268 [EEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 1993

Interface Optimization for Concurrent
Systems Under Timing Constraints

David Filo, David C. Ku, Member, IEEE, Claudionor N. Coelho, Jr., and Giovanni De Micheli, Senior Member, IEEE

Abstract— The scope of most high-level synthesis efforts to
date has been at the level of a single behavioral model repre-
sented as a control/data-flow graph. The communication between
concurrently executing processes and its requirements in terms
of timing and resources have largely been neglected. This re-
striction limits the applicability of most existing approaches for
complex system designs. This paper describes a methodology
for the synthesis of interfaces in concurrent systems under de-
tailed timing constraints. We model interprocess communication
using blocking and nonblocking messages. We show how the
relationship between messages over time can be abstracted as a
constraint graph that can be extracted and used during synthesis.
We describe a novel technique called interface matching that
minimizes the interface cost by scheduling each process with
respect to timing information of other processes communicating
with it. By scheduling the completion of operations, some blocking
communication can be converted to nonblocking while ensuring
the communication remains valid. To further reduce hardware
costs, we describe the synthesis of interfaces on shared physical
media. We show how this sharing can be increased through
rescheduling and serialization of the communication. In addition
to systematically reducing the interface synchronization cost,
this approach permits analysis on the timing consistency of
interprocess communication.

Index Terms—Communication synthesis, concurrent processes,
synchronization, timing constraints.

I. INTRODUCTION

AST efforts in high-level synthesis have focused primarily

on the synthesis of a single process [1]-[4]. Under this
assumption, hardware behavior can be represented as a control-
flow and/or data-flow graph, and tasks such as scheduling and
binding are defined with respect to operations within a single
process. While this assumption is adequate for uniprocessor
synthesis, it is less effective in synthesizing more complex cir-
cuits and systems that are modeled best as multiple concurrent
and interacting processes.

There are many examples of designs consisting of multiple
interacting processes. Consider, for instance, a graphics en-
hancement unit modeled by two processes: an edge detection
process and an image enhancement process. The edge detec-
tion process takes as input a stream of data representing the
incoming image and detects its edge boundaries. This bound-
ary information is then passed to the second process to be

Manuscript received December 16, 1992; revised April 14, 1993. This
work was supported by NSF/ARPA under Grant MIP-8719546, by DEC jointly
with NSF, under a PYI Award program. C. N. Coelho, Jr. was supported by
CNPg-Brazil under Contract 200212/90.7.

The authors are with the Center for Integrated Systems, Stanford University,
Stanford, CA 94305.
IEEE Log Number 9210694.

transmit data n_mg;

81 32 83 34
edge detect — ; s

| receive data

image enhance

data transfer

Fig. 1. Two interacting processes for a graphics application. The edge
detection process is specified using all blocking communication for generality.
Transformation to nonblocking communication can be synthesized when its
communication with a second process (image enhancement) is matched.

used for enhancement of the image via shading or highlighting.
Fig. 1 shows a block diagram of this design. In general, the
timing with which the edge detection process produces results
is unknown, and therefore blocking communication is needed
to coordinate its operation with its receiving process. However,
it is possible in some cases to take advantage of the timing
characteristics of the receiving process to reduce the amount
of handshaking, and vice versa. In this case the combination
of the sender and receiver allows the communication between
them to be matched together, such that the result is a less
general but simpler interface. The ability to exploit timing
behavior of other processes during synthesis is key to obtaining
an efficient implementation.

Other examples include designs that interface under a given
protocol (e.g., NuBus or EISA bus) and telecommunication
applications. In these cases it is possible to specify generic
interfaces without exact timing information using blocking
communication. When such a process is synthesized in a
system with a particular bus model, the timing information
from the bus model is reflected back to the generic interface
and the communication can be simplified by specializing it
for the particular application.

Modeling a system as a collection of concurrently executing
processes poses additional challenges to a synthesis system.
In particular, synthesizing one process can in general alter the
way it communicates with its environment. These changes in
turn affect and constrain the synthesis of other processes in the
system. The correctness of a design depends not only on the
correctness of its data computations, but also on the timing and
synchronization requirements that define when these results
are communicated to and from the external environment.
Of critical importance are the analysis and synthesis of the
interfaces between the processes and the profocol governing
their interaction, as well as their efficient implementation on
shared physical media.

With few exceptions [5]-[9], existing techniques do not ade-
quately address the synthesis of communication for concurrent

1063-8210/93$03.00 © 1993 IEEE

FILO et al.: INTERFACE OPTIMIZATION FOR CONCURRENT SYSTEMS UNDER TIMING CONSTRAINTS 269

systems. This paper presents a methodology for the analysis
and synthesis of interfaces for time-constrained concurrent
systems. Such systems are characterized by tightly inter-
acting processes operating under strict timing and sequenc-
ing constraints. We abstract the interprocess communication
using blocking, semiblocking, and nonblocking messages.
These messages are transferred over abstract communication
channels, which are mapped into a physical implementation
(e.g. buses) by the synthesis process. This is in contrast to
approaches where the communication is achieved structurally
through the use of ports. We consider only point-to-point
communication because of its determinism (i.e., each message
operation communicates with exactly one other operation) and
lack of arbitration, both important characteristics for time-
constrained designs. We represent the timing and sequencing
relationships between messages using a graph abstraction
called a message dependency graph. This graph effectively
captures the sequencing dependencies in the communication
protocol and serves as the basis to analyze communication
deadlock and cross-process timing requirements.

We present a novel technique called interface matching
that minimizes the interface control logic and interprocess
handshaking by scheduling each process using the commu-
nication patterns and timing behavior between concurrent
processes. Our technique is guaranteed to yield the minimum
amount of required explicit handshaking for a class of designs.
In order to further reduce hardware costs, we describe the
synthesis of communication on shared physical media. We
show how this sharing can be increased through rescheduling
and serialization of the communication.

The problem of reducing the amount of synchronization in
concurrent processes has been studied in various forms. In
the area of hardware synthesis, the approach described in [10]
uses appropriately sized queues to decouple the sending and
receiving processes. The use of queues allows processes to
proceed with their execution without having to completely
synchronize via blocking. This comes at the expense of
increased implementation costs due to the added queues and
increased control complexity. Our approach seeks to minimize
the implementation cost by eliminating the need for queues by
matching communication patterns between processes when-
ever possible.

In the area of concurrent software, the problem of mini-
mizing synchronization has been explored at various levels
[11]-{14]. The most relevant work to our problem is presented
in [12] and addresses the problem of solving the synchro-
nization problem for barrier MIMD machines [15]. In this
problem, barriers are used to synchronize instruction streams
running on concurrent processors. Although their model does
not apply directly to our hardware synthesis problem, the
goal of reducing the amount of synchronization through static
resolution is the same as ours.

A block diagram of the proposed synthesis process is
shown in Fig. 2. The first step is to schedule all of the pro-
cesses independently using traditional scheduling techniques.
This scheduling information is subsequently used by interface
matching, which considers pairs of processes and attempts to
simplify their communication. The result of matching may

System of concurrent processes

Single process scheduling
Interface matching

Reschedule modified processes
Channel merging

Optimized communication

Fig. 2. Synthesis of communication.

require the individual processes to be rescheduled, which can
in turn lead to additional matching. Finally, channel merging
is applied to reduce the number of physical channels. These
steps will be described in detail, and it will be shown that this
iterative optimization technique is guaranteed to terminate.

The paper is organized as follows. Section II describes our
model of hardware behavior and interprocess communication.
The extraction of interfaces using message dependency graphs
is described in Section III. Section IV describes the interface
matching technique to reduce interprocess synchronization.
The merging of communication channels is described in Sec-
tion V. Finally, we conclude with experimental results and
directions for further research.

II. MODELING INTERPROCESS COMMUNICATION

The choice of a hardware model largely impacts the scope
and applicability of the synthesis algorithms. This work as-
sumes that hardware is described using some generic hardware
description language (HDL) that supports concurrency and
interprocess communication. The HDL is compiled into a
control/data-flow graph, which can then be optimized using
the techniques described in this paper.

The sequencing graph model [16], [17] is used in order
to leverage off of existing work. This model satisfies the
necessary requirements and supports the explicit representation
of detailed timing constraints and synchronization. We first
give a brief overview of the sequencing graph model, then
describe the extensions we have added to model interpro-
cess communication. In this paper we restrict our focus to
nonpipelined, synchronous designs.

A. Modeling a Single Process

We model a single process as a polar, hierarchical se-
quencing graph, denoted by G,(V;, E,), where the vertices
V, represent operations to perform, and the edges E repre-
sent the sequencing dependencies among the operations. The
sequencing graph is acyclic because loops are broken through
the use of hierarchy. A process starts execution at the source
vertex, executes each vertex according to the sequencing
dependencies, and restarts execution upon completion of the
sink vertex. The execution delay of a vertex v;, denoted by

270 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 1993

8(v;), can be fixed or data-dependent. The delay associated
with a fixed delay operation depends solely on the nature of
the operation, e.g., addition or register loading. In contrast,
the time to execute a data-dependent delay operation may
change for different input data sequences, e.g., waiting for
the assertion of an external signal. We call the set of data-
dependent delay vertices (including the source vertex) the
anchors of Gs(Vs, E), denoted by the set A C V.

Detailed minimum and maximum timing constraints can
be specified between pairs of operations in the graph. In
particular, consider two vertices v; and v; with start times
T'(v;) and T'(v;), respectively. A minimum constraint I;; > 0
between vertices v; and v; implies T'(v;) > T(v;) +1;;, and a
maximum constraint u;; > 0 implies T'(v;) < T(v;)+u;;. We
derive a constraint graph G(V, E) from a given sequencing
graph G,(V;, E;) as the basis for timing analysis; the vertices
are identical (i.e., V = V,), but the edges E are now weighted.
For a given edge (v;,v;) € E, its edge weight w;; corresponds
to a timing constraint on the activation of the two operations
v; and v;. Specifically, sequencing edges (E, in the original
sequencing graph) and the set of minimum timing constraints
{li;} are converted into forward edges E;y C F, and the set of
maximum timing constraints {u;;} is converted into backward
edges E, C E. Forward (backward) edges have positive
(negative) weights and represent minimum (maximum) timing
requirements.

Example 1: Consider the network packet decoder example
in Fig. 3. It consists of two processes: the main decoding
process and a second process that assembles the data to present
to the microprocessor. Fig. 3(b) shows the Verilog description
for the main decoder process. The corresponding constraint
graph for this process is shown in Fig. 4. The vertices are
labeled according to their corresponding operation in the
specification, and the source and sink vertices are labeled s
and ¢, respectively. In addition to the sequencing constraints,
both minimum and maximum timing constraints are shown
in this example. Consider the send operation labeled c¢. The
specification requires that the operations b and ¢ must be
sequential; therefore, a sequencing constraint exists from b to
c. In addition, a maximum constraint between ¢ and d requires
c to begin execution no more than two cycles after d begins
execution. The minimum constraint from ¢ to e forces e to
begin execution no less than é(c) + 1 cycles after ¢ begins
execution. In other words, e must begin execution no sooner
than 1 cycle after the completion of c. O

Given the constraint graph for a process, we can synthesize
an implementation that meets the required timing constraints,
or detect if no such implementation exists, using relative
scheduling [16], [17]. We review now some relevant back-
ground on relative scheduling. Recall from above that anchors
are operations with data-dependent delays. For each vertex
v; € V, the anchor set A(v;) C A consists of those anchors
whose completion is needed to compute the start time of
v; (i.e. T(v;)). A schedule for G is obtained by assigning
an offser value o,(v;) to each anchor a € A(v;) for all
vertices v; € V. A valid (also called wellposed) schedule
QG) = {oa(v:),VYv; € V} is one that satisfies all timing
constraints for all values of data-dependent delays. An anchor

B bl
[o]

bit serial —1 decoder

@)

// main decoder process
always begin
a: read_packet ();
fork
begin // preamble thread
: extract_preamble ();
I send (A, preamble)
end
begin // content thread

d: extract._content ();
e: send (B, content)
end
begin // parity thread
I extract_parity ();
'3 send (C, parity)
end
join
h: cleanup ();

()

A network packet decoder. (a) Block diagram. (b) Verilog description
of the decoder process.

Fig. 3.

timing
T M timing
S+l bt depend
o) Data-dependent delay operati

Fig. 4. Constraint graph for the decoder process example.

is redundant with respect to a vertex if removing it from
consideration does not change the start time of the vertex,
otherwise the anchor is called irredundant. The start time for
an operation can be expressed solely in terms of its irredundant
anchors [16], [17].

Example 2: Fig. 4 shows the constraint graph for the
decoder process from Example 1 under a given profile of
execution delays. The fixed delay operations have delays of
8(a) = 2,6(b) = 6(d) = 6(f) = 4, and 6(h) = 1. The bold
vertices denote the anchors of the graph, and the bold edges
represent forward edges weighted by a data-dependent delay.
For example, the edge (c,€) has weight §(c) + 1, meaning e
must wait at least 1 cycle after the completion of c. A valid
schedule is given in Fig. 5, where offsets from each anchor
are given. These offsets are simply the longest path, containing
the delay of the anchor, between the anchor and the vertex.
For example, the anchor set of vertex e is A(e) = {s,c},

FILO et al.: INTERFACE OPTIMIZATION FOR CONCURRENT SYSTEMS UNDER TIMING CONSTRAINTS 21

[op full schedule irredundant
s
a 8(s) 8(s)
b 8(s) +2 5(s)+2
c 5(s)+6 8(s)+6
d 5(s)+4 5(s) +4
e 5(s) +8A8(c) +1 5(s) +8A8(c) +1
f 8(s)+2 6(s)+2
g 8(s) +9N8(c) +2A8(e) +1 b(e) +1
h |8(s) +9AB(c)+2A8(e)+1A(g) &(g)

Fig. 5. Schedule for constraint graph of the decoder process example. The
full schedule and irredundant schedule for each operation is shown.

and the corresponding longest paths (containing 6(s) and §(c),
respectively) have lengths of 8 and 1. Similarly, the start time
of g depends on the completion of s, ¢ and e. However, the
offsets from s and c are not needed to calculate the start time
of g; therefore, s and c are said to be redundant with respect
to g, and the start time of g is simply (e) + 1, as shown in
the rightmost column.

Since message operations represent points of interprocess
communication, it is a natural point of reference for impos-
ing timing constraints. Minimum timing constraints between
message operations imply delaying the activation of messages
and do not pose any problems. On the other hand, if there
exist maximum timing constraints across blocking message
operations, then the original specification may be overcon-
strained since a blocking operation has unbounded execution
delay. With interface matching, it is possible to convert
some blocking message operations to nonblocking operations
by taking advantage of global communication patterns. We
therefore modify the relative scheduling formulation in the
following way.

Initially, any maximum timing constraints that are violated
due to blocking operations are removed. After performing
interface matching, these constraints are applied to the results
and their consistency is checked. If blocking operations exist
in the result, it is possible that some constraints will still
be violated. Even if all operations are made nonblocking,
the delays introduced by this process can result in constraint
violations. It is shown later that under certain assumptions, if
a solution exists, then interface matching will always find a
solution.

Example 3: In Fig. 6(a) the maximum constraint from
¢ to a is not valid because b is a blocking operation and
its delay is unbounded, i.e., a positive cycle exists when
§(b) > 3. In (b) the same constraint graph is shown after
transforming b from blocking to nonblocking. Although the
operation was made nonblocking, its delay (6(b) = 4) is too
large and the graph is still overconstrained. Finally in (c), b is
once again nonblocking, but its delay is within the bounds of
the constraint. Therefore, a solution exists if b can be made
nonblocking with §(b) < 4. O

B. Interface Between Processes

We abstract interprocess communication in terms of mes-
sages that are sent and received between processes over a set
of abstract media called channels. Messages are assumed to
be synchronous, taking one or more clock cycles to complete.
Each message consists of a send operation and a receive

(@) (b)

Fig. 6. Example of maximum constraint across a blocking operation. The
original specification is shown in (a). (b) and (c) show possible results from
interface matching when a nonblocking solution is found. Only (c) can be
satisfied for all possible input traces.

operation. Returning to Fig. 3, the decoder process sends three
messages {A,B,C} containing the preamble, content, and
parity information, respectively.

The communication can be static or dynamic. With static
communication, a message has exactly one send operation and
one receive operation associated with it. Multiple senders or
receivers of the same message are not allowed. This means
that send and receive operations can be statically matched
to one another at synthesis time. In contrast, messages in
dynamic communication are produced and consumed dynami-
cally, often using queues to decouple the sending and receiving
processes [10]. As stated before, we will restrict our focus to
the synthesis of statically communicating processes.

A message operation can either be blocking or nonblocking.
A blocking operation waits until its corresponding operation in
another progcess is ready to execute. Once the correspondent is
ready, the blocking operation executes with a fixed latency.
A nonblocking operation assumes that its correspondent is
ready and executes immediately without waiting. Nonblocking
operations have a fixed latency, while blocking operations
have an data-dependent delay. A blocking operation requires a
control acknowledge from its correspondent to signal when it
is ready, while a nonblocking operation does not require such
handshaking signals.

A message, made up of two message operations, can be
either blocking, semiblocking, or nonblocking. These types of
messages correspond to the cases where both, one, or none
of the operations are blocking. The number of control signals
needed for handshaking is two, one, and zero, respectively.
Nonblocking messages in our context are unbuffered, i.e., they
are implemented as reads and writes to external ports without
the use of queues and handshaking control logic. Nonblocking
messages are useful when the sender and receiver are implicitly
coordinated. As mentioned above, queues can be used to
decouple the sender and receiver processes. This makes all
messages nonblocking; however, queues introduce added cost
to the implementation. Our goal is to eliminate the need for
such queues through interface matching. If message operations
remain blocking after matching, then queueing can be used in
a complementary fashion.

When two processes are communicating via blocking mes-
sage operations, it is possible that the process will deadlock
(18], [19]. This happens if both processes are waiting for each
other to execute some message operation that will in fact not
execute until the currently stalled operation completes. An

272 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 1993

obvious solution to avoid this type of deadlock is to make
all message operations nonblocking, so that a process never
has to stall while waiting for its corresponding operation in
another process to execute. However, for unbuffered messages
this implies the possibility of the receiver incorrectly sampling
data before or after the sender is ready.

To ensure that data is properly communicated between the
processes, we define a communication to be valid if two
conditions are satisfied: (1) it is free of deadlocks, and (2)
the send and receive operations of a message are coincident
during the transfer of data for every message. Otherwise, it is
an invalid communication. In other words, all messages that
are transmitted are properly received.

The objective of interface synthesis is twofold: to ana-
lyze the communication for deadlocks and timing constraint
violations, and to exploit the degrees of freedom in timing con-
straints to reduce synchronization and implementation costs
while still ensuring valid communication. Referring back to
Fig. 2, the interface matching step reduces the hardware costs
by converting from blocking to nonblocking operations wher-
ever possible. In this conversion, operations are transformed
from having unbounded and unknown delays into known
delays. Hence processes need to be rescheduled after such
conversions to incorporate these known delays into the final
schedule.

III. EXTRACTING THE INTERFACE

We are now ready to formally define the interface be-
tween two processes. An interface describes two types of
information: the causal dependencies between messages indi-
cating whether executing one message requires the completion
of other messages, and the minimum or maximum timing
relationships that must be satisfied between the messages.
Obviously, any timing relationship must be compatible with
the causal dependencies. Intuitively, composing two processes
consists of making sure the causal dependencies are mutually
compatible, as well as propagating the timing relationships
between the processes.

A. Message Dependency Graph

Given a process and its constraint graph G(V, E), the set
of message operations M = {my,mgy,---,mr} CV in G
represents the points at which the process interacts with its
environment. We assume that all message operations have an
unknown completion time (i.e., blocking), which implies they
are also anchors in G, i.e., M C A. Each message is composed
of exactly one send operation in the sending process and one
receive operation in the receiving process.

For a process, represented by G(V, E), communicating with
other processes via message operations M, we define its
message dependency graph as follows.

Definition 1: The message dependency graph of a process
G(V, F) with respect to a set of message operations M C V,
denoted by G,,(V,,, E,,), is a subgraph of G. The vertices
consist of the message operations, i.e., V,, = M, and a
directed edge (v;,v;) € Ep, exists if v; € A(v;).

®© 6

()

©)

Fig. 7. Composing the message dependency graphs for the decoder and
receiving processes. (a) Decoder. (b) Receiving process. (¢) Composed mes-
sage-dependency graph.

In other words, G, captures the sequencing dependencies
between message operations. Note that G,,, is not necessarily
connected. Fig. 7(a) shows the message dependency graph for
the decoder example. It is easy to show that if the original
graph G is valid, then the message dependency graph is
acyclic.

Since G, captures the causal relationships between mes-
sage operations within a process, any valid communication
between two processes must be compatible with respect to the
causal relationships in the individual processes. To formalize
this notion, consider two processes G; and G2 communicating
over a set of message operations M, with message dependency
graphs G,1 and G2, respectively. We define the composition
of Gyp1 and G, as follows.

Definition 2: The composition of two message dependency
graphs G,,; and G, is a graph G,,12. The vertex set
Vmi2 = Vin1 N V2 consists of the common messages of the
two processes. An edge (v;, v;) exists in Gp,12 provided there
exists a path from v; to v; in either Gr; or Gpa.

The composition is a graph of the sequencing dependencies
between common messages of two processes. As discussed
previously, it is possible that the original specification results
in communication deadlock. The message dependency graphs
will be used to check for this condition. This initial analysis is
necessary because later synthesis procedures assume that the
communication is valid.

Theorem 1: Consider two processes P; and P, and their
corresponding message dependency graphs G,,,; and Gp,2. If
the composed message dependency graph G.,12 contains a
cycle, then the communication between the process is invalid.

Proof: Consider two vertices v; and v; on the cycle,
which correspond to the two messages m; and m;. Let the
associated send operations be denoted by s; and s; with the
receive operations being 7; and r;. For valid communication
to exist s; must be coincident with r;, while s; and r; must
likewise be coincident. For the sake of contradiction, assume
that message m; is valid. This means that s; and r; are
coincident at some time ¢. The cycle in the graph implies there
is a sequencing dependency from v; to v;. This means that
one of the operations associated with m; cannot execute until
sometime later than ¢. Furthermore, there exists a dependency
from v; to v;. This implies that the other message operation
associted with m; must complete execution sometime earlier
than £. Clearly, message m; is not valid since it is not
possible for its message operations to be coincident in time. By

FILO et al.: INTERFACE OPTIMIZATION FOR CONCURRENT SYSTEMS UNDER TIMING CONSTRAINTS 273

contradiction, a cycle in the dependency graph implies invalid
communication. O
If the composed graph is cycle-free, then we say the
communication is consistent. We state the following theorem:
Theorem 2: A consistent communication can always be
made valid by making all message operations blocking.
Proof: By the definition of blocking communication it is
clear that the send and receive operation are coincident. It
remains to be shown that the communication is deadlock free.
For the sake of contradiction, assume that two messages m;
and mg are in deadlock. This means that in one process P,
message m; is active and must complete before executing
my, and in another process P,, message mo is active and
must complete before executing 1. Therefore, in process P,
a causal path exists from m; to mo, and in P, a causal path
exists from mg to m1. By definition of the composed message
dependency graph there exists a cycle containing messages
my and my. However, the composed message dependency
graph is acyclic. So by contradiction we conclude that the
communication is deadlock free. O
Example 4: Fig. 7 illustrates the composition of the decoder
example (from Fig. 4), which sends three messages A,B,C,
with a receiving process. Redundancies have been removed
in the composed graph. The receiving process, which has not
been shown, has no dependencies between the messages. This
simply means that it is capable of receiving the messages
in any order. In this case, the communication between the
processes is consistent because there are no cycles in the
composed graph.]

B. Incorporating Interface Timing Relationships

We have seen that consistency of the sequencing dependen-
cies among message operations can be analyzed by composing
message dependency graphs and checking for cycles. How-
ever, there are also timing relationships that are not represented
in the message dependency graph abstraction, e.g., requiring
a message operation to begin at least four cycles after the
completion of another message. This timing information is
needed by interface matching to ensure precise coordination
of communication between the processes.

Transformation of a blocking operation into a nonblocking
one is achieved through the use of timing information to
schedule the completion time of the operation. In Fig. 2
the start times for all operations are computed in the initial
scheduling step. The matching step attempts to compute the
as soon as possible completion times so that nonblocking
operations can be used in place of the original blocking ones.
This implies that a schedule for the message dependency graph
of a process is needed.

For the purposes of scheduling we assume that all message
operations have unknown delay (i.e., they are anchors). This
assumption is made because we want to schedule message
operations with respect to other ones, and in our scheduling
formulation the scheduling is done relative to the anchors. In
addition to the message operations, there are other internal
anchors not visible to other processes, such as data-dependent
loops. In general, the start time of an operation may depend
on such internal anchors.

For a process P, the interface schedule QN(Gn) of
Gm(Vin, Er) is defined to be a subset of the entire process
schedule (P) by restricting the start time of the message
operations V;, to include only offsets from other message
operations. To account for other anchors not included in Vi,
an operation is called controllable if its start time refers
only to message operations a € V,,; otherwise, it is called
uncontrollable. This property is critical in determining whether
a message operation needs to remain blocking.

Example 5: In Fig. 5 the schedule for each of the message
operations is given. Only the irredundant portion shown in
the third column needs to be considered when computing
operation start times; the rest is redundant. From the schedule
we see that operation ¢ depends on §(s),e depends on 5(s)
and 6(c), and g depends on &(e). Therefore, c and e are
said to be uncontrollable because their start times depend on
a non-message operation, i.e., s. In contrast, operation g is
controllable.

In order to compute the completion times for some message
operation a, we need to combine the interface schedules
(G 1) and QF(Gpm2) of the two processes that use mes-
sage a to communicate. The composed interface schedule
QI (Gm12) defines the as soon as possible completion times
for the message operations and can be computed as follows.
Let Ami(v) and An2(v) be the anchor sets of a message
operation v € Vjn12 in the interface schedules Qf(Gp1) and
(G m2), respectively. The anchor set for v in the composed
interface schedule is the union of the anchor sets:

Am12(v) = Api(v) U Az (v).

Let 0™!(v) and o7*?(v) be the offsets of an operation v with
respect to an anchor a in the individual interface schedules'.
The composed offset is computed as the maximum of the
individual offsets, i.e.,

if a €

Am1(v) N Ama(v);
if a & Am2(v);

if a € Am1(v).

ma,x(aflnl (v}, o?(v)),

ole(U) —

¢ ot (v),

U;nZ(U)v

Example 6: Consider the example in Fig. 8. The top part
of the figure shows the message dependency graphs for two
processes P; and P, with three messages {A, B,C} before
and after composition. There are sequencing constraints from
A and minimum timing constraints between B and C. The
bottom part of the figure shows an execution scenario for
processes P; and P, based on schedules that are consistent
with the individual processes. For example, message C and P,
is scheduled to execute three cycles after the completion of A.
If messages B and C are nonblocking, then the communication
is not valid because the operations associated with the two
messages would not be coincident. If the messages are made
blocking, then operation B in Py would wait one cycle until
its corresponding operation in P executes, and operation C in
P, would wait 3 cycles to synchronize with its correspondent

't is possible the offset is undefined if a is not in the anchor set of v in
the individual schedules.

274 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 1993

5(A) 6(A)+1 5(A)+3

- | E—

(@) () (©)

Fig. 8. Composing two message dependency graphs with timing constraints.
(a) Process P;. (b) Process P,. (c) Composed schedule.

in P1. In the composed interface schedule (c), we see that if
we schedule the completion of operations B and C in both
processes to be 1 and 3 cycles after the completion of A,
then they can be made nonblocking while still ensuring valid
communication. In this case, the behavior is identical to the
blocking case, but the hardware cost has been reduced. 0

There are several important advantages to explicitly extract-
ing and composing interfaces. First, it permits rigorous analy-
sis of timing constraint consistency across process boundaries.
Second, it enables each process to be synthesized individually,
yet with all the requirements on its interactions with other pro-
cesses fully represented as explicit timing constraints. Finally,
it provides a formalism to manipulate and model interprocess
interactions, e.g., we can now constrain the interface by
directly applying sequencing and timing constraints on the
external messages; these constraints can then be reflected to
the individual processes for use during synthesis.

IV. INTERFACE MATCHING

Given two processes, if their composed message graph is
consistent, then Theorem 2 states that all messages can be
made blocking to guarantee valid communication. However,
it is often the case that the communication remains valid even
if some messages are made nonblocking, as seen in Example 6.

Example 7: To further illustrate this point, consider process
P, from Example 6. A possible schedule for P; is shown in
Fig. 9(a). Both B and C have been broken into two vertices
(e.g., B® and B°) to represent the start and completion of the
operations. This allows the completion time to be scheduled
under the constraints of the composed interface schedule
shown in Fig. 8(c). A similar technique can be used in P,
so that the resulting schedule is that of Fig. 9(b). A remains
blocking while both B and C are made nonblocking. Although
the operations start at different times, they complete at the
same time, and a valid transfer takes place. This constitutes a
significant savings in terms of synchronization logic. 0

We formalize this observation by introducing the interface
matching problem. Consider two processes P, and P, with
common messages M and a corresponding composed message
constraint graph G,,;2 that is acyclic. Let M be partitioned
into the set of blocking Mp.cx and nonblocking Mponbiock
messages. The interface matching problem is to minimize the
number of blocking messages Mp,cr While ensuring valid
communication.

)

Fig.9. Scheduling the decoder and receiver processes based on the composed
interface schedule. Messages B and C can be made nonblocking without
making the communication invalid. (a) Process P;. (b) Matched schedule.

Intuitively, interface matching converts blocking messages
into nonblocking ones by scheduling the completion time of
a message operation when possible, as opposed to scheduling
start times in conventional scheduling. This is because the
completion of message operation implies the successful trans-
fer of information between the sender and receiver. Therefore,
interprocess communication can be viewed as a set of time
intervals, where the start of the interval corresponds to the
start of a message operation, and the end corresponds to its
completion. Successful communication requires the intervals
of the sender and receiver to always overlap at some point,
for all message operations. The interface matching algorithm
in the next section computes the as soon as possible point
of overlap between the intervals. If a solution satisfying all
constraints is found, then it is guaranteed to have minimum
execution delay for all input data sequences.

Reducing the number of blocking messages leads to savings
in two areas. First, blocking messages are implemented with
a set of handshaking signals (e.g., request and acknowledge)
to coordinate the data transfer between sender and receiver.
Making a message nonblocking means these handshaking
signals and the associated logic and ports can be removed.
Second, a blocking message has a data-dependent execution
delay. This can lead to larger controller cost because of
the need to synthesize busy waits in both the sending and
receiving processes. In contrast, no busy waits are necessary
for nonblocking messages, which can result in a simpler
control implementation [20].

A. Interface Matching Algorithm

The overall flow of the synthesis process was first outlined
in Fig. 2. Many of the details were left out and are explained in
more depth here. The algorithm for the interface matching is
shown in Fig. 10. For simplicity, the low level details related
to scheduling are not discussed here. Although we use relative
scheduling, our formulation is independent of the scheduling
technique, and other methods can easily be substituted.

Given a pair of scheduled communicating processes and
a common set of messages, we first extract and compose
their message dependency graphs. Although not shown in the

FILO et al.: INTERFACE OPTIMIZATION FOR CONCURRENT SYSTEMS UNDER TIMING CONSTRAINTS 275

InterfaceMatch(P, P;)
forever
// compute initial schedule
Q) = Schedule(P,);
2 = Schedule(P;);

// construct graphs

Gy = ConstructMsgDependGraph(G));

Gm2 = ConstructMsgDependGraph(G:);

Gumiz = ConstructComposedMsgDependGraph(Gumi, Gm2);

// compute interface schedules
Q! = ConstructInterfaceSchedule(Gum1, $1);
Q) = ConstructInterfaceSchedule(Gma, 02);

// are there any controllable operations left?
if all message operations m € Vi) N Vi are uncontrollable
break;

// p letion times for
Qf, = ComputeCompletion(Gumiz, 1, Qo)

d interface

foreach message m € Vg
if m; is controllable
if m; is blocking
// make my non-blocking
// set completion time for my
T(s5) = Tm);

if m; is controllable
if m, is blocking
// make m, non-blocking
// set completion time for m;
T(§) = T(m;

Fig. 10. The interface matching algorithm.

algorithm, if the resulting composed graph is cyclic, then
the communication is invalid and no solution is possible.
Otherwise, for each process an interface schedule is derived
from the process schedule. Based on these schedules, a sched-
ule of completion times is constructed to form a composed
interface schedule. If there are no controllable messages in
either process, then there are no blocking operations that can
be converted to nonblocking, and the algorithm completes.

For each message m in the composed message dependency
graph, it has two message operations m; and my from Gm1
and G2, respectively. The corresponding vertices in the
process constraint graphs G1 and G are denoted by vy and vs.
If the operation m; is controllable, then operation my can be
made nonblocking by scheduling its completion time T(v$5).
The completion time is set such that m2 is guaranteed to
complete after m; begins execution. This is possible because
m; is controllable, and therefore its start time is known in Ps.
If m, is blocking, the result is a semiblocking message where
my is ready first and waits for m2, and if m, is nonblocking,
the message is nonblocking where m; and m2 complete at the
same time. The same procedure is applied to my and m; with
their roles interchanged.

Example 8: An application of the algorithm is shown in
Fig. 11. In this example we are only concerned with message
c. In process Py, the start time of ¢ depends only on messages
a and b; therefore, it is controllable. However, in process P,
the start time of ¢ depends on message ¢ and an internal data-
dependent loop d (denoted by the square vertex); therefore, it
is uncontrollable. Operation ¢, (split into c3 and c§) is made
nonblocking in (b) by scheduling its completion (c§), such that
its completion is after the start of ¢; for all input traces. It is
not possible to make c¢; nonblocking. 0O

After transforming all possible blocking messages, the entire
process is started again by rescheduling and continuing from

P

8(b1)+2

Py

ONONO)

5(d)

()
é(a1) +3

8(a2)

(@)
P P,

Q ’ & O &
5(a2) 5(d)
8ar) +3 5(b1) +2
0 6('12 8(b) +2
(%)

(b)

Fig. 11. Example of the matching algorithm, which results in a semiblocking
message. The processes in (a) are before matching and (b) shows them after
matching.

(@) (b)

Fig. 12. Example where application of the matching algorithm introduces
new controllable operations. Only one process is shown. Message operation
¢) is uncontroliable in (a), but after matching in (b), ¢; becomes controliable.

there. It is possible that the rescheduling will introduce new
controllable operations that were previously uncontrollable.
This happens when the rescheduled start time of a message
operation no longer depends on an internal anchor.

Example 9: The need for iteration on the matching step
is shown in Fig. 12. In this example we are concerned with
messages b and c. In (a), by is controllable while ¢y is
uncontrollable because of the intemal loop d. Suppose b;
(in process P, not shown) is also controllable so that b
is made nonblocking. In this case, a new dependency from
dy to b; is introduced in P;. Because of the delay values,
the start of message operation c; no longer depends on e;
therefore, it becomes controllable. This cannot be known
without rescheduling the graph. a

When there are no controllable operations remaining, the
resulting constraint graph is rescheduled for a final time. This
final scheduling is done without ignoring any of the maximum
constraints. Remember that scheduling usually ignores maxi-
mum constraints across blocking operations because they may
be converted to nonblocking ones. If one of these constraints
is not satisfiable at the end, the original specification is
overconstrained. It should be noted that in cases where some
constraints remain unsatisfied, it might be possible to add
serializations and constraint lengthening to introduce new
controllable operations which potentially lead to a feasible
result. However, these steps have the unwanted side effect of

276 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 1993

reducing concurrency and increasing latency; therefore, they
are not applied.

Since no changes in the existing constraints are made and
no new ones are added, scheduling the completion time of
an operation with this algorithm does not affect the cycle-per-
cycle behavior of the resulting constraint graph. The algorithm
simply determines the completion time of those blocking
operations that can be made nonblocking. If the operation were
to be left as blocking, it would complete at the same time as
the transformed nonblocking operation. So the algorithm is
guaranteed not to increase the latency of the design.

Under the restriction that the latency is not to be in-
creased, this algorithm determines the maximum number of
nonblocking operations. Any operation that remains blocking
is the result of a uncontrollable operation. An uncontrollable
operation can be made controllable only if a new sequencing
edge is added or if the value of an existing constraint is
increased. Modifying or adding such a constraint will lead
to an increase in latency for some input traces. Therefore, the
matching algorithm presented here computes the maximum
number of nonblocking messages under the constraint that the
latency is not increased.

The time complexity for one iteration of the matching
algorithm over all processes is O(|M||V]), where |M] is
represents the total number of messages in all processes and
|V] is the average number of vertices per constraint graph.
The algorithm repeats itself if new controllable operations are
formed. Typically only a few iterations are necessary to find
all controllable operations. However, in the worse case |M|
iterations would be required, which results in an overall time
complexity of O(|M|?|V}).

V. CHANNEL MERGING

Given an interface graph, the interface matching procedure
reduces the number of blocking message operations as much as
possible. This reduction in the number of blocking operations
leads to lower communication and control costs. A further
benefit is the potential for multiple separate communication
channels (transferring data between sender and receiver) to
be merged together and implemented on a shared physical
medium. Merging is easier for nonblocking operations com-
pared to blocking ones because they have fixed as opposed
to unbounded delay. Until now, an assumption was made that
each communication channel is implemented using dedicated
control signals along with dedicated data lines. We now relax
this assumption to allow the merging of channels.

There are varying degress to which channels can share the
same physical hardware. In general, control signals can be
shared separately from the data signals. Furthermore, depend-
ing on data widths, channels can be combined so that multiple
channels can share the same physical channel at the same time.
A more general scheme is to dynamically allocate the hardware
to channels through the use of dynamic arbitration. Other
variants are possible but we will consider only the static case
where channels have the same size as the physical medium
being mapped to. Furthermore, we assume that if two channels
are shared, then both the data and control signals are shared.

Channel merging can be implemented at various stages
of the synthesis flow. The most direct method, described
in Section A, is to apply merging before scheduling by
treating the physical channels as critical hardware resources
and using serialization techniques [16] to share these resources.
Alternatively, channel merging can be applied after scheduling
has been performed, as described in Section B. In this case
the results from scheduling are analyzed to determine where
selective merging can take place. Finally, we describe in
Section C rescheduling techniques to further increase the
amount of merging that is possible.

A. Merging Before Scheduling

Merging before scheduling is the most direct method be-
cause communication channels are treated the same as other
hardware resources, such as adders and ALUs. Therefore,
traditional techniques used for resource sharing can be applied
here with little or no modification. Provided the synthesis
system can share critical resources under timing constraints,
no special analysis is necessary to support this type of channel
merging.

However, there is one important difference between com-
munication channels and other hardware resources. Since we
assume the initial message operations are blocking, the latency
of these operations is not fixed. Therefore, given two candidate
channels to merge, it is not enough to simply schedule the start
time of the message operation of one channel before the start
time of the other message operation. The reason being their
completion times are unknown. A sequencing dependency
between the operations must exist to guarantee that they are
never active at the same time for all possible execution traces.
Furthermore, this sequencing dependency must exist in both
communicating processes for the channels to be merged while
preserving valid communication.

An advantage of this method is that it can be used to
solve the problem when the number of physical channels
is constrained. Serialization can be used as a preprocessing
step to ensure that the number of physical channels does not
exceed the specified constraint. Techniques exist that finds
a serialization under timing constraints, provided one exists
[16]. The main disadvantage of merging before scheduling
is that it requires operations to be serialized. The addition
of sequencing dependencies to the constraint graph reduces
the degree of concurrency, which may increase the latency of
the final implementation. To avoid this increase, the technique
presented in the next section can identify channel merging
opportunities without affecting the latency.

B. Merging After Scheduling

To merge channels after scheduling, the first step is to
analyze the scheduled results from the interface matching pro-
cedure. Based on the sequencing dependencies and schedules,
it is possible to determine whether or not two channels can be
merged. In this case merging has no effect on the synthesized
result other than reducing the hardware cost. If changes in the
circuit behavior (constrained by the specification of course)

FILO et al.: INTERFACE OPTIMIZATION FOR CONCURRENT SYSTEMS UNDER TIMING CONSTRAINTS 277

are acceptable, further merging can be achieved by modifying
the schedules. This will be discussed later.

After interface matching has been performed and the pro-
cesses have been scheduled, channel merging is introduced
by determining whether two given channels could possibly be
active at the same time. If the message operations associated
with two channels a and b are guaranteed to be mutually
exclusive in time, both a and b can be merged together and
implemented on the same physical channel. This analysis can
be broken up into several different cases depending on whether
or not message operations are blocking or nonblocking.

For the following cases, two messages a and b that commu-
nicate between two processes P; and P, are considered. The
message operations associated with message a are denoted
by a; and ap indicating the process to which they belong.
Likewise b; and b are the operations associated with message
b. The anchor set of an operation is denoted by A(x), where z
is some message operation. As discussed previously the anchor
set represents the set of operations having data-dependent
delay upon which z is dependent for its activation. The two
processes are analyzed separately, and later the results from
both processes are combined to determine whether channels a
and b can be merged.

The simplest case to analyze is when both a; and b; are
blocking operations. As described in Section A, it is enough to
check whether a sequencing dependency exists between ay and
by. If such a dependency exists, the channels can be merged.
Otherwise, they must remain separate.

If one of the two operations is nonblocking, say ai, then the
operation has been split into a start vertex a$ and a completion
vertex a$. Remember that the start of af represents the start of
waiting, and a$ represents the actual transfer of data. In this
case the delay of b is not known (it is blocking). Therefore,
a$§ must complete before b, starts, for merging to be possible.
Operation by cannot be scheduled first because its completion
time is unbounded. In order to guarantee that aj completes
before b, several conditions must hold. First, the anchor sets
of the operations must have the relation A(a$) C A(by). This
means that all data-dependent operations that affect the start
time of b, must also affect a$. Otherwise, it is possible that the
completion of af will be delayed beyond the start of by, due
to some other anchor. The second condition is that for each
anchor in A(a$), its offset to the completion of af must be
less than the offset to by. This ensures that for every possible
execution trace, a$ always completes execution first. If these
two conditions hold, the two operations can be merged.

Example 10: Fig. 13 illustrates the necessary conditions
for the case of one blocking and one nonblocking operation.
In (2) the anchor set relation is A(b1) C A(a$). Since by is
the blocking operation, this violates the stated condition that
A(a$) C A(b;) must hold for merging to be possible. For
example, if ¢ and d begin at the same time (e, T(c) = T(d))
and the operation delays are 6(c) = 0,6(d) = 0, and §(b) =3,
then a$ and b; would be active at the same time. In case (b) the
anchor set relation is correct, ie., A(af) C A(by). However,
contention would result in the case when T(c) = T'(d), 5(c) =
0, and §(d) = 2. Finally, in (c) both the anchor sets and offsets
satisfy the conditions. For all possible execution traces af will

Fig. 13. Example of merge analysis when one operation by is blocking
and the other af is nonblocking. Bold vertices represent blocking messages.
Operations cannot be merged in (a) and (b), but they can be merged in (¢).

start and complete before b, is started. Therefore, the two
channels can be merged. m}

Finally, if both operations are nonblocking, the conditions
to allow sharing are further relaxed. In this case the execution
delay of both a$ and b are both fixed. The same analysis used
in the previous case can be used here, with the difference that
ay and by are interchangeable in the above discussion. So for
merging to be possible, it must be the case that A(a$) C A(b§)
or A(bS) C A(a$). Furthermore, the offset from each anchor
in A(a$) (A(b$)) to the completion of af (b$) must be less
than the offset to the start of b5 (af).

Until this point, only a single process has been considered.
However, for two channels to actually be merged, it must be
the case that the operations can be merged in both processes.
So for channels o and b to be merged, a1 and b; must be
merged in process P1 as well as az and by in Ps.

Further analysis is also needed in order to merge more than
two channels. Once all pairs of messages have been checked,
a merge compatibility graph is formed where the vertices
represent the messages, and an edge between two messages
implies that the two can be merged. Two or more messages can
be merged if and only if there exists a clique in the merge graph
that contains the messages. Clique partitioning is performed
on this merge graph to determine which messages are meged
together. A physical channel is neded for each clique in the
partition.

Example 11: In Fig. 14(a), the message constraint graph
for some process Py is shown. For simplicity, assume the
constraint graph for a second process P is identical. Of
the five messages in the graph, three of them {a,b,c} are
uncontrollable because they depend on a nonmessage anchor,
while the other two {d,e} are controllable. Therefore, the
results from interface matching would yield three blocking
and two nonblocking message operations in both processes.
Analysis of this graph leads to the merge compatibility graph
shown in (b) for both processes. Channel a can be merged
with ¢ and d, and b can be merged with d and e because of
sequencing dependencies. Channels a and b cannot be merged
because they are both blocking and no sequencing dependency
exists between them. Channel ¢ cannot be merged with either
d or e because of incompatible anchor sets. The anchor sets of
d and e have the relation that A(e) C A(d), but the offset from
b to d is less than to e. The minimum clique covering of the

278 [EEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 1993

Fig. 14. Message constraint graph for processes Py and P, (same for both).
Blank vertices represent nonmessage anchors. (a) Message-constraint graph.
(b) Merge graph, which denotes merging possibilities between messages.

merge graph results in three physical channels. For example,
a possible merging would be {a,c}, {b,e}, {d}. O

C. Rescheduling Operations for Increased Merging

From the conditions for merging discussed in the previous
section is should be clear that there is a better chance to
merge nonblocking operations as compared to blocking op-
erations. This means that the interface matching technique,
by creating nonblocking operations, increases the ability to
merge channels. Furthermore, the conditions also imply that
additional steps can be taken to augment the merging process.
Serializaing the messages by adding sequencing dependencies,
modifying the anchor sets, and altering the scheduling offsets
can be used to satisfy the conditions. The modification of
anchor sets is accomplished by adding sequencing edges
and/or modifying offsets, so we are left with these two
techniques to improve the merging step.

There are several disadvantages to adding edges and increas-
ing offsets. Although these techniques can be used in some
cases to reduce control costs [20], they can only increase the
latency and possibly increase the control costs. In the case of
serialization, there are drawbacks in addition to the increased
latency. Adding sequencing edges has the effect of reducing
the degree of concurrency. Furthermore, these new edges can
potentially change the anchor sets of operations in the graph.
In some cases this is tolerable, but in our case modifying the
anchor set of an operation can cause it to become uncontrol-
lable. If this occurs, then the results from the matching step
would be invalidated. Some nonblocking operations would
have to be changed back to blocking. Therefore, there is no
attempt to introduce new serialization after scheduling has
been performed, and this technique should only be used before
the interface matching procedure is applied.

So in order to obtain increased merging, we are left with
modifying the existing schedule by increasing the value of
constraints. It was shown that for two operations a and b
to be merged the relation C must hold between the anchor
sets A(a) and A(b). If this relation does not exist, there is
no need to reschedule the operations because they cannot be
merged. Therefore the first step is to partition all the anchor
sets into sets such that for each partition, an ordering among
the anchor sets exists under the C relation. For example,
consider a case where we have the four message anchor
sets {w,z}, {z,y}, {w,z,y}, and {w,x,2}. We can partition
these into two sets {{w, z}, {w, z, 2}} and {{z, y}, {w, z,y}}
where the relation C holds.

a b
SVAYAN
c d e
(b)

Fig. 15. Modified message constraint graph shown after rescheduling. (a)
Message-constraint graph. (b) Degree of possible merging has increased.

Reschedule(P)

foreach message m; in topological order
Compute anchor set A;;

Construct a partition P of the anchor sets;
// such that each p € P has a complete ordering under C

Order each p € P under C;
foreach (p € P)
foreach (a € p)
foreach (m|a € A(m))
increase path(a, m) if necessary;

Fig. 16. The rescheduling algorithm.

Example 12: The example in Fig. 15 is taken from Exam-
ple 11. The only difference in this example is that rescheduling
has been performed on operation d. We saw in the previous
example that the anchor sets of d and e had the relation
A(e) C A(d). However, the schedules of these operations did
not permit them to be merged. Operation d has been delayed by
3 cycles with respect to b to ensure that e will always execute
before d. Doing this allows the two operations to be merged.
The resulting merge graph is shown in (b). Now the minimum
clique covering results in only two physical channels. The
merged channels in this case are {a,c} and {b,d,e}. O

The second step is to reschedule the operations based on
how their anchor sets have been partitioned. The algorithm
to partition the anchor sets and reschedule the operations
is shown in Fig. 16. The algorithm is a heuristic that will
find a new schedule such that maximum channel merging is
achieved. However, it does not necessarily find the schedule
with minimum latency. Due to the presence of unbounded
delay operations, the meaning of minimum latency is not
clear. The time complexity of the algorithm is O(|A||M||V|?),
where |A| is the number of anchors, |M]| is the number of
messages, and |V| is the number of overall vertices.

VI. DISCUSSION AND LIMITATIONS

If processes P; and P, contain any control-flow structure
such as loops and conditionals, then their corresponding con-
straint graph representations are hierarchical in the sequencing
graph model we are using. This causes difficulty in several
areas. First, in our formulation timing constraints can only be
specified between vertices of the same graph, which means
that if we specify constraints between messages occurring in
different graphs, they must be distributed across the hierarchy.
Second, since we synthesize each graph in the hierarchy
separately, it is necessary to partition the message links such
that messages within each partition exist solely between two
graphs in the hierarchy. Interface composition is then applied
to each partition, in turn. Since the temporal relationship

FILO et al.: INTERFACE OPTIMIZATION FOR CONCURRENT SYSTEMS UNDER TIMING CONSTRAINTS 279

between operations across the graph hierarchy is not directly
captured, there is a possible loss of accuracy in the hierarchical
extraction of timing relationships.

Until this point, we have ignored hierarchy and have only
considered the communication between two distinct graphs
in separate processes. Our methods can be applied to any
two graphs at any level of hierarchy; however, none of the
procedures work across hierarchy boundaries. We can deal
with these problems in two ways. First, we can restrict as
much of the communication as possible to a single graph in the
hierarchy. Typically this would be the top level of the process.
This has the limitation that the control reduction and channel
merging techniques cannot be applied between communication
events that occur at different levels of control hierarchy. A
second approach is to reduce the hierarchy as much as possible
by flattening the control structures. This could be done for
most of the control structures except for loops which must be
represented through hierarchy.

Although our techniques work on multiple processes, only
simple point-to-point messages are supported. Messages with
multiple senders or receivers (e.g., broadcasts) are not con-
sidered. More work is necessary to support other types of
messaging and synchronization, which, in some cases, is
highly desired. This would require the analysis of more
than two processes simultaneously, which is currently not
supported.

There are no restrictions on the relative repetition rates
of processes for interface matching to be used. This is in
contrast to some synthesis systems that assume all processes
start and restart at the same time. This allows system designs
that have a combination of processes iterating at varying
rates. Communication has the effect of synchronizing such
processes, but in general the processes remain synchronized
for only a short time after completion of the communication.
Interface matching takes advantage of this time when the
processes are synchronized to simplify other communication.
But once the processes cease to be in synchrony, no further
optimizations can be achieved.

A limitation in the matching algorithm is that blocking
operations are converted to nonblocking only if the latency
of the result is not increased. So in the case when an increase
is tolerable, the algorithm might not find the maximum number
of nonblocking operations. This leads to a problem in the
satisfaction of maximum timing constraints across blocking
message operations. These types of constraints are allowed in
the specification, but it is not always possible to find a solution
satisfying all the constraints. If a solution is not found, it may
be the case that the specification is simply overconstrained;
however, it may also be the case that a possible solution was
not found because it would result in increased latency. The
solution to these problems is to allow the matching step to
selectively allow increases in the latency when necessary.

VII. RESULTS

Experimental results for three examples within the Olympus
Synthesis system [21] are given in Table I. The table shows the
number of blocking messages and ports before and after the

TABLE I
EXPERIMENTAL RESULTS OF APPLYING THE INTERFACE
MATCHING AND CHANNEL MERGING TECHNIQUES

Original After
Design Messages Blocking Ports Blocking Ports
ECC encoder 16 16 16 1 1
ECC decoder 16 16 16 1 1
Elliptic filter 3 3 3 1 1
Receive 19 19 19 5 4
Decrypt 19 19 19 5 4

optimization. The first column in the table gives the number of
messages in the initial specification. The original messages are
blocking and implemented using dedicated hardware; therefore
the first three columns are the same.

The first example consists of two processes in a system
that models the transmission of digital data through a lossy
serial line. The encoder process prepares the data and the
associated parity information. This data is sent on a lossy
line to a decoder process which uses the parity information
to correct transmission errors if possible. In this example all
of the communication is serialized in the original specifica-
tion. Therefore, after optimization the first message remains
blocking, while the rest have been converted to nonblocking.
Furthermore, because of the serialization, all messages can be
merged together using a single port.

The second example is the elliptic filter taken from [22],
which has been partitioned into two processes using the Vulcan
high-level partitioning tool. After partitioning, there are three
communication messages used to transfer data between the
partitions. These three messages can be simplified down to a
single blocking message with two nonblocking messages all
sharing a single port.

The final example consists of two processes from a decryp-
tion system. Due to control structures, both processes contain
several levels of hierarchy in their constraint graphs. The
message dependency graphs for these two processes are shown
in Fig. 17. Graphs from the two processes that contain the same
messages are paired together, and these pairs are processed
separately. The receive process is responsible for handling
the low-level details of reading data from an incoming serial
line, extracting header and data information, checking for and
correcting transmission errors, and sending the data off to a
decryption process to obtain the clear text. The decrypt process
receives data and proceeds to decrypt it based on the header
information. While processing the incoming data, the clear
text is sent back as it becomes available. Finally, some trailer
information is sent back to the receive process. Due to the
concurrency in this example, the final circuit still has multiple
blocking messages.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we described an approach to the analysis
and synthesis of interfaces for time-constrained concurrent
systems. We proposed an explicit representation of the in-
terface between processes in terms of message dependency

280

Fig. 17. Message sequencing graphs for decryption system. Levels of
hierarchy are represented- by shading. Normal vertices represent receive
operations, and bold vertices represent send operations. (a) Receive process.
(b) Decrypt process.

graphs. We described the interface matching technique to
minimize the number of required blocking messages that is
needed for valid, deadlock-free communication under detailed
timing constraints. A method for sharing physical channels
among multiple communication channels in order to reduce the
communication hardware between processes was presented.

We are working to extend the formulation to better support
hierarchy in the model. Currently, it is necessary to partition
the messages such that messages within each partition orig-
inate from a single graph in the hierarchy and terminate in
a single graph in another hierarchy. For many time critical
designs where the control-flow structure of the sending and
receiving processes is similar (to minimize the effect of
control delays), this assumption is not a severe limitation.
For other designs, there is potential loss of accuracy in
extracting the timing requirements because the relationship
across hierarchy may be lost. A solution is increase the
scope of analysis by transforming the description to reduce
the number of partitions, e.g., flattening or restructuring the
control-flow. Another approach is to extend the formalism by
using automata to describe the time progression of message
operations on channels. These issues are currently under
investigation.

REFERENCES

{1} M. McFarland, A. Parker, and R. Camposano, “The high-level synthesis
of digital systems,” Proc. IEEE, vol. 78, no. 2, pp. 301-318, Feb. 1990.

[2] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-level Synthesis: Introduction
to Chip and System Design. Norwell, MA: Kluwer, 1992.

[3] D. Thomas, E. Lagnese, R. Walker, J. Nestor, J. Rajan, and R. Black-
burn, Algorithmic and Register-Transfer Level: The System Architect's
Workbench. Norwell, MA: Kluwer, 1990.

{4]

(51
(6]

171

[91

(10

(1]

[12]

[13]

[14]

{15]

(16}

{17

(18]

(191

(20]

21]

(22]

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLS]) SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 1993

E. D. Lagnese and D. E. Thomas, “Architectural partitioning for system
level synthesis of integrated circuits,” JEEE Trans. CAD/ICAS, vol. 10,
pp. 847-860, July 1991.

]. Nestor and D. Thomas, “Behavioral synthesis with interfaces,” in
Proc. Des. Automation Conf,, June 1986, pp. 112-115.

G. Borriello and R. Katz, “Synthesis and optimization of interface
transducer logic,” in Proc. Int. Conf. Computer-Aided Design (Santa
Clara, CA), Nov. 1987, pp. 56-60.

C. H. Gebotys, “Optimal synthesis of multichip architectures,” in Proc.
Int. Conf. Computer-Aided Design, Nov. 1992, pp. 238-241.

Y.-H. Hung and A. C. Parker, “High-level synthesis with pin constraints
for multiple-chip designs,” in Proc. Design Automation Conf., June
1992, pp. 231-234.

S. Hayati, A. Parker, and J. Granacki, “Representation of control and
timing behavior with applications to interface synthesis,” in Proc. Int.
Conf. Comput. Design, Oct. 1988, pp. 382-387.

T. Amon and G. Borriello, “Sizing synchronization queues: A case study
in higher level synthesis,” in Proc. 28th Design Automation Conf., June
1991.

C. M. McNamee and R. A. Olsson, “Transformations for optimizing
interprocess communication and synchronization mechanisms,” Int. J.
Parallel Programming, vol. 19, no. 5, pp. 357-387, Oct. 1990.

H. G. Dietz, A. Zaafrani, and M. T. O’Keefe, “Static scheduling for
barrier MIMD architectures,” J. Supercomputing, vol. 5, no. 4, pp.
263-289, 1992.

S. K. Tripathi and V. Nirkhe, “Pre-scheduling for synchronization in
hard read-time systems,” in Operating Systems of the 90s and Beyond,
A. Karshmer and J. Nehmer, Eds. New York: Springer-Verlag, 1991,
pp. 102~108.

P. L. Shaffer, “Minimization of interprocessor synchronization in mul-
tiprocessors with shared and private memory,” in Int. Conf. Parallel
Processing, vol. 3 (St. Charles, Illinois), pp. 138-142, Aug. 1992.

H. G. Dietz, T. Schwederski, M. T. O’Keefe, and A. Zaafrani, “Extend-
ing static synchronization beyond VLIW,” in Proc. Supercomputing '89
(Reno, NV), Nov. 1989, pp. 416-425.

D. Ku and G. De Micheli, High Level Synthesis of ASICs Under Timing
and Synchronization Constraints. Norwell, MA: Kluwer, 1992.

D. C. Ku and G. De Micheli, “Relative scheduling under timing
constraints: Algorithms for high-level synthesis of digital circuits,” /[EEE
Trans. CAD/ICAS, vol. 11, pp. 696-718, June 1992.

L. Y. Liu and R. K. Shyamasundar, “Static analysis of real-time
distributed systems,” IEEE Trans. Software Eng., vol. 16, pp. 373-388,
Apr. 1990.

K. M. Chandy and J. Misra, “The drinking philosophers problem,” ACM
Trans. Programming Languages and Systems, vol. 6, no. 4, pp. 632-646,
Oct. 1984.

D. Filo, D. C. Ku, and G. De Micheli, “Optimizing the control-unit
through the resynchronization of operations,” INTEGRATION, VLSI J.,
vol. 13, pp. 231-258, 1992.

G. De Micheli, D. C. Ku, F. Mailhot, and T. Truong, “The Olympus
Synthesis System for digital design,” IEEE Design and Test Magazine,
pp. 37-53, Oct. 1990.

R. Gupta and G. De Micheli, *“Vulcan—a system for high-level parti-
tioning of synchronous digital circuits,” Stanford University, Stanford,
CA, CSL Tech. Rep. CSL-TR-91-471, Apr. 1991.

David Filo received the B.S.E. degree in computer
engineering from Tulane University, New Orleans,
LA, in 1988, and the M.S. degree in electrical en-
gineering from Stanford University, Stanford, CA,
in 1990. He is currently working toward the Ph.D.
degree at Stanford.

His research interests include the synthesis of
control and communication from a behavioral spec-
ification.

FILO et al.: INTERFACE OPTIMIZATION FOR CONCURRENT SYSTEMS UNDER TIMING CONSTRAINTS 281

David C. Ku (S’87-M’91) received the M.S. and
Ph.D. degrees in electrical engineering from Stan-
ford University, Stanford, CA, in 1987 and 1991,
respectively. He received B.S. degrees in electrical
engineering, summa cum Laude, and in computer
science, summa cum Laude, both from the Univer-
sity of Utah,Salt Lake City, in 1986.

He currently leads the development of system-
level design automation tools at Redwood Design
Automation and continues as Research Associate at
Stanford. He was a CIS/Signetics FMA Fellow in
the Center for Integrated Systems at Stanford University during 1989-1991.
He received the AT&T fellowship in 1986, the Most Qutstanding Senior in
Electrical Engineering award and the Most Outstanding Junior in Electrical
Engineering from University of Utah, in 1986 and 1985, respectively.

Dr. Ku is on the program committee for ICCAD’93. He is a member of
ACM.

Claudionor N. Coelho, Jr. was born in Niteroi,
RJ-Brazil, in 1967. He received the B.S. degree
in electrical engineering, Summa cum Laude, from
the Universidade Federal de Minas Gerais, Brazil,
in 1988. He is currently working toward the Ph.D.
degree in the Department of Electrical Engineering,
Stanford University, Stanford, CA.

His interests include high- and logic-level synthe-
sis and verification.

Giovanni De Micheli (S’82-M’83-SM’89) received
the Dr. Eng. degree, summa cum laude, in nuclear
engineering from the Politecnico di Milano, Italy, in
1979, and the M.S. and Ph.D. degrees in electrical
engineering and computer science from the Uni-
versity of California, Berkeley, in 1980 and 1983,
respectively.

He is Associate Professor of Electrical Engi-

neering and, by courtesy, of Computer Science, at

r Stanford University, Stanford, CA. From 1984 to

1986 he worked at the IBM T. J. Watson Research

Center, Yorktown Heights, NY, where he was Project Leader of the De-

sign Automation Workstation group. Previously, he held positions at the

Department of Electronics of the Politecnico di Milano, Italy, and at Harris

Semiconductor, Melbourne, FL. His research interests include several aspects

of the computer-aided design of integrated circuits with particular emphasis
on automated synthesis, optimization, and verification of VLSI circuits.

Dr. Micheli was granted a Presidential Young Investigator Award in 1988.
He received the 1987 Best Paper Award for the best paper published in
the IEEE TRANSACTIONS oN CAD/ICAS and two Best Paper Awards at the
20th Design Automation Conference, in 1983 and 1993. He is co-editor of
Design Systems for VLSI Circuits: Logic Synthesis and Silicon Compilation
(Martinus Nijhoff Publishers, 1987) and coauthor of High-Level Synthesis of
ASIC’s Under Timing and Synchronization Constraints (Kluwer, 1992). He
was also codirector of the Advanced Study Institute on Logic Synthesis and
Silicon Compilation, held in L’ Aquila, Italy, under the sponsorship of NATO
in 1986 and 1987. He is Associate Editor of the IEEE TRANSACTIONS ON VLSI
SysTEMS and of Integration: The VLSI Journal. He was Associate Editor of the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS from 1991 to 1992. He was
technical and general chairman if the International Conference on Computer
Design—ICCD, in 1988 and 1989, respectively. He served as a member of the
technical committee of the ICCD, ICCAD, and DAC Conferences. He also
served as a member of the executive committee of the New York Chapter of
the IEEE Computer Society in 1985 and 1986.

