Redesigning Hardware-Software Systems

Claudionor Nunes Coelho Jr.

Chih-Yuan Jerry Yang

Vincent Mooney

Giovanni De Micheli

Center for Integrated Systems
Dept. of Electrical Engineering
Stanford University
Stanford, California 94305
coelho@pegasus.stanford.edu

Abstract

During the life cycle of a digital reactive real-time sys-
tem implemented as a hardware-software board or chip,
some of its components must be redesigned, either be-
cause a refocusing of the product market resulted in a
specification change, or because bugs in the specification
were found at a later stage of the design.

We address the problem of automatically checking if
a new version of a specification can utilize a hardware-
software implementation of a previous version of the same
specification by just changing the software portion of the
design.

The redesigning strategy we propose is divided into
four phases. In the first phase, we check which parts
of the specification were changed. In the second phase,
we extract timing constraints from the previous hardware
implementation that must be satisfied by the new soft-
ware implementation. Then, we schedule and select the
instructions in the software routine such that the timing
constraints are observed. Finally, we check if the final
implementation satisfies the specification rate constraints
of the design.

We present an example of a keyboard/mouse device,
and we show that the hardware-software synthesis system
can be made robust with respect to small changes in the
specification.

1 Introduction

Several approaches to co-design of reactive real-time
digital systems from behavioral specifications have been
proposed in the past [7, 6, 15, 3, 2, 5, 16]. In particular,
we consider a design flow as shown in Figure 1. The
major weakness of such systems is their inability to handle
specification changes.

During the life cycle of a digital system, some of its
components often need to be redesigned. Redesign ad-
dresses the problem of updating an implementation as a
result of a change in the specification. This change can
result from a refocusing of the product market or from
the correction of bugs found at a later stage of the de-
sign. Presently, such specification change would require
the re-synthesis of the specification, which imposes over-
head costs to the implementation, and even delays in the
time a product will reach the market. Current hardware-
software synthesis tools will not guarantee that the new

0-8186-6315-4/94 $04.00 © 1994 IEEE

116

specification will be mapped in a consistent way into a
board or chip manufactured for a previous version of the
design.

HDL Specification Design Constraints

/
“

Hkernel Partitioning

Soflwan: Interface Harliware
Code Gc< /Synv.hesis

Implementation

\
/

Board Chip
Figure 1. Generic System for Synthesizing Hardware-
Software Reactive Real-Time Systems

In this paper, we address the problem of automatically
checking if a new version of a specification can utilize an
implementation of a previous version of the specification
by just changing the software portion of the design. Also,
we show how to optimally upgrade the implementation to
reflect those changes.

This paper is organized as follows. In Section 2 we
state the assumptions we make about the specification and
synthesis tool. In Section 3, we consider the assumptions
on the amount and types of specification changes this for-
mulation can tolerate. In Section 4, we present a solution
method for the redesign problem of hardware-software
systems, with its four components, which are presented
in Sections 5, 6, 7 and 8. Finally, we present the re-
sults on the redesigning problem for a keyboard/mouse
device on Section 9, and the conclusions of this work on
Section 10.

2 Preliminaries

We state in this section the assumptions we make about
the specification model, the hardware-software synthesis
tool and implementation details that will be considered
during the redesign problem of hardware-software sys-
tems.

We consider the design of a reactive real-time system
that is specified at the behavioral level by some hard-
ware description language, such as VHDL, Verilog HDL
or HardwareC. This design is assumed to be further an-
notated with I/O timing and rate constraints.

Figure 2: Keyboard/Mouse Input Device of a Microconi-
puter

Example 1 We present in Figure 2 a keyboard/mouse input
system, which can be encountered in any microcomputer system.
This system is composed by a keyboard input routine, a mouse
input routine, a code converter, and a serial transmission line.

In this design, we have design rates under which each part
of the specification should function. In particular, the keyboard
scanner routine should be able to process any changes in the key-
board every 100 useconds, the mouse scanner routine should be
able to process a movement on the mouse every 100 useconds,
and the serializer should be able to send each bit at a rate of
100 Kbps. O

We assume a co-synthesis tool such as [7, 5] is used
to partition the specification into its three components —
interface, software and hardware — such that all the in-
terface with the external world is made through regis-
ters, which can be implemented either by using ports of
a micro-controller or by using registers implemented in
hardware.

The interface specifies how the software and hardware
partitions communicate. In the original implementation,
we assume that data is transferred in either direction by
using blocking or non-blocking communication protocols,
depending on whether or not the partition also requires the
transfer of control.

The parts of the specification to be implemented in soft-
ware are partitioned into threads, which are sets of oper-
ations or computations that execute in deterministic time,

117

and can only start execution after another set of computa-
tions that execute in non-deterministic time (such as loops
and synchronizations with external events) have finished.
Since each thread executes in deterministic time once it
is started, we can apply conventional code generation for
basic blocks [14, 1] in order to generate the code for the
operations in the thread. The scheduling of threads over
time, however, depends on control and data transfers, and
thus a control-data driven scheduler is used in the soft-
ware that allows both software and hardware to schedule
threads over time. For further information on this control-
data driven scheduler, we refer the reader to [8, 9]. We
also assume that threads will execute in a general purpose
microprocessor with a single-level memory hierarchy.
The hardware is synthesized using synthesis tools ca-
pable of scheduling operations over time, and allocating
and binding resources and registers [13]. We assume here
that the degrees of freedom introduced by the software are
considered during the hardware synthesis process in or-
der to further optimize the hardware implementation and
also to reduce the need for additional synchronizations, as
described in general by [10, 11]. For example, hardware-
software I/O transfers (also called in this paper HSI/O) in
a thread that are performed in parallel in the specification
can be collapsed and serialized to share the same register
port. Strict timing constraints obtained from the HSI/Os
can also be used in the hardware to avoid the need for
additional synchronizations between the two partitions.

ASIC

uProcessor

Figure 3: Hardware-Software Implementation of Key-
board/Mouse Device

Example 2 For the example of Figure 2, a possible hardware-
software partition obtained by any hardware-software synthesis
tool is shown in Figure 3.

In this implementation, the latency of the routines CODE-
CONVERT, KEYSCANNER, MOUSESCANNER, SCHEDULER
are 305, 155, 84 and 87 cycles on a MIPS R-2000 like mi-
croprocessor without pipelining, respectively. Note that this im-
plementation satisfies the rate constraints of the design for a
microprocessor running at a speed of 10MHz or more.

The new routines MOUSEEVENT and KEYBOARDEVENT
generate events that trigger the software threads MOUSESCAN-
NER and KEYSCANNER, respectively. In addition to that, KEY-
BOARDEVENT also scans the keyboard sequentially upon an
initial command from KEYSCANNER. This circuit was further
optimized considering the degrees of freedom introduced by the

schedule of the HSI/O operations in the thread KEYSCANNER.
@]

3 Assumptions for the Redesign Problem

We want to incorporate the modifications between two
versions of a specification in software, thus using the
board or chip of the earlier version of the design. We as-
sume that for a version 7 of the specification, here called
S;, we have already obtained an implementation I;, for
which a board or a chip has been manufactured. Next, a
new version ¢ 4+ 1 of the specification (S;4) is upgraded
from the specification S;. The new implementation can
use the board or chip of the previous version if it ob-
serves the HSI/O timing constraints of S; and the HSI/O
rate constraints of Si1.

We first have to state which types of modifications
will be supported by this methodology. We must assume
that the changes into the specification were made into the
portions mapped into software. Furthermore, we preclude
from these changes any modification in the number of
1/O signals of the original specification, since this would
require changes in the hardware. Note that this does not
preclude the external environment to multiplex data into
existing I/O signals of the the original design.

‘We assume that the differences between the two spec-
ifications S; and S;4; can be mostly confined into opera-
tions inside basic blocks. Thus, the control-flow structure
of Si4+1 is very similar to the control-flow structure of .S;.
In some specific circumstances, our algorithm supports
recognizing differences not within the same basic blocks.
The conditions and the algorithm for obtaining the dif-
ferences between .S5; and .S;4+; will be shown later in this
paper. Finally, we assume that an annotated version of
the specification .S; exists such that we can infer which
parts of S; were implemented in software and which parts
of S; were implemented in hardware.

Example 3 For the example presented in Figure 2, we assume
that a new keyboard layout is going to be used. This new
keyboard contains the additional key NUMLOCK that makes
the numeric keyboard generate the same signal codes as the
ones generated by the mouse, whenever the key is pressed. O

4 Solution to the Redesign Problem

In order to generate the implementation using the board
or chip of a previous version of the design, we must per-
form the following tasks:

1. Identify the threads that were modified.

2. Extract timing constraints for the modified threads
from the previous version

3. Schedule and select instructions for each new thread
such that extracted timing constraints are observed.

4. Check that I/O rate constraints of the final implemen-
tation are still valid, when these rates are specified.

Each one of these tasks are going to be described in
the following sections.

[Composition | HL Representation | CF Expression |

Sequential begin P; Q end P-gq
Parallel fork P; Q join rlle
if (C)
Alternati P
ernative else c:p+¢:gq
Qs
while (C)
Loop P (c:p)*
wait (IC)
P, (c:0)"-p
Infinite alw;y . »“
Table 1: Link between Verilog HDL Constructs and

Control-Flow Expressions

5 Identifying Modified Threads in S; and

Sit1

In this section, we compare the two versions of the
specification, S; and S;4, and obtain the minimum num-
ber of threads that includes the changes between the two
specifications. In order to be compared, both specifica-
tions are abstracted into their control-flow expressions,
which are an abstraction of the control-flow of any hard-
ware description language [10, 11].

5.1 Control-Flow Expressions

Control-flow expressions is an algebra used to model
the control-flow of a specification, by abstracting away
data-flow information. The data-flow is abstracted in
terms of its execution time mapping, which is assumed
in this paper to be one clock cycle for each operation; a
binding mapping, which binds the operation type to its
function; and a synchronization mapping, which specifies
how different operations interact.

The data-flow operations can be abstracted by two sets.
The first set, called action set, associates a label with op-
erations. The second set, called conditional set, associates
a label with the conditional guards of loops and alternative
constructs.

In order to represent the control-flow of a design,
control-flow expressions incorporate the usual high-level
language constructs, namely the constructs for sequen-
tial, alternative, loop, unconditional repetition and paral-
lel composition. Finally, three special symbols, 0, € and §
represent respectively a single cycle action that does not
perform any computation and executes in one cycle, a null
computation that executes in zero time, and a deadlock,
i.e. a computation that cannot finish, respectively. For
example, Table 1 shows the representation of the control-
flow constructs for Verilog HDL in terms of control-flow
expressions. In this figure, we assume that p and ¢ de-
note the control-flow expressions representing the Verilog
HDL code for P and), the conditional ¢ abstracts the
operation (’, and the guards ¢ and ¢ encapsulate the con-

ditions for the alternative and loop choices that must be
taken during the execution of the Verilog HDL program.

We assume that parentheses have precedence over all
control-flow expression operators and they will be used
to improve reading clarity in this paper.

Example 4 We can represent the system of Figure 2 by the
control-flow expression DEVICE = KEYSCANNER||
MoOUSESCANNER|| CODECONVERTER|| PARALLEL TOSERIAL,
i.e. the parallel composition of the four parts of the system. The
routine PARALLELTOSERIAL can be represented by the control-
flow expression ((DataReady : 0)* - TXE - (TXE, || BIT) -
BIT; - BiT; - BiTs - BiTs - BiTs - BiTs - BiT7)“, ie. a rou-
tine that first waits for a data to be ready by sampling the sig-
nal DataReady on every cycle in the control-flow expression
(DataReady : 0)*, and then starts sending the data each bit at a
time, and then waits for another data. The action TXE; corre-
sponds to setting the output signal TXE (transmission enable)
to 1, and the action BIT; corresponds to setting the serial data
line to the value contained in the ¢-th bit of some input regis-
ter. Note that these action names are just conventions used and
the only assumption we use in this paper is that two identical
operations will have the same action name. O

Control-flow expressions can be pictured as the di-
rected acyclic graph (V, E,C), where V is the set of
nodes, E is the set of edges, and C is a mapping from
the edges to the set of guards over the set of conditionals.

The set of nodes V can be further subdivided into
AUO, where A corresponds to the set of actions of the
control-flow expression, and O corresponds to the pos-
sible compositions of the specifications, such as sequen-
tial (-), parallel (||), alternative (+), loop (*) and infinite
(w). The sets .A and O can be also classified as being
either deterministic or non-deterministic. Deterministic
nodes are assumed to execute in finite time, and non-
deterministic nodes have unknown execution time. These
latter nodes are also called anchors by [12]. Examples of
non-deterministic operations are blocking communication
nodes, and loops.

Example 5 The directed acyclic graph for the routine PAR-
ALLELTOSERIAL shown in Example 4 is shown in Figure 4.
@]

ParallelToSerial

TXE ;

BIT,

Figure 4: Directed Acyclic Graph for Control-Flow of

Routine PARALLELTOSERIAL

119

The advantage of using control-flow expressions for
representing the control-flow of the specification is that
they concisely capture the behavior of the system in terms
of its concurrent control-flow components, their interac-
tion and synchronization. The reader is referred to [11]
for a more complete explanation of control-flow expres-
sions. In this paper, we will use control-flow expressions
to represent the specifications S; and S;4, in order to
detect the differences between them.

5.2 Matching S; and S;4

Verifying whether two specifications are equivalent or
not at the behavioral level is a formidable task in gen-
eral, because the state space involved in the equivalence
check is enormous. Thus, instead of considering an exact
method for matching S; and S;4 at an expense of a pro-
hibitive time complexity, we adopt in this paper a struc-
tural checking of the behavior in terms of its control-flow.
This method will identify all threads of the two versions
of the specification that do not match, and it will also
identify some equivalent threads as mismatches, but at a
time complexity that is manageble.

In order to identify which threads of S; were modi-
fied in S;4;, we first have to partition the control-flow
of S; and S;4; into threads. Since the control-flow of
the specifications are represented by control-flow expres-
sions, identifying modified threads in the control-flows of
S; and Si4 is equivalent to computing the best match
between the subgraphs of S; and Sj41.

We defined previously that a thread was a set of
deterministic operations triggered by one or more non-
deterministic operation. Note also that for S;, we already
know which parts of the specification were implemented
in software and which parts of the specification were im-
plemented in hardware, by considering each node of the
control-flow expression of S; to be colored by HARD-
WARE or SOFTWARE, and in the latter case, by a thread
number.

The algorithm begins by matching the nodes in S;44
that were colored with HARDWARE with their counter-
parts in .S;. The algorithm proceeds by marking the non-
deterministic operations of .5;4 in all other nodes which
were not colored by HARDWARE. A non-deterministic
operation in a control-flow expression is determined as
follows:

e Alternative and parallel composition is considered
non-deterministic only if one of its branches are non-
deterministic.

e Any suffix of a sequential composition is non-
deterministic if the operation preceding it is non-
deterministic.

e The bodies of loops and infinite computations are
considered to begin in non-deterministic time.

o The exit point of a loop is considered to have a non-
deterministic starting time.

Each thread is then formed by considering a set of non-
deterministic operations as its starting point, and enclosing
as many deterministic control-flow expressions that are
composed sequentially as possible.

Example 6 In Figure 5, we represent the threads for the
control-flow expression (01 -(c : 02)*-03)“, where o; are actions
representing operations, and c is a conditional.

The first thread begins with o), i.e. the first operation exe-
cuted in the infinite composition. The second thread is repre-
sented by the loop body. The third thread begins when the loop
exits. O

always

begin
operation 1
while (c) operation 2
operation 3

end

Figure 5: Thread Extraction from Control-Flow Expres-
sion

In order to match the control-flow expressions, we have
to consider two cases. If only deterministic operations
can be added or deleted in the original specification, then
the difference between threads can be obtained exactly,
since there will be a one-to-one correspondence between
the activation point of the threads (anchors) of S; and
Si41. This exact match is possible if the non-deterministic
operations appear in the same order in the dags for .S; and

41

+If we now consider that non-deterministic operations
can be added or deleted in the specification, then we can
only find a conservative match between S; and S;;,. The
approximation that we make is that we try to match the
HSI/O points and the hardware implementation parts of S;
and S;41, i.e. the points where timing constraints across
the hardware-software partition will have to be analyzed.

The difficulty in the matching S; and S;;, when non-
deterministic operation changes are allowed is the fol-
lowing. Each thread corresponds to a set of operations
that execute in deterministic time and thus have a fixed
latency. On the other hand, operations that execute in
non-deterministic time determine the firing rate in which
the threads execute and the synchronization requirements
between hardware and software. Since the HSI/O inter-
face was built for an implementation of S; with all syn-
chronizations made relative to the anchors of S;, allowing
Si4+1 to have anchor changes may result in synchroniza-
tions that were not implemented for .S;, thus requiring a
new implementation.

Thus, under the assumptions of small changes to the
specification (or changes do not add any synchronization
to the interface), we try to match two threads if they have
exactly the same HSI/Os and control transfers to hard-
ware, or if two non-deterministic operations of S; and
Sit1 enclose HSI/Os that contain timing constraints (of
course, if timing constraints are partitioned between two
different threads in S;;;, we assume that it is not possi-
ble to satisfy the timing constraints, in a similar manner
as in relative scheduling [12]). Finally, for the remaining

120

of the non-deterministic operations, we match them in an
as soon as possible basis, with respect to the sequential
composition,

Example 7 Let us consider now the control-flow expression
of Example 6 to be an earlier version of the specification, and the
control-flow expression (0¢-01-(c: 02)*-03)“ to be the upgraded
version of the specification. For sake of simplicity, let us assume
that the original specification was completely implemented in
software,

In this case, an exact match is possible between the two
versions of the specification, and only the software for the first
thread would be re-implemented from o to oo - 0; in this new
version. O

6 Obtaining Timing Constraints

Two types of timing constraints should be consid-
ered when re-implementing software threads: timing con-
straints that can be extracted from the interaction of the
system with the external environment (usually called I/O
timing constraints [4]), and timing constraints that are ob-
tained from the hardware-software interface of the imple-
mentation of .S;, which we call HSI/O timing constraints.
Note that both timing constraints are made relative to
some thread initializations.

Both timing constraints can be considered to be of the
form of minimum/maximum timing constraints with re-
spect to a thread initialization. Minimum I/O timing con-
straints have an upper bound on the thread latency for the
previous version. Maximum I/O timing constraints have a
lower bound on the thread’s initial execution time. Thus,
each minimum/maximum timing constraint will appear in
pairs, and we will refer to a minimum/maximum timing
constraint as an interval timing constraint.

// compute x*1/y with mintime = 5 cycles
module C(x,y.z)

always
begin
z=x*1ly;
end
sW / \
load rl,x
load r2,y
2= 1/r2
r3=r1Ar2 (5,3+m1+n2]

swzZr3

Figure 6: Interval Timing Constraints

Example 8 In Figure 6, we present an example on how the
minimum timing constraints is transformed into an interval tim-
ing constraint after an implementation is obtained. Once a
schedule of the hardware and software is obtained, we intro-
duce upper bounds on the time an operation in the new ver-
sion of the software can be executed, thus creating the interval
[5,3 +n + 112]. [m]

For the HSI/O timing constraints obtained from the
previous implementation {;, the new version of the spec-
fication Sy will only interact with the hardware through
the register ports, which are shared over time.

In this section, we assume that the interval timing con-
straints can be obtained for the former type of timing
constraints, in a straightforward manner from the speci-
fication’s I/O timing constraints and the schedules of the
implementation I;. We will thus focus on the problem of
extracting the intervals for HSI/Os, which incorporates the
external world I/Os under our assumption that all trans-
fers between the design and the external world are made
through the hardware.

6.1 Interval Extraction

The interval extraction problem is to find the HSI/O
interval Z(o) for all o € O, where O is the set of HSI/Os
of a thread.

{tn, =)

Figure 7. Example of Interval Extraction

The procedure to extract the interval sets is relatively
straightforward. Before providing the algorithm, we pro-
vide the intuition using the graph segment shown in Figure
7. The top vertex A refers to the local anchor of the hard-
ware component [12], and the vertex sink refers to the
end of the subgraph execution. Let R(r) and W(r) be
HSI/Os of the software that are reads from register port
r at time ¢;, and writes to register r at time ¢,. Both are
assigned to use register port r.

For hardware input operations, such as operation R(r),
the latest time (/,nqr) @ value can be written to r by the
software is one cycle before the execution of R(r), or
t; — 1. The earliest time (I,,;,) is determined by when
the register port is available to be written. In this case,
since r is not used by any previous operation, I m;, = 0
and the interval set for R(rg’ is then Z(R) = [0,t4].

For hardware output operations, such as W(r), the ear-
liest time a software routine can extract data from r is
iy + 1. Since no other operation uses r subsequently, the
latest that the software can access r is t,. The interval
for W is Z(W) = [ty, tn).

The algorithm is as follows:
FindInterval {InOutVertices, Starttime,

foreach v in InOutVertices {
if (InQutVertices->type == READ) |{

Binding) {

Interval [v]->min = Last previous usage of Binding(v);

Interval [v]-»>max = Starttime(v) - 1;
)
if {InOutVertices->type == WRITE) {
Interval [v]->min = Starttime(v) + 1;
Interval [v]->max = Next usage of Binding{v);
}

121

The parameter InQutVertices is the set of HSI/O
nodes implemented in a hardware thread, the schedule of
this thread is in Starttime, and the resource binding is in
Binding. Since the algorithm performs a single traversal
of all HSI/O nodes, and at each node the computation is
unit time, the complexity of the algorithm is linear with
respect to the size of the graph.

5 cycles
write RegPort
= row[0]
7 cycles
write RegPort
= row1]
7 cycles
write RegPort
= row(2]

Figure 8: Interval Extraction for Keyboard Scanner

Example 9 The hardware schedule for the keyboard scanner
is shown in Figure 8. The schedule begins execution upon the
activation of the anchor node on top of the graph. The schedule
performs a 3 HSI/O operations by writing to the register ports
after S cycles, 7 cycles, and 7 cycles.

We now extract intervals for X, Y, Z using FindInterval.
We assume that X, Y, and Z write to the same register port.
For X, the data to the register port is available at cycle 6 and
can be accessed by software until execution of Y at cycle 12.
Similarly, interval for Y is {13, 19], and interval for Z is [21, A],
where A is the thread latency. O

7 Scheduling and Selecting Instructions

with Timing Constraints

Once the modified threads are obtained and the inter-
val timing constraints for the HSI/O operations are com-
puted, we have to generate the code for these threads.
Each thread can be considered to contain a set of data-
flow, a set of HSI/O operations and their control/data de-
pendencies. For some of the HSI/O operations, we also
have intervals that correspond to the window of time in
which the HSI/O operation should occur with respect to
the thread’s execution.

We initially construct a directed acyclic graph for the
thread, where the nodes are data-flow or HSI/O opera-
tions. Figure 9 presents a graph in which the shaded
node corresponds to an HSI/O operation. For each of the
nodes of this graph, we select the instructions by expres-
sion tree matching algorithms, such as Burg [14], with a

fixed number of registers. The instruction selection step
also provides the execution time for each node of the
thread, in terms of cycles.

After obtaining a schedule for each node of the thread,
we have to schedule the nodes sequentially such that the
HSI/O operations observe the timing intervals obtained
from the hardware implementation of the previous speci-
fication.

Figure 9: DAG Representation of a Thread

The operation execution times and the HSI/O intervals
obtained from the previous implementation are then used
to serialize the thread operations. We consider that input
operations can be scheduled earlier than its use, by using
additional storage. We also consider that the scheduling
of an output operations can be at most postponed, if such
requirement is necessary. Note that we may have to it-
erate over the code generation for the expression trees in
the case we have to interleave HSI/O operations with the
code for expression trees, since in this case the number
of registers used for the code generation of an expression
tree may have to be reduced.

8 Microprocessor Utilization Check

If data rates are specified in the design, after re-
implementing the changes that are required in software,
we have to check that these data rates are satisfied by the
new software implementation. For each thread i of the
specification, we have its execution rate p; [7]. Thus, we
can check the satisfiability of rate constraints in the new
implementation by checking if ¥ pi(A; +0) < 1, assum-
ing that A; is the thread’s latency and o is the scheduler
overhead.

9 Example

We present in Figure 10 the new implementation for the
modified keyboard layout, as presented in Example 3. In
this new implementation, the load operations in the soft-
ware routine of the example must be executed within the
time windows shown for the hardware implementation.

A new scheduled routine can be implemented in the
target microprocessor with a latency of 188 clock cycles
for an unpipelined version of the MIPS-R2000 proces-
sor. We can check that this new version of the routine
KEYSCANNER still satisfies the execution rates of the
specification for a microprocessor running at a speed of
10MHz.

122

Toud row0LKeyPort
nop

:\:‘p‘ row{1].KeyPort
hop

nop
nop

nop
{oad row{2].KeyPort

RTL reprssentation of uProcessor Code
for new version of Key

of HSVO
version of design

for

Figure 10: New Implementation obtained from Previous
Version of Design

10 Conclusions

We presented the problem of implementing a new ver-
sion of a specification into the board or chip of the pre-
vious version. This approach allows the reduction of the
costs of re-implementing the specification and thus re-
duces the time to market of a product.

We assumed that the original specification was par-
titioned into a software program that runs on a micro-
processor or micro-controller, and the hardware is im-
plemented as an ASIC. The program was generated by
further partitioning the program into threads, which exe-
cuted in deterministic time, and which were assumed to
be scheduled using a control-data driven scheduler. The
hardware was assumed to be synthesized using the de-
grees of freedom introduced by the software threads. The
hardware-software interface was assumed to be composed
of blocking and non-blocking communication protocols.

The degrees of freedom allowed by the previous im-
plementation was extracted by examining the hardware
schedules of operations involved in the hardware-software
interface. The resulting interval sets represented the tim-
ing constraints for subsequent software scheduling.

The modification model we considered was built on the
assumption that only software changes were required. We
used control-flow expressions to determine the changes
between the two versions of the specification that would
be re-implemented by software.

The problem of synthesizing the new implementation
was then divided into four phases. In the first phase, we
extracted the changes between the old and the new spec-
ification. In the second phase, we extracted the timing
constraints from the implementation of a previous version
of the specification. In the third phase, the software for
the new threads was scheduled observing the hardware-

software transfer behavior of the old implementation. In
the last phase, we checked that the new software imple-
mentation satisfied the I/O rate constraints of the specifi-
cation.

We showed an example on the modification of the spec-
ification of a keyboard/mouse device that allowed the au-
tomatic incorporation of the changes into software.

As future work, we intend to fully automate the re-
design process. We also intend to obtain better match-
ing algorithms for the old and the new versions of the
specification. Finally, we want to consider some types of
hardware changes that can be supported if the hardware is
implemented in a look-up table based field-programmable
device.

Acknowledgments

The authors would like to acknowledge Dr. K.-C. Chen
from Fujitsu Laboratories of America for early discus-
sions on the redesign problem. This research is sponsored
by NSF-ARPA under grant MIP 9115432, The first au-
thor was supported by the scholarship 200212/90.7 from
CNPq/Brazil, and also by a fellowship from Fujitsu Lab-
oratories of America. The second author was supported
by a fellowship from Hitachi.

References
[1] A. Aho, R. Sethi, and J. Ullman. Compilers - Principles, Tech-
niques and Tools. Addison Wesley, 1988.

[2] E. Bamos, W. Rosenstiel, and X. Xiong. Hardware/Software Parti-
tioning with UNITY. In Notes of Workshop on Hardware/Software

Co-design, October 1993.

M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and
A. Sangiovanni Vincentelli. Synthesis of mixed software-hardware
implementations from CFSM specifications. In International Work-
shop on Hardy Software Co-d October 1993.

P. Chou and G. Borriello. Softwware scheduling in the co-synthesis
of reactive real-time systems. In Proceedings of the 31 <Design
Automation Conference, pages 1-4, June 1994.

31

(4]

{51 P. Chou, E. Walkup, and G. Borriello. Scheduling issues in the co-
synthesis of reactive real-time systems. to appear in IEEE Micro,

1994.

R. Ernst, J. Henkel, and Th. Benner. Hardware-Software Co-
synthesis for Microcontrollers. JEEE Design & Test of Computers,
December 1993.

R. K. Gupta. Co-synthesis of Hardware and Software for Digital
Embedded Systems. PhD thesis, Stanford University, 1993.

R. K. Gupta, C. N. Coelhio Jr., and G. De Micheli. Synthesis and
simulation of digital systems containing interacting hardware and
software components. In Proceedings of the 29 thDesign Automa-
tion Conference, pages 225-230, June 1992.

R. K. Gupta, C. N. Coelho Jr., and G. De Micheli. Program im-
plementation schemes for hardware-software systems. /EEE Com-
puter, pages 48-55, January 1994.

C. N. Coelho Jr., D. Ku, and G. De Micheli. An algebra for model-
ing concurrent digital circuits. In ACM International Workshop on
Timing Issues in the Specification and Synthesis of Digital Systems,
1993.

C. N. Coelho Jr. and G. De Micheli. Analysis and synthesis of con-
current digital circuits using control-flow expressions. Technical
report, Stanford University, 1994.

D. Ku and G. De Micheli. High-level Synthesis of ASICs under
Timing and and Synchronization Constraints. Kluwer Academic
Publishers, 1992.

(6]

17

(8]

191

[10}

(1]

(12]

123

[13] PKission, E. Closse, L. Bergher, and A. Jerraya. Industrial Ex-
perimentation in High-Level Synthesis. In Proceedings of the Eu-
ropean Design Automation Conference with EURO-VHDL, pages
506-511, September 1993.

T. A. Proebsting. Code Generation Techniques. PhD thesis, Uni-
versity of Wisconsin - Madison, 1992.

[15] D.E. Thomas, J. K. Adams, and H. Schmit. A model and method-
ology for hardware-software codesign. IEEE Design & Test of
Computers, pages 6-15, September 1993.

(14]

[16] N. Woo, a. Dunlop, and W. Wolf. Codesign from cospecification.

IEEE Computer, pages 42-47, January 1994.

