the software implementation of the
graph (as generated by VuLcaN).

a[1], b[2], ¢[3], d[4], e[5] struct{ a:1; b:2; c:3; d:4; :5 }
1[33] int 2

Minimum storage used in the flow graph model is 8
bytes. However, due to alignment requirements the
actual data storage is 12 bytes.O

3 Software & Runtime System Model

Most synthesized hardware uses static resource allo-
cation and binding schemes, and a static or relative
scheduling technique [7). Due to this static nature,
operations that share resources are serialized and the
binding of resources is built into the structure of the
synthesized hardware. Consequently, there is no need
for a runtime system in hardware. Similarly, in soft-
ware, the need for a runtime system depends upon the
whether the resources and tasks (and their dependen-
cies) are determined at compile time or runtime.

Since our target architecture contains only a single
resource, namely, the processor, the tasks of allocation
and binding are trivial, i.e., the processor is allocated
and bound to all routines. However, a static binding
would require determination of a static order of rou-
tines, effectively leading to construction of a single rou-
tine for the software. This would be a perfectly natu-
ral way to build the software given the fact that both

Oz

ASIC

j

la;s:

a2

Bus

Figure 2: Software model.

resources and tasks and their dependencies are all stat-
ically known. However, in presence of N'D operations
in software, a complete serialization of operations may
make determination of constraint satisfiability impossi-
ble [4]. A solution to this problem is to construct soft-
ware as a set of concurrent program threads as sketched
in Figure 2. A thread is defined as a linearized set of
operations that may or may not begin by an N'D op-
eration. Other than the beginning N'D operation, a
thread does not contain any N'D operations. The la-
tency of a thread is defined as sum of the delay of its
operations without including the initial N'D operation
whose delay is accounted for in the delay due to the
runtime scheduler, 7.

In this model of software, satisfiability of constraints
on operations belonging to different threads can checked
for marginal or deterministic satisfiability [9], assuming
a bounded delay for runtime scheduling associated with
ND operations. Constraint analysis for software de-
pends upon first arriving at an estimate of the software
performance discussed next.

4 Estimation of Software Performance

When deriving timing properties from programs,
several problems are encountered due to the fact that
popular programming languages provide an inherently
asynchronous description of functionality, where the
program output is independent of the timing behav-
ior of its components and of its environment. Attempts
have been made to annotate programs with relevant
timing properties [12, 13]. Syntax-directed delay esti-
mation techniques have been tried [14, 15] which pro-
vide quick estimates based on the langnage constructs
used. However, syntax-directed delay estimation tech-
niques lack timing information that is relevant in the
context of the semantics of operations.

We perform delay estimation on flow graph mod-
els for both hardware and software using bottom-up
estimation. A software delay consists of two compo-
nents: delay due operations in the flow graph model,
and delay due to the runtime environment. The ef-
fect of runtime environment on constraint satisfiability

59

is evaluated in terms of operation schedulability for a
given type of runtime environment such as preemptive
and prioritized [10] and is out of the scope of this paper.
It suffices to say that the effect of runtime can be mod-
eled as a constant overhead delay to each execution of
the flow graph. Here we focus on the first component,
that is, the delay of a software implementation of the
operations in the flow graph model. For this purpose, it
is assumed that a given flow graph is to be implemented
as a single program thread. Multiple program thread
generation is achieved similarly by first identifying sub-
graphs corresponding to program threads [10]. Software
delay then depends upon the delay of operations in the
flow graph and operations related to storage manage-
ment. Calculations of storage management operations
is described in Section 4.4.
4.1 Software Implementation Delay

Each operation v in the flow graph is characterized
by a number of read accesses, m,(v), a number of write
accesses, my, (v) and a number of assembly-level opera-
tions, n,(v). The software operation delay function, 7,
is computed as:

no(v)

M) = 3 Lo, + (me(v) + mu(v) x m;

i=1

(1)

where the operand access time, m;, is the sum of effec-
tive address computation time and memory access time
for memory operands. Note that often not all possible
combinations of ALU and memory operations are al-
lowed and often the two operations are overlapped for
some instructions. Due to this non-orthogonality, the
delay function may overestimate the operation delays.

Example 4.1. Software delay estimation.

For the graph model shown below, assuming addition
delay 1 cycle, multiplication delay is 5 cycles and mem-

ory delay 3 cycles.

%
N

Assuming that each non-NOP operation produces a
data, that is, my (v) = 1 and that the number of mem-
ory read operations is given by the number of input
edges, the software delay associated with the graph
model is 3 X t4 + te + (5 + 4) X m; = 35 cycles. By
comparison, the VULCAN generated code, when assem-
bled, takes 38 cycles (not including setup operations
that are accounted for later) that includes an addi-
tional 3 cycle delay due to return conventions.O

Use of operation fanin and fanout to determine mem-
ory operations provides an approximation for proces-
sors with limited number of general purpose registers.
Most processors with load-store instruction set archi-
tectures feature a large number of on-chip registers. We
consider the effect of register usage in these processors
in Section 4.4.

ND operations

Wait operations in a graph model induce a synchro-
nization operation in the corresponding software model.
This delay is characterized by a syanchronization over-
head related to the program implementation scheme
used. One implementation of a wait operation is to
cause a contert switch in which the waiting thread is
switched out in favor of an enabled thread. We as-
sume that the software is computation intensive and
thus the wait time of a program thread can always be
overlapped by the execution another program thread.
A thread is resumed by the runtime scheduler using a
specific scheduling policy. Alternatively, the completion
of synchronization operation associated with wait oper-
ation can also be indicated by means of an interrupt to
the processor. In this case, the synchronization delay
is estimated as Miner(v) = t; +£, +t,, where ¢; is inter-
rupt response time, ¢, is interrupt service time, which is
typically the delay of the service routine that performs
input read operation and ¢, is concurrency overhead
which constitutes a 19 cycle delay for the simplified
coroutine implementation on the DLX processor [10].

Finally, the link operation are implemented as call
operations to separate program threads corresponding
to bodies of the called flow graphs. Thus the delay due
to these operations is accounted for as the delay in im-
plementation of control dependencies between program
threads.

4.2 Estimation of Software Size

The size of a software implementation S¥ refers to
the size of program SZ¥ and of static data SI necessary
to implement the corresponding program on a given
processor II. For a system model &,

ST@)= > TG = Y IST(Gi)+ ST(G] (2)

G,ed G.eP

We postpone the discussion on estimation of pro-
gram size to later in this section. S¥ represents the
storage required to hold variable values across opera-
tions in the flow graph and across the machine opera-
tions. This storage can be in the form of specific mem-
ory locations or the on-chip registers, since no aliasing
of data items is allowed in input HDL descriptions. In
general ST () would correspond to a subset of the vari-
ables used to express a software implementation of G,
that is,

ST(G) < IM(G)| + |P(G)| (3)

Flow graph

@\s"""
@/

Runtime

Step it
| sottware detay
- Stora, JES— ——u| Overhead | 77
Linearize *"@ aum??;n @ estimation| oG

Variable interval graph Spill set

Processor cost madel

60

Figure 3: Software delay estimation flow.

This inequality is because not all variables need be live
at the execution time of an instruction. A variable is
considered live if it is input to an future instruction
(Section 4.4). In case, S¥(G) is a proper subset of the
variables used in software implementation of G, that
is, M (G), additional operations (other than the opera-
tion vertices in G) are needed to perform data transfer
between variables and their mappings into S¥(G). In
case, STT(G) is mapped onto hardware registers, this
set of operations is commonly referred to as register
assignment/reallocation operations. Due to a single-
processor target architecture, the cumulative operation
delay of V(G) is constant under any schedule. How-
ever, the data set size SIT(G) would vary according to
scheduling technique used. Accordingly, the number of
operations needed to perform the requisite data transfer
would also depend upon the scheduling scheme chosen.
Typically in software compilers, a schedule of opera-
tions is chosen according to a solution to the register
allocation problem. The exact solution to the register
assignment problem requires solution to the vertex col-
oring problem for a conflict graph where the vertices
correspond to variables and edges induce a (conflict)
relation between simultaneously live variables. It has
been shown that this problem is NP-complete for gen-
eral graphs [16]. Most popular heuristics for code gen-
eration use a specific order of execution of successor
nodes (e.g., left-neighbour first) in order to reduce S
(17).

In contrast to the register assignment in software
compilers which perform simultaneous register assign-
ment and operation linearization, we use a two-step ap-
proach as shown in Figure 3. We first linearize oper-
ations followed by an estimation of the data transfer
operations for a given linearization. This two-step ap-
proach is taken in view of the timing constraints not
present in traditional software compilers.

4.3 Operation Linearization

In the presence of timing constraints, operation lin-
earization can be reduced to the problem of ‘sequencing
of variable length tasks with release times and dead-
lines’ which is shown to be NP-complete in the strong
sense [16]. It is also possible that there exists no valid
linearization of operations. An exact ordering scheme

is described in [7] that explores all possible orders in
order to find an optimum linearization. In [18], the au-
thors present an operation ordering scheme for a static
non-preemptive software model using modes. We use a
heuristic ordering based on a vertez elimination scheme
that repetitively selects a zero in-degree (root) vertex
and outputs it. The input to the algorithm is a con-
straint graph model. The linearization algorithm uses a
data structure, Q, in which candidate vertices for elim-
ination at any step are stored. The algorithm consists
of following three steps:

I. Select a root operation to add to the linearization,
II. Perform timing constraint analysis to determine if
the addition of the selected root operation to the
linearization constructed thus far leads to a feasible
order, else select another vertex from @,

[II. Eliminate selected vertex. Update Q.

‘The (heuristic) selection of a vertex to be output from
among a number of zero in-degree vertices is based on
the criterion that the induced serialization does not
create a positive weight cycle in the constraint graph.
Among the available zero in-degree vertices, we select
a subset of vertices based on a two-part criteria. One,
that the selected vertex does not create any additional
dependencies or increase weights on any of the existing
dependencies in the constraint graph. For two, we asso-
ciate a measure of urgency with each root operation and
select the one with the least value of the urgency mea-
sure. This measure is derived from the intuition that a
necessary condition for existence of a feasible lineariza-
tion (i.e., schedule with a single resource) is that the set
of operations have a schedule under timing constraints
assuming unlimited resources. A feasible schedule using
unlimited resources corresponds to an assignment of op-
eration start times according the lengths of the longest
path to the operations from the source vertex. Since a
program thread contains no ND operations, the length
of this path can be computed. However, the graph may
contain cycles due to the backward edges created by the
timing constraints. A feasible schedule under timing
constraints is obtained by using the slacks to adjust the
path delays to operations such that all constraints are
satisfied. This is accomplished by applying an iterative
algorithm based on [19] that repetitively increases the
path length until all timing constraints are met. This
has the effect of moving the invocation of all closely con-
nected sets of operations to a later time in the interest
of satisfying timing constraints on operations that have
been already linearized. If this procedure fails, the cor-
responding linearization also fails since the existence of
a valid schedule under no resource constraints is a nec-
essary condition for finding a schedule using a single
resource. In case a feasible schedule exists, the oper-
ation start times under no resource constraints define
the urgency of an operation.

At any time, if a vertex being output creates a seri-
alization not in the original flow graph, a corresponding

61

edge is added in the constraint graph with weight equals
delay of the previous output vertex. With this serializa-
tion, the constraint analysis is performed to check for
positive cycles, and if none exists, the urgency measure
for the remaining vertices is recomputed by assigning
the new start times, else the algorithm terminates with-
out finding a feasible linearization.

Since the condition for a feasible linerization is nec-
essary but not sufficient, therefore, the heuristic may
fail to find any feasible linearization when there may
exist a valid ordering.

Example 4.2. Operation linearization.

@2 ,/womd-r

'
©

Consider the flow graph shown in the figure above.
Initialize: Q@ = {1}, 6(s) = 0. By applying the cycle
detection procedure on this graph, the assignment of

operation urgency labels, ¢ is (0 4 2 5 3 6 6) for
vertices vy through vy.

Iteration 1:

pI: v = v;. Add edge (s,v1) with weight = 0.
D>II: No positive cycle. Feasible.

BIIL: [output = v1 [Q = {w2,v3}. 8(s) = 0+

5(n1) =2. Qis sorted based on ¢ to be Q@ = {vs3,v2}
where the first element represents the head of Q.

Iteration 2:

tI: Candidate v = v3. The new constraint graph G/,
is shown below:

B II: No positive cycle. Feasible. The new assignment
of the urgency labels is same as the previous one.
DIIL: (vr,v3) € Ey = §(vr,v3) = —6. Q = {vg,v5}.

output = v3 | 6(s) = 2+ 6(va) = 3. Urgency,

) = 3. Q is sorted as Q@ = {vs,v2}.

o{vz) = 4,0(vs

p1: Candidate v = vs. Add edge (s,vs) with weight
= 6(s) = 3.Constraint graph G, is shown below.

>II: No positive cycle. Feasible. o(s) =
6,0(vs) = 7,0(vs) = 3,0(vs) = a(vr) = 6.

BIIL @ = (o000}, [output =] 50 =

6(vs) = 6. o(v2) = o(ve) = a(v7) = 6.

0,0(v2) =

3+

Iteration 4:
>I: Candidate v = v;. Add edge (s,v2) with weight
= 6(s) = 6. Constraint graph G7. is shown below:

'

R

© ©

;

D1I: Positive cycle. Mark and move v, to tail of Q.
Q = {vs,v7,12}.

Iteration 5:

p1: Candidate v = vg. G’T is shown below:

<)

DII: Linearization using vg at this step leads to a
positive cycle. Hence vg is moved to the tail of Q.
Q = {vr,v2,%}.

Iteration = 6:

>I: Candidate v = v7. The constraint graph in suc-
cessive iterations are shown in Figure 4.

BII: No positive cycle. Feasible. The assignment
of the urgency labels: o(s) = 0,0(v2) = 8,0(w) =
9,0(ve) = 8,0(v7) = 6.

DILQ = {v2,v}. |output = v7 |. §(s) =6+2=8.
Urgency, o(v2) = o(vg) = 8.
Iteration = 7:

bI: Candidate v = v;.
DII: no positive cycles. Feasible. The assignment

of urgency labels: o(s) = 0,0(v2) = 8,0(w) =

9,0(ve) = 9.

DI1I: Since (vg, v2) € Ep => §(vs,12) = —2~8 = —10.
L Q@ = {ve,va}.

Iteration = 8:

bI: Candidate v = vg.
DII: no positive cycles. Feasible. o(s) = 0,0(vg) =
10,0(vg) = 12.

BIHL Q = {vg}, 6(s) =9+ 2 = 11. ,

Iteration = 9:

B 1: Candidate v = v,
P 1I: no positive cycles. Feasible.

11 = [output =, |
Thus, the linearization returned by the algorithm is
v1, U3, Vs, V7, V2, ¥, vs. O

The time complexity of linearization algorithm is
dominated by the cycle detection algorithm and is given
by O(|V|?- k) where k is the number of backward edges
and typically a small number.

4.4 Estimation of Memory Operations

Memory operation in a software implementation is
related to the amount and allocation of static storage
ST(G). Since it is difficult to determine actual regis-
ter allocation and usage, some estimation rules must

O ®
fours 7 IS

Figure 4: Linearization example.

be devised. Let G® = (V, EP) be the data-flow
graph corresponding to a flow graph model, where ev-
ery edge, (vi,v;) € ED represents a data dependency.
Let i(v), o(v) be the indegree and outdegree of vertex v.
Let n; = |{source vertices}| and n, = |{sink vertices}|.
Let 7. and r,, be the number of register read and write
operations respectively.

Each data edge corresponds to a pair of read, write
operations. These read and write operations can be
either from memory (Load) or from already register-
stored values. Register values are either a product of
load from memory or a computed result. Clearly, all
values that are not computed need to be loaded from
memory at least once (contributing to m,). Further,
all computed values that are not used must be stored
into the memory at least once (and thus contribute to
my,). Let R be the total number of unrestricted reg-
isters available (not including any registers needed for
operand storage). In case R is small, it may cause ad-
ditional memory operations due to register spilling. A
register spill causes a register value to be temporar-
ily stored to and loaded from the memory. The ac-
tual number of spills can be determined exactly given a
schedule of machine operations. Since this schedule is
not under direct control, therefore, we concentrate on
bounds on the size of the spill set, =.

Case I: R =0 In this limiting case, for every instruc-
tion, the operands must be fetched from memory
and its result must be stored back into the mem-
ory. Therefore, m. = |E|and m,, = [V|. Note that
each register read results in a memory read oper-
ation and each register write results in a memory
write operation, (r, = m,) and (ry, = my).

Case II: R > R; where R; is the maximum number of
live variables at any time. In this case no spill oc-
curs as there is always a register available to store
the result of every operation. Therefore,

m, =n; < |V|<|E| and my, = n, < V).

Case III: R < R; At some operation v; there will not
be a register available to write the output of v;.
This implies that some register holding the out-

put of operation v; will need to be stored into the
memory. Depending upon the operation v; chosen,
there will be a register spill if output of v; is live.
Let £ C V be the set of live operations that are
chosen for spill. Therefore,

n; + Zo(v;) < Zo(v() = |E]|

no+|E|< V|

il

my

my =

Clearly, the choice of the spill set = determines
the actual number of memory read and write opera-
tions needed. In software compilation, the optimiza-
tion problem is then to choose = such that Y- o(v) is
minimized. This is another way of stating the familiar
register allocation problem [20]. We use the following
heuristic to select operations for the spill. From the
conflict graph, Gy for a given schedule, select a vertex
v with outdegree less than R. This vertex is then as-
signed a register different from its neighbours. From
this we construct a new conflict graph G by removing
v and its fanout edges from G;. The procedure is then
repeated on G until we have a vertex with outdegree
greater than or equal to R. In this case, a vertex is
chosen for spill and the process is continued.

For most assignment statements, the left side gener-
ates a lvalue and the right side generates a rvalue [17],
though in some cases (e.g., computed references and
structures) left hand side also generates rvalues which
are subsequently assigned to appropriate lvalue also
generated by the left side. We observe that the num-
ber of instructions generated by the compiler is related
to the number of rvalues. Therefore, the program size
S”,T is approximated by the sum over rvalues associated
with operation vertices. This is only an upper bound
since some global optimizations may reduce the total
number of instructions generated.

Note that we do not directly try to minimize regis-
ter usage by the object program since that optimiza-
tion level belongs to the software compiler. The objec-
tive of spill set enumeration is to arrive at an estimate
of memory operations assuming a reasonably sophisti-
cated software compiler. Clearly this is only an esti-
mate since the actual register allocation will vary with
the choice of the compiler.

5 Summary

This paper presents important issues in software gen-
eration from our experience in building a co-synthesis
system, VULCAN. The actual code generation is a fairly
straightforward procedure and is omitted from discus-
sions here. The main problem is due to presence of
ND operations that may make it impossible to guar-
antee satisfaction of timing constraints. We have pre-
sented a model for the software and the runtime sys-
tem that consists of a set of program threads which are

63

initiated by synchronization operations. We then de-
scribe a linearization algorithm using a vertex elimina-
tion scheme. This algorithm uses a heuristic measure
of urgency based on timing constraint analysis on an
implementation using unlimited resources.

We conclude by noting that there exists a tradeoff
between code and data size for a given graph imple-
mentation into software based on how the variables in
M (G) are packed into machine words (see Example 2.1).
We leave this issue for a future discussion.

References

[1] D. E. Thomas et af., “A Model and Methodology for
Hardware-Software Codesign,” IEEE Design & Test of
Computers, pp. 6-15, Sept. 1993.

M. Chiodo et al., “Synthesis of mixed software-hardware

implementations from CFSM specifications,” in Intl. Wkshp.

on Hardware-Software Co-design, Oct. 1993.

R. Ernst et al., “Hardware-Software Cosynthesis for Micro-

controllers,” IEEE Design & Test of Computers, pp. 64-75,

Dec. 1993.

R. K. Gupta, G. D. Micheli, “Hardware-Software Cosynthe-

sis for Digital Systems,” IEEE Design & Test of Computers,

PP. 29-41, Sept. 1993.

G. D. Micheli et al, “The Olympus Synthesis System for

Digital Design,” IEEE Design £ Test of Computers, pp. 37—

53, Oct. 1990.

[6] A.Jerraya et al., “Linking system design tools and hardware
design tools,” in CHDL’93, Apr. 1993.

[7] D. Ku, G. D. Micheli, High-level Synthesis of ASICs un-
der Timing and and Synchronization Constraints. Kluwer
Academic Publishers, 1992.

[8] W. Wolf, R. Manno, “High-level modeling and synthesis of
communicating processes using VHDL,” IEICE Trans. In-
formation & Systems, E76-D(9), pp. 1039-1046, Sept. 1993.

[9] R. K. Gupta, G. D. Micheli, “Specification and analysis
of constraints for hardware-software systems,” To appear.,
1994.

R. K. Gupta, Co-synthesis of Hardware and Software for
Digital Embedded Systems. PhD thesis, Stanford University,
Dec. 1993.

J. L. Hennessy, D. A. Patterson, Computer Architecture: A
Quantitative Approach. Morgan-Kaufman, 1990.

A. Shaw, “Reasoning about Time in Higher Level Language
Software,” IEEE Trans. Software Engg., vol. 15, no. 7,
pp. 875-889, July 1989.

A. Mok et al., “Evaluating Tight Execution Time Bounds
of Programs by Annotations,” in Proc. IEEE Wkshp. Real-
Time Operating Systems & Software, pp. 74-80, May 1989.
C. Y. Park, A. C. Shaw, “Experiments with a Program Tim-
ing Tool Based on Source-Level Timing Schema,” in Proc.
Real-Time Systems Symposium, pp. 72-81, Dec. 1990.

W. Hardt, R. Camposano, “Trade-offfs in HW/SW Code-
sign,” in Intl. Wkshp. on Hardware-Software Co-design,
Oct. 1993.

M. R. Garey, D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman
and Company, 1979.

A. V. Aho, R. Sethi, J. D. Ullman, Compilers: Principles,
Techniques and Tools. Addison Wesley, 1986.

P. Chou, G. Borriello, “Software scheduling in the Co-
Synthesis of Reactive Real-Time Systems,” in Intl. Wkshp.
on Hardware-Software Co-design, Oct. 1993,

Y. Liao, C. Wong, “An algorithm to compact a VLSI sym-
bolic layout with mixed constraints,” Proc. IEEE Trans. on
CAD/ICAS, vol. 2, no. 2, pp. 62-69, Apr. 1983.

G. J. Chaitin, “Register Allocation and Spilling via Graph
Coloring,” SIGPLAN Notices, 17(6), pp. 201-207, 1982.

{2

(3]

{4]

5]

10]

(1]
(12]

(13]

(14]

(15]

{16]

(17
(18]

[19]

[20]

