An Algebra for Modeling Concurrent Digital Systems

Claudionor N. Coelho

David Ku

Giovanni De Micheli

Center for Integrated Systems
Stanford University

Stanford, California 94305
USA

Abstract

Most high-level synthesis approaches to date have fo-
cused solely on techniques for synthesizing circuits
modelled as single processes. Realistic system designs
are best modeled by multiple concurrent and interacting
processes. In previous approaches, the interdependen-
cies across process boundaries have been either ignored
or addressed by ad hoc means. We propose in this
paper an algebra called control-flow expressions that
allows a modeling abstraction necessary for synthesis
and analysis of synchronous, concurrent systems. In
the algebra of control-flow expressions, functionality
is abstracted by the execution time of the operations
and by the control-flow of the specification. In addi-
tion to representing parallel computations and their syn-
chronization, our formalism also serves as an unified
framework to capture environment constraints, such as
scheduling, binding, and synchronization requirements.

We use decision variables to represent the different
choices in the control-flow structure of a specification.
Those decision variables are derived from the original
specification and the design constraints. Whereas con-
ventional synthesis algorithms use a 0-1 assignment to
the decision variables, no such restriction exists in our
formalism, because we allow arbitrary Boolean func-
tions to be assigned to decision variables.

‘We show an application of our formalism to the syn-
thesis of synchronization among concurrent computa-
tions by means of an example.

1 Introduction

Whereas Boolean algebra and automata theory are
the well-accepted theories for combinational and
sequential logic synthesis, the existing formula-
tions to the synthesis problems at higher-levels
of specification are not general enough to capture
the wider solution space of feasible designs. This

opens a way to a host of specialized techniques
for addressing specific aspects of concurrent de-
signs, each with its own set of assumptions and
limitations.

Two of the most common assumptions made
by existing synthesis approaches are the single-
process and the static control-flow assumptions.
In the first case, each basic block of the
control/data-flow graph is considered separately;
the impact of synthesis decisions on the rest of
the specification is either ignored, or addressed
by specialized assumptions. In the latter case,
the control-flow structure of the original spec-
ification is maintained throughout the synthesis
flow. The emphasis is instead focused on exploit-
ing the degrees of freedom in the data-flow via
scheduling and binding approaches. The impact
of the control-flow structure is again ignored or
addressed by ad hoc techniques. Both assump-
tions result in localized synthesis decisions that
can impede effective search of the global solu-
tion space.

For some application domains, such as digi-
tal signal processing, such localized approaches
can yield efficient implementations. For control-
dominated applications, however, these assump-
tions can result in overly conservative, even erro-
neous synthesis decisions because the interactions
and interdependencies among concurrent compu-
tations over time are ignored. For example, ex-
isting approaches cannot systematically explore
the sharing of critical resources across concur-
rent process and control-flow boundaries. Of
fundamental importance is the rigorous and inte-
grated analysis of concurrent computations, their
control-flow structure, and their communication
and synchronization.



We propose in this paper the algebra of control-
flow expressions (CFE) as the basis for rigorous
treatment of the relationships among control-flow
structures in concurrent digital systems. The al-
gebra has the following major characteristics:

e FExpressiveness. The CFE model incor-
porates concurrency, synchronization, and
control-flow. In addition, it also provides the
basis for uniformly capturing constraints on
the specification. Furthermore, CFEs allows
the abstraction of the synchronization among
concurrent computations, a crucial prerequi-
site to the formal treatment of don’t cares in
multi-process synthesis.

e Rigorous foundation. The CFE formalism
is based on an extension of the algebra of
regular expressions to incorporate guards on
computations. The manipulation and analy-
sis of control-flow expressions are therefore
based on solid theoretical basis. For the pur-
poses of this paper, however, we will give a
more informal definition of the algebra, de-
ferring the formal treatment to a later paper.

e Systematic solution strategy. We show the
use of decision variables in the CFE model
to capture both the control-flow structure as
well as the degrees of freedom due to the im-
posed constraints. A solution strategy can be
obtained by assigning Boolean expressions
to the decision variables.

The abstraction level provided by control-flow
expressions allows for the representation of both
the control-flow and the synchronization con-
structs of hardware description languages, such as
Verilog, VHDL and HardwareC. The key is again
on a rigorous formalism to represent, analyze, and
manipulate concurrent, control-dominated sys-
tems.

The following example shows the importance
of analyzing the interdependencies among con-
current computations.

Example 1 Figure 1 shows three processes pi, p2
and p3 that communicate with a memory through a
single shared bus. For example, these three processes
can be a model of the specification of a DMA con-
troller. In this figure, O; and O» denote abstractions
on some single-cycle operation in the original speci-
fication. Each process restarts execution upon com-
pletion of its operations. The bus requirements of the

MEMORY

always

L

: always always
begin: P1 begin: P2 begin: P3
bus access; 02; wait for bus;
Of1; wait (c) bus access;
end bus access;  end
end

Figure 1: Example of a Concurrent Digital Sys-
tem

processes are such that process p 1 accesses the mem-
ory bus every two clock cycles; bus access by process
p> requires synchronization with signal ¢; and the syn-
chronization on process p3 is denoted by the operation
wait.

Assume p; and p» have already been synthesized.
We want to analyze the interdependencies over time
among pi, p2 and p3 so that this information can be
used to synthesize p3 and its synchronization. We will
show how CFEs can be used to model the processes,
and how the problem of synthesizing the synchroniza-
tion to avoid bus conflicts can be solved in our alge-
braic formalism. O

The organization of the paper is as follows.
First, we describe representative research efforts
in this field. We present in Section 3 the alge-
bra of control-flow expression, and how com-
putations are abstracted by actions and guards.
In Section 4, we show how scheduling, binding,
and synchronization constraints are represented
by control-flow expressions. Finally, we show by
means of an example the synthesis of synchro-
nization for concurrent processes. Specifically,
we demonstrate how this problem can be solved
if one allows the assignment of arbitrary Boolean
functions to the decision variables.

2 Related Research

Two models for the execution semantics of com-
putations have been defined for the analysis and
verification of concurrent systems - the inter-
leaved execution semantics and the synchronous



execution semantics. In the interleaved execu-
tion model, there is no precise timing informa-
tion about the execution of the concurrent com-
putations (also called processes in this paper).
This execution model is non-deterministic in the
execution of operations either by assuming that
each operation of the process take an unbounded
amount of time to complete or by having an un-
known delay between sequential operations. Pro-
cess Algebras [1], CSP [8], CCS [13], trace the-
ory [15, 4] and Petri nets [16] are theories based
on this execution semantic. Although this model
is very general and have been used in the mod-
elling of a large class of problems, the complexity
for the analysis of concurrent computations under
the interleaved model can be very high.

In the synchronous execution semantics, also
called the maximal parallelism model, time is
well defined. This means that the execution
time of operations can be specified in terms of
a global clock, and that operations are executed
as soon as possible. This model is more restric-
tive than the interleaved model, but since digital
synchronous concurrent systems are implemented
as a set of concurrent finite-state machines under
a single clock, this model is more appropriate.
The Algebra of Synchronous Processes [1], and
the systems defined in [12, 5] are examples of
this model.

The use of the synchronous execution seman-
tics for control-flow expressions was based on the
following two reasons. First, its complexity can
be better controlled than the complexity of the in-
terleaved model, since the later can be simulated
in the synchronous model if necessary. Second,
further simplification can be achieved by consid-
ering the implicit synchronization (with respect to
the single clock) among the concurrent parts of
the description.

Control-flow expressions, can be considered as
a subset of the Algebra Synchronous Processes,
restricted to regular processes. When compared
to Petri-Nets, a correspondence can also be made
(see [16]) if synchronous firing rules are used.

In the area of high-level synthesis, several ap-
proaches are based on integer-linear programming
(ILP) formulations [6, 9, 7]. Although exact
solutions can be found by solving the ILP for-
mulation, these approaches are usually restricted
to either the single-process or static control-flow

assumptions. Trickey [14] was the first to ad-
dress the problem of control-flow restructuring
during synthesis, but this system relied on the
single process assumption. Wolf proposed be-
havioral FSMs (BESM) as an automata theoretic
paradigm for synthesis, where a BFSM is trans-
formed into register-transfer FSMs based on the
imposed sequencing and timing constraints [17].
Control flow expressions can be considered as a
higher level of abstraction than the level of ab-
straction of BFSMs - constraints and bindings can
be expressed in terms of control-flow expressions,
but no such representation exists in terms of BF-
SMs. This uniform representation of CFEs pays
off when solving problems that involve a condi-
tional selection of a path in terms of the design
constraints. Interface matching [10] takes advan-
tage of the strong coupling between concurrent
processes to reduce the synchronization and com-
munication costs. Although this approach can
handle complex timing constraints across process
synchronizations, it is restricted by the static com-
munication and control-flow assumption. In the
case of CFEs, the interactions among concurrent
computations is more general, because it is not
restricted to basic blocks.

In summary, the algebra of control-flow ex-
pressions integrates the modeling of control-flow
with the abstraction of synchronizations among
concurrent computations. It provides an unified
framework for capturing both design behavior and
constraints, along with rigorous solution strategy,
to address the analysis and synthesis of concur-
rent digital systems.

3 Control-Flow Expressions

We informally present in this section the algebra
of control-flow expressions (CFEs) as an exten-
sion of regular expressions with the addition of
guards on actions, parallel composition, and an
execution time semantic for computations. Al-
though CFEs can be also defined in terms of
the Algebra of Syncrhonous Processes, we de-
fine CFEs as an extension of regular expressions
because it is more succinct.

In the CFE model, operations in a high-level
specification are abstracted in the form of actions,
and the conditions on alternative and looping con-
structs are abstracted by means of guards. CFEs



abstract the computation of a set of operations in
a high-level specification. Actions represent the
finest grain in our computational model. For the
sake of simplicity, we assume that every action
executes within one unit delay (e.g., one cycle).
Multi-cycle operations can be represented by the
sequential composition of unit cycle actions.

The algebra of control-flow expressions can be
formally defined by the triple (&, I, ¢), where ¢
denotes the set of variables, /' denotes the set
of operators or functions on control-flow expres-
sions, and ¢ denotes a null element on the control-
flow expression domain, which executes within
zero time.

The set of variables ¢ can be further subdi-
vided, as follows:

e A set of action variables A is associated with
each operation,

e A set of function variables F is associated
with each CFE, representing an abstraction
of the CFE computation,

e A set of variables C, called conditionals, is
associated with guards.

Each variable v € @ represents the abstraction
of some functionality in the original specification.
A variable representing a control-flow expression
allows the definition of a computation hierarchi-
cally. At the lowest level in the hierarchy, we
define an action to be a CFE that executes atomi-
cally, i.e. within one clock cycle and representing
a single computation in the original specification.
One action that is always included in the set of
variables is the no-operation action, denoted by
0, which executes in one clock cycle. It is used
either when some delay must be inserted between
two actions in a specification or when the oper-
ation performed by an action is not relevant to
the other concurrent parts of the specification and
therefore its details can be hidden. The differ-
ence between 0 and ¢ is that O actually represents
computation that remains idle for one cycle. Exe-
cuting an ¢ immediately transfers control without
taking any time.

Guard variables represent the conditions un-
der which sets of operations are executed in a
control-flow expression. They are associated with
the conditions that enables alternative and looping
paths to be activated. When the guards represent

conditions of the original specification, they will
be called conditionals, which are represented by
C. In the next section, we will introduce another
type of guardvariables, named decision variables.

More generally, since guard variables are
Boolean variables, we allow the composition of
those variables in Boolean expressions. Those
expressions will be called in this paper guarded
expressions, and they will be used as guards for
CFEs.

Example 2 As mentioned before, computations in
the original specification are abstracted in terms of
control-flow expressions and guards. In the specifica-
tion if (r == 3) z = u + w, the operation z = v + w
can be abstracted by the action variable ¢ and the
condition x == 3 can be abstracted by the guard c.
The resulting CFE representing the description above
is givenby c:a. O

We now define the set /' of operations and
functions for composing control-flow expressions
in our algebraic model, as follows:

Definition 3.1 Let p,q € A and cy,co be
guarded expressions. Then, control-flow expres-
sions can be composed by the rules (p.q) , (p||q)
,(er:pteaiq), (e1:p)* and p~.

We assume in this paper that the precedence
of the operators is as follows: *,w >:> . >
+ > ||. This precedence may be overruled by
parenthesis. Also, whenever two actions a and b
execute at the same cycle for exactly one clock
cycle, we represent those actions as {a,b}.

All compositional rules of CFEs presented
above have their counterpart in high-level de-
scriptions and sequencing graphs [11]. This fa-
cilitates the interaction between CFEs and higher
levels of abstractions. The operator p.q defines
the sequential composition, meaning that p is exe-
cuted before ¢ is executed. Operator ¢y : p+cy 1 g
defines a general form of an alternative construct,
meaning that either p or ¢ is executed, but not
both, depending whether ¢; or ¢, is true. Opera-
tor p||¢ is defines the parallel execution of p and
q. Operator (¢; : p)* defines a looping construct,
meaning that whenever c¢; is true, p is executed.
Operator p“ defines the infinite computation or
iteration of p. Upon reset, p will be repeated in-
finitely many times. The table in Figure 2 repre-
sents the equivalences between Verilog constructs
and CFEs.



| Composition |
Sequential begin p; ¢ end P.q
Parallel fork p; ¢ join plle
if (¢)
, P . ~. .
Alternative else c:p+Tciq
q;
while (c)
Loop p; (c:p)*
wait (!c)
P (c:0)*.p
Infinite alw;).'s p¥

Figure 2: Link between Verilog Constructs and
Control-Flow Expressions

Example 3 We provide here an example on the rep-
resentation of Verilog constructs in control-flow expres-
sions. The specification shown in Figure 3 consists
of an algorithmic representation of a greatest common
divisor, in some high-level hardware description lan-
guage. Its control-flow expression is presented below,
where the labels on the left correspond to the actions
being executed or the conditionals on alternative com-
positions.

GCD = [(r:0)"b.(cl:(c2:(c3:c)"d)" e+

cl:e)”

3.1 Operational Semantics of CFEs

We present here a series of relations among CFEs
that will allow the modification of the original
control-flow expression in accordance with the
original specification and constraints. We also
present the rule compose_in_parallel that allows
the investigation of synchronization, communica-
tion and implicit coordination among the parallel
parts of the specification.

The following equivalence relations can be
considered an extension of w-regular expres-
sions [2, 3], and will be used throughout in this

paper.

HL Representation | CF Expression | module GOD(Xin, Yin, ready, result);

input [7 : 0] Xin,Yin;
input ready;

output [7 : 0] result;
reg [7: 0] result,z,y;

always
begin
wait (ready) /I conditional ¥
{z,y} = {Xn,Yin};// action b
if (! =0 && y! =0) // conditional c1

begin
while (y! = 0) // conditional ¢2
begin
while (z >=y)  // conditional ¢3
r=r—y,; Il action ¢
{z,y} ={y,z}; /I actiond
end
result =z ; /I action e
end
end
endmodule

Figure 3: Greatest-Common Divisor Example

pY < pp¥
(c:p)® < (c:ip)lc:p)™+7c:e
c:p+"cip & p
criprsteaips & (er:piteipy):s

The first two relations unroll the infinite and
looping computations, respectively. The follow-
ing two relations allow the reduction of the CFE
by merging similar sub-computations. These
rules are used in the examples that follow.

In order to analyze the synchronization among
processes, we need to compose the specifications
in parallel. This can be achieved by the rule com-
pose_in_parallel, which eliminates the || operator
in a control-flow expression. In order to define
the semantics of the rule compose_in_parallel, we
need the following definitions:

Definition 3.2 If the CFE p = p;.p), where p;
and p, are also CFEs, we call p, a prefix of p,
and p, a suffix of p.

Expression p; is defined as a proper prefix of
p if pa # €. Similarly, expression p; is defined as
a proper suffix of p if p1 # e

Definition 3.3 Let > denote the alternative
composition of CFEs. If the CFE p = (), ¢ :



pi).q, where p; and q are CFEs, we say that ¢; is
the guard of the alternative composition p;.q

Definition 3.4 Let p and p' be control-flow ex-
pressions, such that p' is a proper suffix of some
alternative composition of p, guarded by c. If a is
the first action of p executed in the path guarded
by ¢, then p =2 p’ represents that after a is first
executed in p when guard c is true, the actions in
p' must be executed next.

Definition 3.5 A path of a CFE p is a sequen-
tial composition of actions a |.ay. - - - .a,, such that

3 suffixes p1,p2,...,Pn Of p and p L 1 zse
: Cﬂn Pn.

We can now define the compose_in_parallel
rule:

Definition 3.6 Ler p,q,p’ and ¢’ be CFEs, ¢, and
¢y guards, and a and b action sets (or only ac-
tions in the case of singleton sets). Then, com-
pose_in_parallel eliminates the || operation by ap-
plying the following rule iteratively:

cra ey ciAer)ab
(0 2 PN 2 ') & (pllg) Y (1)

Intuitively, if the guard ¢; of the alternative
composition a.p’ of p is true and the guard ¢, of
the alternative composition b.q’ of ¢ is also true,
and if p and ¢ are executing in parallel (repre-
sented by (p||¢)), then ¢y and ¢, are true, actions
a and b are executed in parallel, and the CFEs p’
and ¢’ are also executed in parallel. Note that we
assumed that @ and b executed within one cycle.

The following example presents an application
of the rule compose_in_parallel shown above.

Example 4 In this example, we show how the com-
pose_in_parallel can be used in the analysis of concur-
rent systems in hardware.

In the CFE p = (a.b.c)“||(d.€)®, assume b and d
are adders and we want to use the same component
to implement both & and d. In order to do that, ac-
tions b and d must be non-conflicting actions. This
can be checked by composing both parallel parts of
the specification together, and then traversing the re-
sulting expression in order to look for any action set
which includes {b, d}. If such an action set exists, then
b and d can not share the same adder.

If we apply the algorithm compose_in_parallel 1o p,
we obtain:

compose_in_parallel(p)

({a,d}.{b, e} {c,d} {a.e} {b,d}{c,e})”

We can see that in the fifth clock cycle b and d
execute at the same time, so any implementation with

this schedule would require a different adder for b and
d in order to avoid the conflict. O

4 Constraints in Control-Flow
Expressions

In general, specifications contain constraints such
as time slacks between two operations, binding
constraints or even synchronization constraints.
Those constraints are used during the synthesis
and analysis of a specification. By extending
CFEs to capture the specification and the con-
straints, we create a framework that can be used
for both synthesis and analysis of a specification.
In this section, we show how these constraints
can be uniformly incorporated.

We consider here three types of design con-
straints: synchronization constriants, timing or
scheduling constraints, and bindingconstraints.

Synchronization constraints are incorporated
by defining allowed and forbidden sets of actions,
here called ALWAYS and NEVER sets. Those sets
of valid actions can be checked during the ap-
plication of the rule compose_in_parallel to the
specification, and the paths that do not observed
those constraints of allowed and forbidden sets
are eliminated.

a

[ x2 ]
Ots® 00O
|

x1

a.(x1:0 + x2:0.0 + x3:0.0.0).b

Figure 4: CFE for timing constraint of [2,4] be-
tween a and b

Timing constraints are incorporated in the spec-
ification by composing the specification in paral-
lel with a CFE that specifies the constraint. A
maximum timing constraints between two actions
a and b is specified by the CFE a.(}" z; : 0/).b,



where z; is a decision variable, 0/ is 0 repeated j
times (or a slack of j+ 1 cycles between a and b),
and j is less than the maximum number of cycles
allowed. In this expression, when z; is different
from O (or in other words, when the path is en-
abled z;), there will be a delay of j + 1 cycles
between a and b. A minimum timing constraint
between two actions ¢ and b is represented by
the CFE a.0".(z : 0)*.b, meaning that the delay
between a and b should be at least n + 1 cycles.
Figure 4 presents an example of a minimum tim-
ing constraint of 2 cycles and a maximum timing
constraint of 4 cycles between two actions a and
b. The hachured nodes denote delay elements in-
serted between the nodes that represent actions a
and b. In this figure, x|, 2, and z3 denote the
decision variables guarding the alternative paths
of the design.

Binding constraints are incorporated into the
system by rewriting actions as guarded expres-
sions in the original CFE. For example, an action
a that could be implemented by components z or
J would be rewritten as (24, : i+ 24, : j), where
decision variable z,; being equal to 1 indicates
that action a is implemented by component : and
mutatis mutandis for component j.

5 Synchronization of Concur-
rent Digital Systems

In this section we provide a small full example
on the application of CFEs in multi-process syn-
thesis problems and show how the assignment of
Boolean expressions to decision variables allows
the solution space to be greatly enhanced. Con-
sider the problem defined in Example 1, i.e. we
want to synthesize the synchronization for a pro-
cess with respect to some resource utilization of
other processes.

The three concurrent specifications p;, p» and
p3 can be written as CFEs, as follows:

p = pilp2llps
= [a0]"

p» = [0.(c:0)".a]”
p3 = [waity.a]”

Where a is the critical resource (the bus or
memory port). Note that by saying that all trans-
actions are made through a single bus, we are in
fact pre-binding the transfers to the same bus.

Assume that p; and p, have already been syn-
thesized and that the conflicts of p; and p, are
resolved elsewhere (by the input patterns of the
conditional ¢, for example). Our problem is the
synthesis of the synchronization between ps; and
the combination of p; and p, such that p; does
not attempt to use resource @ when either p; or
P2 1s using it.

Let us first rewrite p3 as [(z : 0)*.a]“. Here,
wait, was substituted into the synchronization
(z : 0)*, where z is a decision variable. The
problem of finding a synchronization for p3 is
then equivalent to finding an assignment of x over
time such that p3’s use of a does conflict with p,
and p;’s use of a.

In order to do that, we first eliminate the ||
operation from p = p;||p2||ps, with the constraint
that ALWAYS = () and NEVER = {a,a}, which
gives the following expression:

[(z:a).(((cAz): 04 (cAz): a).
((eAz):a) ((CcAz):a)”

P =

This expression contains all possible imple-
mentations that satisfies the constraint that no two
transfers use the bus at the same time. A particu-
lar implementation can be obtained by assigning
the decision variables to Boolean functions over
the guard variables. This assignment to the deci-
sion variables will be called a solution to the syn-
thesis problem. Note that p can be solved by a
procedure that searches through the valid paths of
p. For example, in p, the only choice that needs
to be considered is when ¢ is true in the loop,
since in this case z could take either a value of
1 or 0. In this case,  needs to be assigned to
0, since the other case represents the starvation
of p3. By just assigning z to O to the decision
variable z is not enough to guarantee that p3 does
not have any conflicts with p; and p, - just look
that in the next cycle,  should be assigned to
1. Thus, what we need is to assign z to 0 when
the other guard variables enable this path, or in
this case, assign z to O when c¢ is true, which is
equivalent to assigning x to “¢ at this control-step.



Now, by considering the assignments of the
decision variables in p, and the actions defined in
p3, We can reconstruct ps as:

p3 = [0.(Ce:0.0)*.a]*

This corresponds to the correct behavior, since
p3 is only able to use resource a starting at the
second clock cycle, spaced by 2 (from p;) and
when ¢ is false, meaning that the second process
is still executing the loop.

6 Conclusions

We have proposed an algebraic formulation for
the modeling and synthesis of concurrent systems
in hardware using the maximal parallelism se-
mantics, called control-flow expressions (CFEs).
This algebra was based on concurrency and syn-
chronization among the processes, which is of ut-
most importance in the synthesis of multi-process
systems.

We also showed how design constraints in
terms of synchronization, scheduling and bind-
ing could be incorporated into the design. Since
the constraints could be cast in terms of CFEs,
we showed that CFEs could be used as a uni-
fied framework for specification abstraction and
incorporation of constraints.

One example on the utilization of CFEs in
a multi-process synthesis environment was pro-
vided. The use of decision variables as guards of
alternative paths and the analysis of the implicit
synchronization among concurrent processes al-
lowed the solution of the synchronization synthe-
sis problem. This was done by assigning Boolean
functions to the decision variables.

We have developed a solution algorithm for
assigning decision variables in CFEs. Due to the
lack of space, this algorithm will be presented in
a future paper.

7 Acknowledgements

This research was sponsored by NSF/ARPA, under
grant No. MIP 9115432, and by WESTERN UNION
NSF No. INT-9123222. The first author was supported
by CNPg-Brazil under contract 200212/90.7.

References

(1

(2]

(3]

[4]

[3]

(6]

(7

(8

[

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(171

J. C. M. Baeten. Process Algebra. Cambridge University
Press, 1990.

J. A. Brzozowski. Derivatives of regular expressions.
Journal of the ACM, 11(4), October 1964,

Y. Choueka. Theories of automata on w-tapes: A sim-
plified approach. Journal of Computer and System Sci-
ences, 8:117-141, 1974,

D. L. Dill. Trace theory for automatic hierarchical veri-
fication of speed-independent circuits. Technical Report
CMU-CS-88-119, Carnegie Mellon University, February
1988.

V. Akella G. C. Gopalakrishnan, N. S. Mani. Formal
VLSI Specification and Synthesis, VLSI Design Methods,
volume I, chapter A Design Validation System for Syn-
chronous Hardware Based on a Process Model: A Case
Study, pages 227-246. Elsevier Science Publishers B.V.
(North-Holland), 1990.

C. H. Gebotys and M. 1. Elmasry. A global optimiza-
tion approach for architectural synthesis. In Proceedings
of the International Conference on Computer-Aided De-
sign, pages 258-261, Santa Clara, CA, November 1990.

L. Hafer and A. Parker. Automated synthesis of digital
hardware. IEEE Transactions on CAD/ICAS, c-31(2),
February 1982.

C. A. R. Hoare. A model for communicating sequential
processes. Technical report, Oxford University, 1981.

C.-T. Hwang, J.-H. Lee, and Y-C Hsu. A formal ap-
proach to the scheduling problem in high-level synthe-
sis. IEEE Transactions on CAD/ICAS, 10(4):464-475,
April 1991.

D. Ku, D. Filo, C. Coelho, and G. De Micheli. Inter-
face optimization for concurrent systems under timing
constraints using interface matching. In High Level Syn-
thesis Workshop, November 1992.

David Ku and Giovanni De Micheli. High-level Syn-
thesis of ASICs under Timing and and Synchronization
Constraints. Kluwer Academic Publishers, 1992.

L. Y. Liu and R. K. Shyamasundar. Static analysis of
real-time distributed systems. I[EEE Transactions on
Software Engineering, 16(4):373-388, April 1990.

R. Milner. Handbook of Theoretical Computer Sci-
ence, volume 2, chapter 19: Operational and Albebraic

Semantics of Concurrent Processes, pages 1201-1242.
MIT Press, 1991.

H. Trickey. Flamel: A high-level hardware com-
piler. [EEE Transactions on CAD/ICAS, CAD-6:259—
269, March 1987.

J. L. A. van de Snepscheut. Trace Theory and VLSI
Design. Springer Verlag, 1985.

R. J. van Glabeek and F. W. Vaandrager. Lecture Notes
in Computer Science 259, chapter Petri net Models
for Algebraic Theories of Concurrency, pages 224-242.
Springer-Verlag, 1987.

A. Takach W. Wolf and T. Lee. High-Level VLSI Syn-
thesis, chapter Architectural Optimization Methods for
Control-Dominated Machines. Kluwer Academic Pub-
lishers, 1991.



