Most digital systems consist of a
hardware component and software
programs that execute on the hard-
ware platform. Obviously, these sys-
tems can deliver higher performance
when the hardware design is tuned to
its software applications and vice ver-
sa. Computer designers have exploit-
ed the synergism between hardware
and software for many years, for ex-
ample, in defining hardware architec-
tural support for operating systems.

Renewed interest in hardware-soft-
ware codesign can be traced to progress
in computer-aided design. We now
understand many hardware CAD
problems and have design tools to
solve them. The emphasis in CAD has
risen from the physical-design to the
logic-synthesis level, where hardware
models in register-transfer languages
(for example, Verilog, VHDL, UDL/)
are compiled into logic circuits and
optimized. High-level synthesis tech-
niques support the design of hardware
from behavioral descriptions, whose
abstractions are similar to those used
in software programs. Hence, design
tools may soon be able to handle

ng CAD tools and techniques

i De Micheli, Stanford University

some aspects of the concurrent design
of hardware and software modules.

Problem taxonomy. To be realistic
about the possibility of supporting co-
design with CAD tools, we must first
make a coarse-grained taxonomy of
the problem. Codesign is part of sys-
tem-level design, where a system is a
physical unit that can deliver a service
(for example, a computer workstation
or a manufacturing robot). System-
level design requires solving mechani-
cal, electrical, and software problems.

There are three major classes of sys-
tem design: (1) large systems that in-
clude several computing units and
broad software functions, such as an air-
craft or a continental telephone network;
(2) general-purpose computing systems
that include several layers of software
in the operating system; and (3) em-
bedded systems that have processors
dedicated to specific functions and
different degrees of programmability.

The problems of designing large
systems include reliability and avail-
ability, which are often achieved
through redundancy. Another prob-

efien and concurrent engineering

la uchenrieder, Siemens AG

The surge of interest in hardware-
software codesign is driven by advanc-
es in the technologies that support a
unified approach. In particular, these
include system-level specification and
simulation environments, soft-proto-
typing techniques, formal design and
verification methods, and high-level
synthesis and framework technology.

A unified approach continuously re-
lates the hardware and software devel-
opment cycles so that decisions made
in either activity significantly affect
other operations. Ideally, several de-
sign teams develop system components
concurrently, so codesign also refers to
conjoint team cooperation.

Framework and management struc-
ture. Systems from portable CD play-
ers to complex flight controls can bene-
fit from this design approach. The field
of application is so wide that it is im-
possible to devise a single method or
tool to serve all needs. Therefore,
much research has concentrated on de-

January 1993

veloping integrated design methods.

One approach is to stress system-
level design over specific hardware
and software issues. Industrial systems,
however, contain mainly time-discrete
and time-continuous components for
which formal design methods and de-
sign tools exist. It is possible to move
to higher levels of abstraction in the
design process and still take advan-
tage of lower level tools, but it requires
a formal model at project start for
both the system under design and the
codesign process itself. The work flow
can then be mapped onto the model
so that tool support for data and task
management can be established, and
threads of action can be assigned in
parallel. Some practical codesign envi-
ronments employ framework technol-
ogy for tool encapsulation, sequenc-
ing, scheduling, and auditing.

As a team effort, codesign needs
“coaching” to be successful. A coaching
staff consists of technical specialists
and managers who meet regularly from

lem, verification of correct system op-
eration under different environmental
conditions, is addressed mainly
through software management tech-
niques. Computer-aided software en-
gineering (CASE) tools are currently
more applicable to these problems
than CAD programs are.

In general-purpose computing sys-
tems, two codesign problems have
been investigated extensively: caches
and pipelines. The design and sizing
of memory caches require a match be-
tween circuit performance and the up-
dating algorithm and its parameters.
Most cache designs are based on vali-
dating the design assumptions through
simulation with specialized tools.

The design and control of processor
pipelines require removing pipeline
hazards. Either hardware or software
techniques can solve the problem. In
the former case, the pipeline control
unit can flush the pipe; in the latter,
the compilers can reorder the instruc-
tions or insert “no operations.” The
choice affects overall performance,
and estimating performance is not
trivial. It requires appropriate models
for both hardware and software. Com-
puting the most effective number of
pipe stages for a given architecture is

(Continued at the bottom of p. 86)

project start to end. They uncover and
remove barriers, and act as mediators
— possibly between remote develop-
ment sites. In the startup phase, they
devise threads of action for all design
disciplines and equip each thread with
appropriate tools. The key issue is to
establish a smooth transition between
development sites, avoiding “ball over
the wall” or “island design” problems.
The coaching staff can maintain com-
munications between designers
through informal reviews and formal
consistency-checking systems embed-
ded in the framework.

Partitioning and integration. As in
all fields of engineering, measurements
guide decision processes; hence, co-
design must employ metrics on the de-
sign, system, and hardware-software
level. Design-level metrics are very
similar to those employed for analysis
of parallel computer systems. This is
because modules that implement time-
discrete or time-continuous functions
are continuously active in parallel.

System-level metrics address archi-
tectural issues, reliability, serviceabili-
ty, and system performance. Design-
ers must measure parameters and

85



compare them to estimates for full
hardware or full software implementa-
tions. All this boils down to the most
famous question in hardware-software
codesign: How well is the system parti-
tioned into hardware and software?

Partitioning actually starts with the
system-design modeling step, in which
the designer expresses the system’s
behavior formally with, for example,
parallel random-access machines that
encapsulate state diagrams and time-
continuous transfer functions. De-
pending on the underlying theoretical
model, abstraction level, and integra-
tion strategy, several estimation and
analysis methods are available. Deter-
ministic estimation, for example, re-
quires a fully specified model with all
data dependencies removed and all
component costs known. This method
leads to very good partitions, but fails
whenever data items are unavailable.
Statistical estimation, based on the
analysis of similar systems and certain
design parameters, is then required.
Profiling techniques rely on the exam-
ination of control flow and data flow
within an architecture to determine
computationally “expensive” parts
prone for realization in hardware.

In the strategic area, the issue is
early versus late binding. Early bind-
ing is the preferred strategy in the in-
dustry because it supports complete
planning of the development cycle to
guide design decisions. In contrast,
late binding can help in finding better
solutions to product performance is-
sues and in addressing “moving tar-
get” problems such as change requests
from consumers.

After parallel implementation of as-
signed team modules, all design
threads are joined for system integra-
tion. Clearly, successful integration de-
pends on the quality of the partitions.
Since both steps complement each oth-
er, interfaces must be specified during
system partitioning and prepared for
automatic synthesis and system test.

State of the art. Codesign is slowly
gaining acceptance in the industry —
partly because meeting the design-to-
cost bounds on the development of in-
creasingly complex systems under rigid
time-to-market constraints requires
new approaches. Confidence that hard-
ware-software codesign can solve some
of these problems stems from success-
ful automotive and telecommuncations
applications. In addition, many small-
scale codesigned systems do exist.!:?

Critics bring forward the issue of a
missing common model or standard
for unified, exchangeable design rep-
resentation. Even though research

86

Partitioning starts with
the system-design
modeling step.

labs are working in this area, we are
far from a standardized representa-
tion.

Another issue is that few tools are
designed for hardware-software cross
specification, development, simula-
tion, integration, and test. Most de-
sign tools apply to a single domain,
making it difficult to observe the se-
quence of operations or connect such
tools to framework environments. De-
sign flow management, operation
monitoring, or task cross-checking be-
comes very hard if not impossible.
Tool vendors must support hardware-
software codesign efforts by supplying
mechanisms for framework interfac-
ing. Frameworks should also be im-
proved with respect to communica-
tion, cosimulation, auditing, and
checkpointing capabilities between
physically distant development sites
linked via networks.

Because estimation and analysis
tools are in their infancy, automatic
system partitioning is not yet possible.
At best, users get some hints from es-
timations to guide their intuitions.
This is not sufficient for industrial ap-

Extending CAD (continued from p. 85)

thus a hardware-software codesign
problem with possibly multiple solu-
tions. CAD tools can explore the
trade-off and suggest a convenient im-
plementation. The Piper synthesis
program is an example of a codesign
tool that addresses this problem.’ It
provides pipe stage partitioning and
pipeline scheduling, and also deter-
mines the instruction reorder that the
corresponding back-end compiler
should use to avoid hazards.
Embedded systems are computing
systems dedicated to an application.
The most restrictive view of an embed-
ded system is a microcontroller or a
processor running a fixed program.
This model can be broadened to a gen-
eral-purpose processor, assisted by ap-
plication-specific hardware and memo-
1y, that performs a dedicated function.
Sensors and actuators allow the system
to communicate with the environment.

plications. Much attention must be fo-
cused on partitioning methods and
tools for industrial use.

There is plenty of room for research
and experimentation. The field is
evolving rapidly. A book based on the
First International Workshop for
Hardware-Software Codesign in Gras-
sau, Germany, held in the spring of
1992, and the follow-up in Estes Park,
Colorado, in late September, is sched-
uled for publication early in 1993. In-
terest is increasing among industrial
labs and production sites in the Us,
Europe, and Asia. The Computer-
Aided Software-Hardware Engineer-
ing Codesign Workshop, scheduled
for May 1993, and special sessions of
the Design Automation Conference
and the European Design Automation
Conference will increase the commu-
nity interested in the topic as well.

References

1. Collected papers from the First Inter-
national Workshop on Hardware-Soft-
ware Codesign, sponsored by IFIP WG
10.5 in cooperation with WG 10.2,
Grassau, Germany, May 19-21, 1992.

2. Workshop handouts from the First In-
ternational Workshop on Hardware-
Software Codesign, sponsored by ACM
and IEEE, Estes Park, Colo., 1992.

Klaus Buchenrieder is research manager at
Siemens AG, Corporate R&D, Base Tech-
nologies, Software and Engineering, ZFE
BT SE 52, Otto-Hahn-Ring 6, W-8000 Mu-
nich 83, Germany.

Embedded systems often fall into the
class of reactive systems. They are
meant to react to the environment —
executing functions in response 10 spe-
cific stimuli. In some cases, their func-
tions must execute within predefined
time frames. Hence, they are called
real-time systems. Examples of reac-
tive real-time systems are pervasive in
the automotive field (for example, en-
gine combustion control), the manufac-
turing industry (robot controllers), and
the consumer and telecommunication
industries (portable telephones).

Embedded systems and ASICs. Em-
bedded systems can be thought of as a
generalization of application-specific
integrated circuits (ASICs), where a
processor coupled with its software
program can be viewed as a system re-
source. The similarities between em-
bedded systems and ASIC design

COMPUTER



make it likely that CAD systems will
evolve to support embedded system
design in the near future. On the oth-
er hand, the heterogeneity of embed-
ded systems requires the development
of design systems that take both the
hardware and software component re-
quirements into account. Frameworks
that support the cospecification and
cosimulation of heterogeneous sys-
tems are particularly attractive for
hardware-software codesign.

Ptolemy is a design environment that
uses an object-oriented programming
paradigm to support signal-processing
and communication system design.? It
provides for heterogeneous cospecifi-
cation by supporting several modeling
styles, including synchronous and dy-
namic data-flow and discrete-event
models. Ptolemy is modular and can be
extended with other representation
styles. By allowing each system compo-
nent to be modeled in its natural way,
Ptolemy supports effective capture of
different facets of a digital system. In
addition, it supports concurrent simula-
tion of the system under development
and the generation of assembly code
for some programmable digital-signal-
processing cores.

Computer-aided synthesis of embed-
ded systems, called here cosynthesis, is
the natural evolution of existing hard-
ware high-level synthesis methods to
support system architectures that con-
tain both a software-programmable
and an application-specific component.
For generality, we can assume that the
software-programmable component is
executing either on a general-purpose
MICroprocessor Or a processor core.

A working hypothesis for cosynthe-
sis is that the overall system can be
modeled consistently and partitioned,
either manually or automatically, into
a hardware and a software compo-
nent. The hardware component can
then be implemented in application-
specific hardware circuits by using ex-
isting hardware-synthesis tools. The
software component can be automati-
cally generated by a program that im-
plements the function to which the
processor is dedicated. Cosynthesis
must support a means for interfacing
and synchronizing the functions im-
plemented in these components.

Benefits. In addition to balancing
the performance of customized hard-
ware units with the programmability
of software components, mixed hard-
ware-software systems may have the
advantage of evolving more efficiently
by allowing software programs to un-
dergo upgrades in subsequent releas-
es. By the same token, assigning most

January 1993

CAD may support
codesign of embedded
systems in the near future.

(if not all) functionality to the soft-
ware component can ease product de-
velopment by reducing circuit fabri-
cation in the prototyping stage.
Partitioning into hardware and soft-
ware components affects overall sys-
tem cost and performance. At one end
of the spectrum, hardware solutions
may provide higher performance by
supporting parailel execution of oper-
ations, but they require the expense of
fabricating one (or more) ASICs. At
the other end of the spectrum, soft-
ware solutions may run on high-per-
forming processors available at low
cost due to high-volume production.
However, operation serialization and
lack of specific support for some tasks
can decrease performance.
System-level partitioning into hard-
ware and software components has
been the object of novel investigations.
Ernst and Henkel® targeted codesign
of systems that were originally mod-
eled as C software programs but had
potential for speeding up critical func-
tions through a hardware component.
A partitioning program identified the
computational bottlenecks and mi-
grated the corresponding functions to
application-specific hardware. For ex-
ample, the program identified a criti-
cal loop that took 90 percent of the
software runtime for an HDTV chro-
makey algorithm running on a Sparc
processor. By fabricating an ASIC
with 17,000 equivalent gates, they
achieved a factor-of-three speedup.
Research at Stanford University*
uses a complementary approach. Sys-
tems are modeled in a hardware de-
scription language: HardwareC has a
C-like syntax, so a purely hardware
implementation is available using the
Olympus synthesis tools. By shifting
noncritical functions from hardware
to software program fragments run-
ning on a programmable processor
such as an I8086 or an R3000, size and
cost of the hardware implementation
can be reduced without sacrificing per-
formance. The system model specifies
performance requirements in terms of
latency and data-rate constraints, and
when feasible a partitioner satisfies the
requirements. Stanford researchers
have used this approach to partition a

full hardware implementation of an
Ethernet coprocessor and save 20 per-
cent of equivalent gates.

Open issues. CAD tools for codesign
are still in their infancy, but potential
payoffs make them an attractive area
for research and development.

Among other problems that impede
growth in the field is the lack of well-
defined abstract models for hardware-
software systems and consistent lan-
guages for expressing them. Possible
solutions range from the extension of
existing hardware and software lan-
guages to the use of heterogeneous
paradigms. While the latter approach
may be more natural to the user, it
leaves the burden of determining
coarse-grained system structure to the
designers and limits the applicability
of system partitioning tools.

A second problem lies in the remote-
ness of abstract models from physical
implementations. This complicates the
cost and performance evaluations that
play an important role in partitioning
and synthesis decisions. And finally,
methods for validating hardware-soft-
ware systems are very important. Co-
simulation provides a simple way of
tracing the input/output (and internal)
system behavior; however, it may be
insufficient for the design properties
of large systems. Extending formal
verification techniques to the hard-
ware-software domain would thus be
desirable.

References

1. I. Huang and A. Despain, “High-Level
Synthesis of Pipelined Instruction Set Pro-
cessors and Back-end Compilers,” Proc.
DAC, IEEE CS Press, Los Alamitos,
Calif., Order No. 2822, 1992, pp. 135-140.

2. J. Buck et al,, “Ptolemy: A Framework for
Simulating and Prototyping Heteroge-
neous Systems,” to be published in Int’lJ.
Computer Simulation, special issue on sim-
ulation software development, 1993.

3. R. Ernst and J. Henkel, “Hardware-Soft-
ware Codesign of Embedded Controllers
Based on Hardware Extraction,” handout
from First Int’l Workshop on Hardware-
Software Codesign, sponsored by ACM
and IEEE, Estes Park, Colo., 1992.

3. R. Gupta, C. Coelho, and G. De Micheli,
“Synthesis and Simulation of Digital Sys-
tems Containing Interacting Hardware
and Software Components,” Proc. DAC,
IEEE CS Press, Los Alamitos, Calif., Or-
der No. 2822, 1992, pp. 225-230.

Giovanni De Micheli is associate pro-fes-
sor of electrical engineering and, by cour-
tesy, of computer science at Stanford Uni-
versity, Center for Integrated Systems,
Stanford, CA 94305.

87



