Saving Power by
Synthesizing Gated Clocks
for Sequential Circuits

As PORTABLE DEVICES prolifer-
ate and device sizes continue to
shrink, allowing more devices to fit
on a chip, power consumption
takes on increased importance.
Recent work has focused on accu-
rate estimates of power consump-
tion and on its reduction at all levels
of abstraction, from high-level syn-
thesis down to physical layout.™

Most power reduction tech-
niques emphasize reducing the lev-
el of activity in some portion of the
circuit. We extend this research by
reducing the activity level of the
clock by selectively stopping it.
Because many sequential ma-
chines are implementations of re-
active systems, they wait for a
certain event to occur before
changing state. This waiting wastes
alot of power. Clocking latches and
computing the next-state function,
for example, consume unnecessary
power since nothing changes until
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Portable devices demand low
power consumption to prolong
battery life. Gating the clock is one
strategy for saving power. The
authors’ technique identifies self-
loops in an FSM and uses the
function described by the self-loops
to gate the clock. Applying these

techniques to standard
benchmarks achieved an average
25% less power dissipation at a
cost of only 5% more area.

during inactive periods. Our tech-
nique works automatically and at
a much finer granularity by recog-
nizing wait states within FSMs and
synthesizing circuitry to selective-
ly stop the clock during these peri-
ods of inactivity.

Some asynchronous design
techniques are also based on the
idea of selective clocking.” These
techniques produce circuitry in
which the asynchronous FSM is
clocked only when there is activity,
S0 power management is built into
the system. However, one cannot
apply these techniques directly,
since they require environmental
and output constraints that are not
valid for synchronous systems.

Our algorithms automatically
synthesize the clock-gating circuit-
ry for a sequential circuit modeled
either as an FSM state table oras a
synchronous network. Our tech-
nique also operates locally within

the requisite event arrives. By stop-
ping the clock during this period, we
can realize substantial power savings in
many finite state machines (FSMs).
The idea of selectively stopping the
clock is not new; designers of large sys-
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tems commonly use it as a part of dy-
namic power-management schemes.’
In these schemes, however, the design-
er manually inserts circuitry to stop the
clock for large portions of the system
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an FSM, requiring no information
about the environment. However, de-
signers can use environmental signals
in conjunction with our technique to
save more power.
Our technique uses the knowledge
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Figure 1. Two-phase state machine (a); timing diagram (b).

of the next-state function to generate a
clock activation signal only when the
machine needs to perform a state tran-
sition. This is done in such a way that
the machine is functionally equivalent
to the original FSM, with a reduction in
power dissipation and a small increase
in area and critical-path delay. Applying
these algorithms to benchmark circuits
show an average 25% less power dissi-
pation accompanied by a 5% increase
in area.

Background

Systems with gated clocks are be-
coming increasingly widespread, but
their implementation poses challenges
that need to be understood for an auto-
niatic synthesis approach to be effective.

Gated clocks. Clocks are often gat-
ed with other signals to disable inactive
parts of the system thereby saving pow-
er.’$ The basic idea behind a gated
clocking scheme is that the environ-
ment around a functional block pro-
duces control signals that, when
asserted, turn off the clock to the FSM.
This reduces the power dissipated on
clock lines and eliminates power dissi-
pation through the internal FSM logic
during periods of inactivity. Although
gated clocks can increase clock skew,
causing problems for high-performance
designs, many synthesis tools provide ef-
fective clocking equalization schemes
that eliminate this problem.*

With the explosion in portable com-
puting, many recent designs use gated
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clocks to save a significant amount of
power. For example, a version of the
Intel Pentium chip® uses gated clocking
techniques to stop the clock while the
processor is idle, resulting in twice the
average reduction in power consump-
tion during actual system operation. A
superscalar version of the PowerPC
chip uses gated clocks on selected por-
tions of the chip to obtain an average
savings of 12to 30%.°

Two-phase clocking. Many clock-
ing schemes employed in large VLS] de-
signs allow the use of gated clocks. We
initially consider a two-phase nonover-
lapping clocking scheme.? This method
of clocking minimizes clock-skew prob-
lems associated with a single-phase
scheme at the expense of higher area.
With a two-phase clocking scheme,
simply increasing the clock period re-
duces timing problems because there
is no bilateral constraint on the clock
waveform as there is with a single-phase
clocking scheme.

In Figure 1, we show a general se-
quential circuit implemented using this
clocking style. The FSM inputs and state
variables enter the first set of latches,
which are clocked on first phase of the
clock ¢,. These stable-one signals must
settle to their final value before ¢, be-
comes active and the corresponding
latches store values. The machine latch-
es outputs on the second phase of the
clock ¢,. The inputs to the second set of
latches must settle to their final, stable
value before the ¢, clock becomes ac-
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tive, and thus we call them stable-two
signals.

For a circuit to operate correctly un-
der this clocking scheme, two condi-
tions must hold. First, the two phases of
the clock must not overlap. In other
words, they must never be active at the
same time. As a result, the designer
must carefully control clock skew to
preserve this property throughout the
chip. Second, critical path length of the
combinational logic between the two
sets of latches At, must be such that the
inputs to the final set of latches reach
their final, stable value before ¢, goes
high. We express this as ¢, + A, < t,.

These two requirements can be sati-
fied by equalizing clock distribution de-
lays and partitioning the logic between
latch boundaries in such a way that the
worst-case critical path is never too long.
For the bulk of this article, we assume a
two-phase clocking scheme. However,
simple extensions allow adapting our
technique for use with other clocking
schemes, as we will show later.

Self-loops

To save power, our method identifies
and extracts the selfloops in a state di-
agram. We initially assume that the state
diagram is implemented as a Moore ma-
chine. This assumption is necessary to
guarantee that the output value cannot
change when the machine is in a self-
loop. Assuming this, however, is not
overly restrictive, because document-
ed methods exist for transforming a
Mealy machine, the most general mod-
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el used for control synthesis, into a
Moore machine.

In addition, we initially assume that
the state diagram of the circuit is known.
We will relax this second assumption lat-

Boolean terminology

An incompletely specified Boo-
lean function can fake on either val-
ve 0,1 or don't care (DC). A DC
logic value can be either 1 {true) or
0 (false); it is indicated by - in this
article.

For a'single output Boolean func-
tion, £{0,1}-5{0,1,~} and
o the ON set is a subset of the do-

main such that fis 1.

o the OFF set is a subset of the do-

main such that fis O
« the DC set is o subset of the do-

main such that fis —.

Aliteral is an input variable or its
complement.

A cube is a product of literals.

An implicant is a cube implying
the true (1} or DC {~) value of a
function.

A minterm is a product of n liter-
als (onefor each input variable) im-
plying the true (1} value of a

function. -

A cover is a setof implicants cov-

er, however, and show how we can ex-

tract the necessary information from a
gate-level specification.

We describe a Moore-type FSM by a
sextuple (X,Y,S,s,8,1), where X is the
- set of inputs, Y'is the set of outputs, S'is
the set of states, and s, is the initial (re-
set) state. Equation s,,, =3(x,s,) gives us
next-state function 8. Output function A
is defined by y,= A(s).

The state diagram describes the re-
active behavior of a sequential ma-
chine by specifying those inputs that
cause the machine to transition from
one state to another. Typically, we use
table-based specifications to specify
FSMs, in the format

Ex,.,s‘, : (xl’sl) - (Smryru)

where x, and s, are the inputs and pre-

sent state, and s,, and y,,, are the cor-

responding next state and outputs.
The self-loop function for given state

which represents the conditions under
which the next state remains s . The self-
¢ loop function is defined as Self, (x)=1V
- xe X, such that 8(x,s) = s. Overall, we
. have a set of functions Seff,,s=1, 2, ...,
* |S] that define the set of self-loops for
the entire FSM.
| Foran FSM with a large number of in-
| puts, the table often only specifies those
| transitions where s,., # s, and the self-

ering all minterms of a function. loops are not explicitly specified. Thus,
it is more convenient to compute the
Stable-one % Stable-twg) Gombinational logic |Stable-twg % Stable-one
L L
Y Stable-one| 1o

.
1

d

chh Stable-two 2g

)
(a)

Figure 2, Two-phase state machine with gated clock (a); timing diagram {b).

34

sofan FSMis a function Self: X — {0,1},

complement of the self-loop function
for a state from its specified next-state
transitions, Self, (x)=0V xe X, such that
d(x,s) #s.

Removing self-loops

Given these definitions, we can easi-
ly identify and extract the self-loops
from a state diagram. We can then use
the set of self-loops to define a Boolean
function that is satisfied only when the
machine is in a self-loop. We then de-
fine activation function £; Xx .S — {0,1}
as the union of the self-loops in the FSM:

f =(U$~S€/I§j

se§

The activation function is therefore
defined as a Boolean function whose
inputs are the FSM’s primary inputs and
state bits. Because the state codes of
any unreachable states never appear as
inputsto f,, we can use the unreachable
codes as a don't-care (DC) set to reduce
the cover size. (For definitions, see the
Boolean terminology box).

We then use /, to selectively gate the
clock for power savings, as seen in
Figure 2. Because the activation func-
tion £, has inputs that are stable-one sig-
nals, £, is also a stable-one signal and we
can use it to enable and disable clock
¢,. Function /, is latched and used to
control the second phase of the clock,
as shown in the figure.

Because the implementation of the
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activation function is often large, we ex-
tract a reduced activation function F,
from £,. The reduced activation function

balances the savings from deactivating |
the clock during self-loops against the :
area penalty from creating the gating :

function.

Example 1. Figure 3 shows the state
diagram for a simple FSM. The figure
also shows entries corresponding to the
set of self-loops for the FSM and the DC
set formed by the unreachable states.

Once we find the activation function,
we can implement it with the same
methods used to synthesize the combi-
national part of the FSM.

Example 2. The activation function
forexample 1is £, =x"x, + x,x’", + x;5,; it
costs 6 literals. The FSM logic, on the
other hand, costs 23 literals. (A logic
synthesis program automatically gen-
erated the multilevel FSM logic; we omit
the details for brevity.) In this case, the
cost of the activation function is a sig-
nificant fraction of the cost of the com-
binational logic in the FSM (greater
than 25%). Thus the area overhead may
negate some of the power savings.

As example 2 indicates, there is no
guarantee that we can implement the
activation function efficiently. Since it
is possible that the activation function’s
complexity is of the same order as that
of the combinational part of the FSM,
we must reduce the size of the activa-
tion function to realize the most power
savings.

We want to find a function with small-

er overhead that covers the self-loops
that consume the most power. This will :

balance the power saved by stopping

the clock against the power consumed
by the clock-stopping function. We state :

our problem informally as “given acti-
vation function £, for a specific FSM, find
a function F, ¢ f, that has an implemen-
tation with small overhead, but still cov-
ers most of the self-loops.”

This problem is at least as complex as
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Figure 3. State diagram (a}; corresponding activation function (b).

standard two-level logic minimization,
a wellknown, difficult problem for
which a polynomial-time algorithm is
not known to exist. As a result, we must
devise a heuristic solution.

The main difficulty in solving this
problem is selecting a cost function
that results in good power savings. This
cost function must express the trade-off
between the size of F, and its efficien-
cy in stopping the clock. An F, that is
almost as large as the original 7, will
cover many self-loops, but may con-
sume too much power. On the other
hand, if F, is a small subset of £, it may
not cover enough of the cases where
the state machine waits and we again
won't realize power savings.

The area overhead of the solution (in
terms of literal count) is a rough approx-
imation of the additional power con-
sumption. This approximation yielded
good results for many example circuits.

We used the following procedure to
compute F;

1. extract activation function £,
2. initially set F, equal to £,, and asso-
ciate with F, a (possibly void) DC

set related to the unreachable '

states in the FSM, and

3. apply procedure reduce_cover to
F, to iteratively reduce the size of
the activation function.

The best balance of trade-offs comes
from using the actual transition proba-

bilities to reduce £, so that the reduced
function covers the highest probability
loops. However, the transition probabil-
ities are not always available to the de-
signer, since they require knowledge of
the environment that the FSM operates
in. Thus, we would like to come up with
a good approximation based only on the
functional specification of the FSM.

Our approximation involves a con-
straint on the number of literals in the
implementation of F,. We specify literal
threshold LT as the upper bound for the
number of literals F, should have. We
will restrict £, to a fraction of the literals
in the combinational part of the FSM to
ensure that the activation function has
a reasonable size and will save power.
Using LT as a bound, we can specify the
constrained optimization problem.

We state an approximation to the
original problem as follows:

Given an activation function £, we
want to find a function F, such that
cover(F)) c cover(f) contains the
maximum number of cubes of cov-
er(f) subject to the constraint that
NMits(F) < LT. Nlits(F) is the number
of literals in the Boolean expression
for cover(F)).

In other words, we want to approxi-
mate the original activation function by
asubset of the original cover. That sub-
set should contain the largest number
of self-loops that fit within the constraint
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straints, or the algorithm can calculate
it based on the FSM structure. In either
case, selecting an appropriate value for
LTis difficult. This is because we have
no data on the final circuit implemen-
tation until after we select LT. One sim-
ple approach is to initially set LT to a
percentage of the total number of lit-
erals in the combinational part of the
original FSM (that is, the FSM without
the activation function). A more com-
putationally expensive approach is to
start from the complete activation func-
tion (set LT equal to infinity) and itera-
tively resynthesize for decreasing
values of LT. However, because syn-
thesis is time consuming, this approach
becomes impractical for large FSMs.
Thus, selecting an optimal value for LT
is still an open problem.

The restated problem can be solved
using algorithms of varying degrees of
complexity. We used a simple, greedy
algorithm to solve it. The procedure
shown here eliminates cubes in the
original minimized cover of £, iterative-
ly until it reaches the literal threshold.

reduce_cover(F,) {
compute LT /* determine literal
threshold */
while(Mits(F,) > LT) {
E=select_small_cubes(ON sef(F.));
c=select_less_essential(E,F,);
F,, = F:, —C
}
}

After determining the literal thresh-
old, the inner loop repeats until the
number of literals in the cover of , falls
below the literal threshold. Within the
inner loop, select_small_cube selects
the subset E of the cubes in F, that have
the highest number of literals (that is,
the ones with the smallest cubes). Next,
the procedure select_less_essential se-
lects from E the cube c that is the most
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Figure 4. Diagram of covers of £, {a) and F, (b).

covered by the other remaining cubes
in F,. In case of a tie, select_less_essen-
tial uses a tie-breaking rule based on the
number of occurrences of the specified
literals. We want to keep the number of
occurrences of each literal as uniform
as possible for uniform input loading.
Finally, the procedure eliminates ¢ from
F,, and the iteration repeats until it sat-
isfies the the condition.

Example 3. Figure 4a gives the com-
plete minimized cover of £. We want to
reduce its size. Because all cubes in the
cover have the same size, £ contains the
entire cover (the three cubes x’,x,, x,x’,,
x,5,). Select_less_essential determines
that the second and third cubes are par-
tially covered by other cubes in the cov-
er, while the first cube is essential. To
choose between the two partially re-
dundant cubes, the algorithm selects
the cube that keeps the most uniform
input loading. Thus, it sets ¢ equal to
third cube x;s,, reducing the number of
inputvariables by 1, and eliminates this
cube. The size of reduced function £, is
now 4 literals, as shown in Figure 4b.

We used many approximations to
formulate this optimization problem. In
reality, the implementation of £, will use
multilevel logic, but there is only a weak
correlation between the size of a multi-
level implementation and its corre-
sponding minimal two-level cover.
Additionally, the size of the activation

function implementation only weakly
correlates to the total size of the modi-
fied FSM. Finally, because power dissi-
pation correlates weakly to total area,
an activation function with a large num-
ber of literals often yields power savings
that overcome a large area increase.
There is a trade-off between the num-
ber of selfloops covered and the area.
In particular, the ability of F, to reduce
power dissipation decreases as we se-
lect smaller subsets of the original cov-
er. In the results section, we explore
different points of this trade-off curve by
iterating with various choices of LT,

Timing issues. We must address two
timing issues related to the insertion of
the activation function: the effect of
glitches within the clock generation cir-
cuitry and the way the activation func-
tion affects critical-path timing.

Ahazard is an unwanted glitch on the
output of a gate in response to input
changes." Hazards in synchronous sys-
tems consume excess power but do not
cause the circuit to malfunction, because
the signals stabilize before sampling.
However, hazards in the clock genera-
tion circuitry may cause the circuit to op-
erate incorrectly. As a result, we must
examine the hazard behavior of £,

Because £, gates the clock signal, a
hazard on £, may have catastrophic con-
sequences on the internal clock line.
However, because we use two-phase
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clocking, the AND gate feeding the clock
will remain low independent of the val-
ue of F, as long as ¢, remains low. So as
long as we ensure that F,, has settled be-
fore the leading edge of ¢,, we are not
concerned with hazards in F,. This im-
portant safety property ensures that our
design technique is not sensitive to the
complex, hazardous behavior of the
combinational circuit implementation.

However, note that the presence of
the activation function actually modi-
fies the circuit’s critical path. In fact, the
longest delay through £, adds to the
maximum delay in the stage of the se-
quential circuit that precedes the FSM
under consideration. We can seethis in
Figure 5. Recall that the activation func-
tion has as inputs the FSM inputs, which
are sampled on ¢,. These input changes
must propagate through the activation
function logic before ¢, goes high. This
reduces the maximum allowable delay
in the logic feeding the inputs by 7. In
other words, the system must obey the
timing constraint 7, + T, < T,,,., where

n

T, is the delay in the logic feeding the in-

puts, 7,, is the delay in the activation |

logic, and T, is the timing separation
between the leading edges of ¢, and ¢,.

As a result, we must take care when
applying our ideas to circuits with cy-
cle times tightly matched to the critical-
path delay. However, we can slightly
increase the cycle time to eliminate any
timing violations.

Reducing FSM logic. Generating F,
increases the area of the FSM imple-
mentation. The presence of F, , howev-
er, allows us to use a larger DC set to
simplify the combinational part of the
FSM. In particular, the DC set of every
next state and output function in the
FSM can be increased by the ON set of
F.. This is because for each minterm
covered by the activation function, £,
will inactivate the machine. Conse-
quently, the inputs and state values sat-
isfying F, will never be observed at the

inputs to the combinational part. We -
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Figure 5. Timing requirements for activation function stabilization.

can then use the extended DC set to re-
cover some of the area in the combi-
national part of the FSM. Thus keeping
an F, with many literals can be advan-
tageous. We can express this mathe-
matically as DC,(A) = DC(A) L F, and
DCr(8)=DC(8) UF,

Example 4. Continuing with our ex-
ample circuit, if we use £, =x"x, + x.x’,
+ x5, to gate the clock, we can also use

f as the DC set to reduce the FSM logic.
This reduces the number of literals to 9.
If we use reduced activation function
F, = x"x, + x,x’, to gate the clock, then
we must also use F, as the DC set, re-
ducing the FSM logic to 10 literals.

Implicit generation of £,. In reaHlife
applications, we often generate sequen-
tial circuits from specification styles oth-
er than a state diagram. Extracting a
complete state diagram from a circuit in-
volves a computation that is worst-case
exponential in the number of storage el-
ements." So it is useful to find a way to
generate £, directly from a gate-level spec-
ification of the circuit.

From the definition of next-state func-
tion 8(x,s), we know that it describes a
self-loop in the state diagram when
8(x,s)=s. Equivalently, for each bit { in
the state vector:

3,(x.s)@s, =1

where the symbol @ represents the ex-
clusive-NOR operation. Because we
want the condition described earlier to
be true for all bits in the state vector, our
final equation is

HS, (X,s)és[ =1

Thus, we can generate the activation
function easily using Boolean decision
diagram-based (BDD-based) symbolic
manipulation of logic networks,” even if
the state diagram is too large to be ex-
plicitly represented.

Recent research on FSM synthesis and
verification' indicates that we can cal-
culate the set of unreachable states with
various degrees of safe approximation.
This means that although we generate
only a subset of unreachable states, we
will never mark a reachable state as un-
reachable. We use this information to
add to the DC set for the activation func-
tion, thus allowing a more efficient im-
plementation in the implicit case as well.

Not needing the complete state dia-
gram to generate /, widens the applica-
bility of our techniques and makes
them suitable for resynthesis and low-
power optimization of existing large se-
quential circuits.

Other clocking schemes. Although
we based our initial formulation on a

two-phase clocking discipline, we can
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(a)

Figure 6. State machine with single-phase gated clock {a); timing diagram (b].

Table 1. Power reduction of gated clocks for MCNC benchmarks.

Original circuit Circuit with gated clock
A, iginal Piginai Ajeddock  Prctod dock Power
Circuit  (fransistor no.) (UW) (fransistor no.) (uW) reduction (%)
Ex 128 51 118 27 48
Bbsse 966 212 1,002 190 11
Bbara 348 328 390 127 61
Bbtas 178 62 188 50 19
Sse 912 175 946 150 15
$386 856 179 882 140 21
Cse 1,320 125 1,406 70 44
Dk14 758 212 852 211 1
S27 146 60 178 54 10
Mc 182 73 225 61 17
Sand1 2,220 265 2,108 180 32

easily extend these techniques to other
clocking schemes.

For single-phase clocking schemes
using transparent latches, we must add
the time delay caused by the activation
function to the delay of the functions
feeding inputs to the FSM (the delay of
the logic generating the previous stage’s
output). We use this value to determine
whether the activation function violates
the cycle time constraint (see Figure 6).
Moreover, the skew of the gated clocks
must be tightly matched to the clock
skew of ungated clocks elsewhere in
the circuit. This is because single-phase
clocks are much more sensitive to clock
skews than two-phase clocks.

Pipelined circuits. Pipelined circuits
have no state feedback lines because
they do not need information about past
cycles to perform computations in the
present cycle. However, the outputs of
any given cycle contain the results of the
previous cycle. We use these values as
state inputs for the activation function.
In this case, the sequential circuit is idle
if the result of computation in the pre-
sent clock cycle is the same as that of the
previous cycle. The activation function
can therefore be found using the implicit
generation methods described in the
previous section, simply by substituting
the output variables into the equations
in place of the state variables.

However, in the majority of cases,
only a highly reduced activation func-
tion is likely to produce lower power
implementations. This is because the
combinational logic in the data path of
pipelined circuits is typically highly op-
timized and the additional DC set that
is available is not very useful. Moreover,
the pipelined circuit’s complete activa-
tion function is likely to have many in-
puts. This high number of inputs often
leads to complex and power consum-
ing implementations that reduce the ad-
vantages gained by stopping the clock.

Results

The described ideas and algorithms
are part of Pie, a set of tools for low-
power synthesis that is under develop-
ment at Stanford University.

First, Pie reads the description of the
circuit at the state diagram level and ex-
tracts information on the selfloops. It
then easily extracts the set of unreach-
able states from the state diagram and
uses that as the DC set for the activation
function. Pie optimizes the initial cover
of £, using SIS¥ and a standard optimiza-
tion procedure (script.rugged). Pie com-
pares the size of the implementation with
the size of the optimized implementation
of the combinational part of the FSM. If
f;s size exceeds LT, Pie applies the pro-
cedure reduce_cover, and iteratively re-
duces the size of £, until it finds the final
optimized implementation F,,

At this point, Pie uses £, as an addi-
tional DC set to optimize the combina-
tional part of the FSM, and that part is
passed to SIS for logic minimization.
The Ceres technology mapper" then
maps the combinational portions of the
design to obtain the final multilevel im-
plementation. A postprocessing step au-
tomatically equalizes clock skew
through buffer insertion.

Pie estimates power consumption us-
ing an accurate simulation based on a
version of the switch-level simulator IR-
SIM. Pie calculates the average power
consumption using a large number of
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random traces at the circuit inputs. Note
that to obtain accurate power estimates,
Pie must use transistor level simula-
tions. This is because gate-level simula-
tions do not accurately account for
power dissipation in the clock lines.

Example 5. For the example circuit
in Figure 3, we synthesized the original
implementation along with two imple-
mentations (described in example 3)
using activation functions £, and F,. The
original FSM dissipates an average pow-
erof 51 uW. The version using the com-
plete £, dissipates 27 uW, while the
version using F, dissipates 37 uW. In this
case, using the complete activation
function results in the lowest power
consumption.

For this circuit, the area decreases for
both low-power implementations, al-
though this is not normally the case.
The original FSM uses 128 transistors,
the version with £, uses 118 transistors,
and the version with £, is the smallest,
using 110 transistors. Because the state
machine in this example does not have
many state transitions, the size of the DC
set used to optimize the logic is large,
resulting in a slight reduction in area af
ter logic optimization.

Benchmarks. Table 1 gives the re-
sults of running our tool on some se-
quential circuits from the MCNC
(Microelectronic Center at North
Carolina) benchmark suite. We report
area overhead, average power dissipa-
tion, and power reduction. We measure
area overhead (A, 4o aNd Ajiy) DY
the number of transistors in the imple-
mentations (including clock circuitry,
the activation function, and the FSM im-
plementation). Power reduction com-
pares the average power dissipations of
the gated clock and original implemen-
tations. It is expressed as a percentage
by the following equation: power re-
duction = (1-power ratio)x100, where
power ratio is P, /P, and Pisav-

gated cluck! £ originals

erage power dissipation.
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The quality of the results depend on
the selection of LT: the values in the
table correspond to the literal threshold
that resulted in the most power savings.

The results of applying our tool to
these benchmarks depend upon the
structure of the initial state machine.
For example, there are a number of cir-
cuits with few or no self-loops, such as
counters, Our techniques will obvious-

. ly not affect the power of these circuits,

since we can never stop the clock.
Generally, power reduction gained by
applying our techniques depends on
how much the machine approximates
reactive behavior. If state transitions
occur only for a small fraction of the
possible input vectors, our techniques
yield impressive results. However, for
counter-like machines, the advantage
is very small or nonexistent.

It is also important to notice how the
use of F, in the DC set allows us to re-
cover some of the area overhead im-
posed by the activation function. Some
of the examples have very small area
overhead but show a substantial pow-
er reduction.

The algorithm runs in a time-efficient
fashion. Consequently, we can easily
add this technique to existing FSM syn-
thesis methods. The only bottleneck is
the logic minimization of the combina-
tional part of the FSM using £, as a DC
set.

We performed detailed electrical
analyses to verify that the gated clock
signals did not create incorrect behav-
ior due to hazards, skew, or other un-
foreseen electrical phenomena. For
every circuit we analyzed, the FSM with
the gated clock was functionally equiv-
alent to the FSM with an ungated clock
and the combinational logic of the FSM
established the minimum clock cycle.
This fact is deceiving, because in a real
circuit the machine will be embedded
in a bigger structure, and timing prob-
lems can arise if combinational logic

* blocks belonging to the environment

delay the input signals.

Aswe discussed earlier, the choice of
F, has a strong impact on the power sav-
ings. Looking at Figure 7, we can see the
trade-offs graphically for three MCNC
benchmarks that reflect different typical
behaviors. The graphs plot power ratio
(Psea ctok! Porgin) 3gaINSt area overhead
ratio (A aoedAoigna)- I the figure, the
Max point on each curve corresponds to
the use of complete activation function
f.. The Min point corresponds to the use
of greatly reduced activation function £,
and the Med point corresponds to a par-
tially reduced F,.

For MCNC benchmark s27, the power
consumed by £, completely overwhelms
any power saved in the FSM, resulting in
no power savings. If we reduce the acti-
vation function too much, as shown by
the leftmost point on the curve, the gat-
ing function incorporates few self-loops
and again, we realize little power sav-
ings. However, by choosing a slightly re-
duced activation function, we realize
substantial savings.

In contrast, benchmarks mc and
sand1 behave monotonically. For mc,
the size of the activation function results
in an area penalty, while reducing its
size increases power dissipation. If the
main design concern is reducing pow-
er consumption, the Max point would
be the right choice, while we obtain an
area-constrained low-power implemen-
tation using Med.

Finally, for sandl, the complete acti-
vation function is the optimal choice for
both power and area. This is interesting
because it shows that in some cases, a
large activation function may allow
drastic simplification of the combina-
tional logic of the FSM because of the
use of its correspondingly large DC set.

WE HAVE DESCRIBED a technique for
automatic synthesis of gated clocks for
low-power implementations of sequen-
tial circuits. We are encouraged by the
results obtained using our prototype
tool, and want to extending our tech-

a9
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