Modeling Hierarchical Combinational Circuits

Jerry R. Burch David Dill

Flizabeth Wolf

Giovanni De Micheli

Stanford University

Abstract

Hierarchical descriptions of combinational circuits often
contain apparent loops [1, 3]. Since it may be difficult to
distinguish apparent loops from actual loops, it is useful to
construct models of combinational circuits that can handle
cyclic dependencies. We show that Boolean relations are in-
adequate for this purpose, and define a ternary model that
solves the problem. We use the model to characterize exact
solutions to a broad class of substitution and rectification
problems. The theory cleanly handles network transforma-
tions that might introduce cyclic dependencies.

1 Introduction

The first and most important step in the development of
analysis or synthesis methods for any kind of system is the
construction of a precisely-defined model. A model should
accurately reflect reality (possibly under constraints on the
domain of applicability), while providing a “mathematically
clean” theory.

In this paper we develop a model for the behavior of com-
binational circuits. Combinational circuits have been stud-
ied so thoroughly for such a long time that it is surprising
that anything new can be said. However, there continue
to be innovations in the area, particularly related to don’t
cares [2, 4, 5, 6].

This paper extends previous work on Boolean relations
for modeling combinational circuits. Boolean relations have
the advantage as a circuit model of allowing many im-
plementation choices; while any particular implementation
maps each input combination to a unique output combina-
tion, the relation can specify several different output com-
binations. The use of Boolean relations in synthesis allows
the expression of various kinds of don’t cares [5]. In for-
mal verification, the use of Boolean relations for specifica-
tions makes 1t possible to write specifications which capture
the minimum requirements of a circuit, instead of requiring
that we overspecify by including irrelevant details.

Boolean relations were intended to model circuits de-
scribed using cascade composition. Such networks are guar-
anteed to form an acyclic directed graph; that is, there are
no loops or cycles in the circuit. At the same time, the pro-
cess of formal verification is facilitated by, and may even re-
quire, the representation of both implementation circuitry
and specifications by models whose structure reflects the in-
tended functional modularity of the design. Unfortunately,
such hierarchical representations of circuits often do not al-
low the circuit’s structure to be naturally described using
cascade composition.

This work was supported by the NSF under grant MIP-8858807.
The third author was also supported by a Xerox Fellowship.

1063-6757/93 $03.00 © 1993 IEEE

612

c2<—c2
g gl
p pl

ad-a7 —> —> s4-s7
b4-b7 c cl
g 20
p p0

a0-a3 s0-s3
b0-b3—> ¢ c0

0 CLG

Figure 1: Eight-bit carry look-ahead adder

The carry look-ahead adder in figure 1 is an example
of this phenomenon. The bidirectional communication be-
tween the adders and the carry look-ahead generator (CLG)
is an example of an “apparent loop” [3] (also called a
“pseudo-cycle” [1]). There are no loops or cycles in the
circuit when it is described at the gate level, but this infor-
mation is lost in the block diagram of the circuit. In this
case, an acyclic block diagram could be formed by splitting
the CLG into two smaller blocks [3]. In general, however,
requiring logic blocks to be split in this way negates many of
the advantages of hierarchical descriptions. Thus, as hier-
archical descriptions become more common in design tools,
and as formal verification becomes of greater relevance to
the design process, we believe that it is increasingly impor-
tant that modeling techniques allow for apparent loops in
combinational circuits.

Providing semantics for circuits with apparent loops is no
more difficult than providing semantics for circuits without
loops. Unfortunately, there appears to be no way to dis-
tinguish between apparent loops and actual loops, short
of examining the internal structure of logic blocks (which
would defeat the purpose of a hierarchical description). Be-
cause we intend to use our models for formal verification, we
represent specifications and implementation circuitry using
the same kind of models. However, the standard syntactic
methods for keeping track of actual dependencies between
the inputs and outputs of a circuit (which allow the de-
tection of actual loops) do not work for non-deterministic
specifications.

This is illustrated by the following example. Consider
the Boolean relation with one input and two outputs, whose
outputs take the same Boolean value (both are 0 or both
are 1) if the input has value 0, and whose outputs take dis-

C

D
1
N

Figure 2: Gated ring oscillator.

tinct values if the input has value 1. This relation is a non-
deterministic specification; every Boolean function consis-
tent with it is a possible implementation. Each such imple-
mentation has exactly one constant output, while the other
ouput’s value depends on the input value. However, which
output is dependent on the input differs with the choice of
implementation. Assume we would like to wire this imple-
mentation circuit together with an inverting buffer whose
input is wired to one of the outputs of the implementation
circuit and whose ocutput provides that circuit’s input value.
Depending on the particular implementation and the choice
of output wire, the composition of the two circuits will form
either an actual loop or an apparent loop: in the absence
of further information concerning this implementation we
cannot tell whether a combinational cycle (an actual loop)
will be formed or not. Therefore, in order to preclude all
potential actual combinational cycles we must maximize the
dependency set associated with the Boolean relation, thus
disallowing composition with even the innocuous inverter.

In this case, use of the set-of-support method in con-
Jjunction with a nondeterministic specification clearly leads
to undue conservatism, erroneously “detecting” an actual
loop where there is only an apparent one. All other methods
for constructing the dependency set of a non-deterministic
specification seem to fail also. Thus, we want to provide
semantics for actual loops as well as apparent loops.

The circuit in figure 2 is a simple example of why Boolean
relations are not an adequate model for circuits with actual
loops. Using standard methods [5] to construct the Boolean
relation R(a, b, ¢) for this circuit gives

(a

Notice that it is not possible (according to this relation) for
a to take the value 1. This is clearly incorrect since a is
an input; its value cannot be controlled by the circuit. The
problem is that if ¢ does become 1, then nodes b and ¢ os-
cillate. Boolean relations cannot represent this oscillation,
so the relation does not even represent the possibility that
a could be 1.

We address this limitation of Boolean relations by using a
ternary model where 7 = {0, 1, L} is the set of possible val-
ues for a node of a network. Intuitively, the 0 and 1 values
mean that the node eventually settles to the correspond-
ing voltage. The value | indicates that the node oscillates
or has an intermediate voltage rather than settling to a
Boolean value. This is slightly different from the normal
interpretations of the value X in ternary models. In par-
ticular, 1 does not mean that the value of the node is “un-
known”; we use relations that represent unknown Boolean
values by explicitly allowing both 0 and 1 as the value of a
node.

OA(B=1)A(c=1).

613

Recalling the circuit in figure 2, if the value of node a
is 1 then nodes b and c oscillate, so b and ¢ are given the
value L. Thus, the oscillating behavior of the circuit can
be accurately represented in the ternary model, unlike the
Boolean relation model. In section 2, we show how this
results from the definition of composition and the models
of the individual gates in the circuit.

In section 3, we describe how the ternary model can be
used to characterize all of the ways a subnetwork can be
modified without changing the input/output behavior of
the full network. In addition to being applicable to cir-
cuits with loops, the method unifies and extends techniques
based on satisfiability don’t cares and observability don’t
cares. It also extends design rectification techniques, both
those based on Boolean relations [10] and the method of
Boolean unification [9].

2 Ternary I/O-relations

Our models for combinational circuits differ from Boolean
relations in two important respects. The first difference is
that we use a ternary domain 7 = {0,1, L} as the set of
possible values for a node of a network. Intuitively, the 0
and 1 values mean that the node eventually settles to the
corresponding voltage. The value L indicates that the node
oscillates rather than settling to a Boolean value. The sec-
ond difference is that we explicitly associate with each rela-
tion the set of inputs and outputs of the circuit or subcircuit
being represented by that relation. Having the inputs and
outputs be implicit, as is normally done with Boolean rela-
tions [5], can become confusing as the hierarchical structure
of circuits becomes more complicated.

Using the ternary domain described above, we model
combinational circuits with ternary I/O-relations. A
ternary I/O relation is an ordered triple T = (I,0, R).
The sets I and O give the names of the inputs and outputs
of the circuit. The alphabet of T is A = I U O. The set R
gives the possible input/output combinations of the circuit:
R is a subset of 77Y°, which is the set of all functions from
(IUO) to T. (This is analogous to the set of Boolean func-
tions over this alphabet, except that each function assigns
values from the ternary domain 7). In other words, if s € R
and a € (I U O), then s represents a possible input/output
combination of the circuit, and s(a) is the value of the node
a in that particular input/output combination. Given an
ordering on the elements of J U O, there is a clear isomor-
phism between functions in 77"° and ternary vectors in
THYOl o pairs of vectors in 7! x 71°!. Rather than use
vectors, however, we prefer to explicitly associate the name
of a node with its value.

2.1 Operations on I/O-relations

The most important operation on I/O-relations is compo-
sition, which represents the result of connecting two cir-
cnit components together. Let T = (I,O,R) and T’ =
(I',0', R") be 1/O-telations. Assume that ONO' = @, which
means that 7" and 7’ have disjoint sets of outputs. Let
A=TUO and A’ =I'U0'". The composition T =T || T"
is defined as follows. A node is an output of 7" if and only
if it is an output of either T or T’; so the set of outputs of

T"is 0" = OUQ'. A node is an input of 7" if and only if it
is not an output of 7" and is an input of T or T”; so the set
of inputs of 7" is I = (IUI') — O". Normally, composing
two Boolean relations simply requires taking their intersec-
tion. With I/O-relations, the basic idea is the same, but we
must deal with how our representation of an input/output
combination is affected by the set of inputs and outputs.
Thus, the third component of T” is

R'={s"¢€ 71" 35 ¢ R[Ya € A[s"(a) = s(a)]] A

3s' € R'[Va' € A'[s"(a’) = s'(a")]]}.

If we describe a circuit by simply composing together
the 1/O-relations of the circuit’s components, there is no
way to distinguish the primary outputs of the circuit from
its internal nodes; both types of nodes are included in the
output set of the resulting I/O-relation. We often want
to ignore the internal signals of the circuit and leave only
the inputs and primary outputs. The projection operator is
used for this purpose. If T' = (I, O, R) represents a circuit
and B C T U O is the set of inputs and intended primary
outputs of the circuit (which implies that I C B), then

proj(B)(T) = (I,0NB,{s' € T8 .
3s € R[¥b € B[s'(b) = s(b)]1})-

The 1/O-relation proj(B)(T) is analogous to the Boolean
relation formed by using the smoothing operator to remove
nodes in (I UO) — B.

There is also a renaming operation on I/O-relations for
changing the names of inputs and outputs. We will not give
the formal definition here, however, since renaming is not
needed in any of the examples in this paper.

2.2 Implementations and specifications

Let T = (I, 0, R) be an I/O-relation constructed by com-
posing the I/O-relations of the components of some circuit
and by applying the projection operator, as appropriate.
Thus, T describes the possible input/output combinations
of the design. Let T’ be an I/O-relation representing a
specification for the circuit. That is, T’ represents the set
of correct or acceptable input/output combinations for the
circuit, which may be quite different from the set of actual
combinations. For T’ to be a specification for T, it must
have the same inputs and outputs as T. Therefore, T" is
of the form T’ = (I,0,R’). We say that T satisfies T",
written T C 7", if and only if R C R'.

2.3 Examples

We write s = (a — 0, b — 1) to denote a function s that
maps a to 0 and maps b to 1. Using this notation, the
ternary I/O-relation T for an inverter with input set J =
{a} and output set O = {b} is written

T= ({a}: {b}9 {<a' — 0, b— 1>’ <a — 1, b— 0):
{a— L1,b— 1)}).

We often describe a relation with a propositional formula,
rather than explicitly listing the input/output combinations

614

wlibet
L
C——}g

d

Figure 3: Possible implementation of an example non-
deterministic specification.

that are its elements. For example, we might write the
ternary I/O-relation for an and-gate as

T = ({a, b}, {c}, c = ab),

where conjunction is extended in the normal way for ternary
values. Even though the interpretation of L is different
than that of X in ternary simulation, Boolean functions
are extended to ternary functions in the same way. For
example, the and-gate above contains (¢ — 0, b — L, ¢ —
0) and (¢ — 1,b — L,c — L1). We assume all Boolean
operators are extended to the ternary domain in analogous
fashion. We use “=" to denote equality, and “A” and “V”
as logical connectives in propositional formulas.

In addition to the I/O-combinations in the standard
ternary extension of an and-gate, one might include 1/O-
combinations such as {a — 1,6 — L, ¢ — 0). This would
represent (for example) the case where a and b are non-
overlapping clocks that oscillate indefinitely while ¢ remains
stable at 0. We do not explicitly include this case in the
ternary 1/O-relation for an and-gate. By convention, if an
input/output combination s is included in an I/O-relation,
then any combination s’ formed from s by changing a L
output to 0 or 1 is understood to be implicitly included.
Thus, because {a — L, b — L1, ¢ — 1) is already included
in the I/O-relation of an and-gate, (a — L, b — L, ¢ — 0)
is not explicitly included.

For a slightly more complicated example, consider the
specification

T =({a,b,c,d}, {e}, (e=(ab+cd)) V(1= @bede)).

It allows the output wire e to stabilize to either 0 or 1 if the
input wires all stabilize to 0. However, an implementation
satisfying the specification T is allowed to be deterministic,
and settle to a specific predetermined value in this case.
An implementation 7" = (I, 0, R') which satisfies T may
be identical to T or it may have R’ given by

o e=(ab+cd), or

e e=(ab+cd +E_I;EE).

For example, if 7" is the I/O-relation representing the cir-
cuit illustrated in figure 3 (which has inputs {a,b, ¢,d} and
outputs {e, f, g}) then proj({a,b,c,d, e} }(T"} C T.

Recall the example in figure 2 used to illustrate the lim-
itations of Boolean relations. Let 7' = (71 || T2), where
T = ({a,c},{b}, b = TCE) represents a nand-gate, and
T> = ({b},{c}, b = c) represents a non-inverting buffer.
The rules for composition yield

T =({a},{b,c}, (a=0Ab=1Ac=1)
Vie£0Ab=1LAc=1)).

a—e

)

Figure 4: Substitution example.

y

>
>

Thus, the ternary model accurately shows that nodes b and
¢ will oscillate when ¢ = 1.

3 Correct substitutions

Most optimization techniques for combinational circuits in-
volve repeatedly replacing a small subnetwork of the cir-
cuit with another that is less expensive by some measure
such as area or delay. It is essential that this transforma-
tion not change the external behavior of the circuit. How-
ever, the replacement subnetwork need not be equivalent
to the original; properties of the rest of the circuit may al-
low for changing the behavior of the subnetwork without
changing the external behavior of the full circuit. Satisfia-
bility don’t cares (SDC-sets) and observability don’t cares
(ODC-sets) are often used to characterize legal substitu-
tions [2, 4, 6]. Boolean relations have been shown to be
more expressive [5].

In this section we describe another method for charac-
terizing legal optimizations. Unlike previous work, this
method is applicable for non-cascade composition and for
the ternary I/O-relation model described above. As a
semantic characterization of correct substitutions, it sub-
sumes satisfiability don’t cares, observability don’t cares
and Boolean relations. It is more general than Boolean
unification [9] because of its applicability to circuits with
loops.

The method depends on the concept of mirroring, which
was originally defined for trace structures [7, 8]. Mirroring
an I/O-relation involves swapping its inputs and outputs,
and complementing its relation. That is, if T = (I, O, R) is
a ternary I/O-relation, then the mirror of T is

mir(T) = (0,1, T"%° — R).

We say the I/O-relation T is empty if R = 0. The following
theorem is easy to prove.

Theorem 1 Let T and T' be I/O-relations with the same
inputs and outputs. ThenT' C T if and only if T' || mir(T)
is empty.

Intuitively, mir(7T} is the maximal environment of T such
that T || mir(T) is empty.

3.1 Substitution examples

Consider the circuit in figurc 4. Let 71 and T; be the
ternary I/O-relations representing the inverters driving «
and y, respectively, and let T3 be the I/O-relation repre-
senting the and-gate.

615

-

’_..]

Figure 5: Substitution and rectification example.

We wish to determine the possible replacements for the
and-gate in figure 4, which corresponds to finding the I/O-
relations T3 such that

GRS (| T).

This example is simple enough that one can tell by inspec-
tion that Tj is a legal substitution if and only if

T C ({z,9}, {z}, (z#y)V{z=1)).

This allows many different functions to replace the and-
gate: z=1,z=y, 2=z + y, etc.

The same characterization of the the legal substitutions
can be derived formally as follows. Let Ty = Ti || T2 and
T =Tz || Ts. Also, let A} = {z,y, z} be the alphabet of
T4 (recall that the alphabet of an 1/O-relation is the union
of its input set and its output set). We can use theorem 1
to characterize the set of all legal T3 as follows:

(T2 | T5)CT

<> Tz || T3 || mir(T) is empty
T' is empty iff proj(B)(T") is empty, for all 7, B

= proj(As) (T2 || Ts || mir(T)) is empty
property of projection and composition

< T; | proj(A's)(Tu Il mir(T)) is empty
theorem 1

<« T3 C mz'r(proj(AQ)(Tn Il mzr(T)))
substitution and simplification

= T3 € ({z,9}, {2}, @#y)V(z=2)).

In computing the final result, one may note that when
ternary I/O-relations are described with logical formulas,
the mirror operation is analogous to logical negation, com-
position is analogous to conjunction, and projection is anal-
ogous to existential quantification.

This relation could have been derived using only satisfia-
bility don’t cares. Unlike satisfiability don’t cares, however,
our method is not restricted to networks described using
cascade composition. In addition, our method can handle
potential optimizations that would normally require the use
of observability don’t cares. Consider the circuit in figure 5.
Let T1, T> and T3 be the [/O-relations representing the and-
gate, the or-gate and the exclusive-or gate, respectively. Let
T12 = T1 ” Tz and T = T12 “ Ts.

For our first analysis of this circuit, consider the possible
candidates for simultaneously replacing the and-gate and
the or-gate. That is, characterize the I/O-relations T}, such
that

(Th |) S T

Let A}, = {a,b,z,y} be the alphabet of 7T{,. Using rea-
soning similar to that used for the previous circuit, we find
that

(T I T3)CT
<> Ti, C mir(proj(A12)(Ts || mir(T)))
< Ti; C({a, b}, {z, 4}, (z=ab) A(y=a+b)).

This result offers essentially no opportunity for optimiz-
ing the and-gate and the or-gate, even though intuitively
there should be many possible optimizations. The problem
is in our original formulation of the requirement for legal
values of TY,:

(T, I T5) € T

This formulation requires that the z and y outputs of 77,
be the same as the z and y outputs of the original circuit
T. However, such a requirement conflicts with our intuition
that z and y can be ignored except for their effect on z. This
intuition is made explicit in the following reformulation of
the requirements on T75:

proj({a, b, 2})(T1> || T5) C proj({a, b, z})(T).

By projecting out £ and y, the above inequality makes it
explicit that only the relationship between a, b and z is
significant. It can be shown that

proj({a, b, 2})(T12 | Ts) C proj({a, b, z})(T)
&> Ty, C mir(proj(AL)(Ts || mir(proj({a,b,2})(T))))
< Ti; C ({a,b},{z, 4}, (z DY) = (a ®Y)).

The new characterization of legal values for T}, allows all
of the intuitively correct optimizations for the nodes z and
y, including, for example, £ = a and y = b.

The above two analyses of the circuit in figure 5 show
the important role that the projection operation plays in
making explicit the primary inputs and outputs of a circuit.
Using projection to change the set of circuit nodes that
are considered primary outputs can change the set of legal
substitutions of a subnetwork.

3.2 General theorem

All of the analyses of circuits in this section are specific
applications of a general theorem concerning legal substi-
tutions. Its proof will appear in the full version of this
paper.

Theorem 2 Let Ty, T2 and T be I/O-relations with alpha-

bets A1, A2 and A, respectively. Assume that T{ and Tz do

not share any outputs (so they can be composed), and that

A C Al U Az, Also assume that A] C AU Ay. Then
proj(A)T, | T5) € T

if and only if

T C mir(proj(A1) (T2 || mir(T))).

616

In the above theorem, T is a specification of the intended
input/output behavior of the full circuit; A contains only
the primary inputs and primary outputs. A replacement
subnetwork of the circuit is represented by 7}. The remain-
der of the circuit is represented by T2. The assumption that
A C AjUA; means that the composition of 77 and T3 drives
every output, and uses every input, of 7. The assumption
that A7 C AUA; means that any wires that are local to the
new subnetwork (that is, not used by T3 or T’} have already
been projected out of the I/O-relation T}. Even with these
assumptions, there is potentially a wide range of choices for
A}. We will see an example of this below.

3.3 Rectification examples

In the examples so far, we considered how a subnetwork
might be changed without affecting the behavior of the full
network. It is also possible to change the specification of
the circuit, and then determine whether a subnetwork can
be changed so that the new specification is satisfied by the
full circuit. This is a very general form of the rectification
problem [10].

For example, let T1, T2, T3 and T2 be as in our earlier
analysis of the circuit in figure 5. Rather than have this cir-
cuit compute z = a®b, suppose we change the specification
T to require that z ='ab. Let A = {a, b, 2z} be the alphabet
of T. Consider the problem of finding those I/O-relations
T3 such that

proj(A)(Trz || TS) € T.

Let Ay = {z,y, z} be the alphabet of T3. Using theorem 2,
it can be shown that

T3 C ({z,y},{z}, z=2V(z = 1Ay #1)V(z #0Ay = 0)).

This allows the xor-gate in figure 5 to be replaced by z = z
or z = zy.

Suppose we change the specification T to require z = ab,
and we keep A} = {z,y, 2} as the alphabet of T}. In this
case, we must have

T3C ({z,9h{z}, r=yrz=a)V(e=1Ay#1)
V(z#0Ay=0)).

Notice that T; cannot contain any input/output combina-
tion with £ = 0 and y = 1. Since z and y are both inputs,
this means there is no implementation of T3 that satisfies
the above constraints: there is no total ternary function
consistent with this relation. This is consistent with the
fact that there is no way to change the xor-gate in figure 5
to a subcircuit with only z and y as inputs so that z = ab.
QOur method for finding possible legal substitutions for a
subnetwork also shows us when there are none.

If we expand Aj (the alphabet of T%) to include a or b
(or both), then theorem 2 can be used to show that in this
case there do exist legal implementations of T3. This is an
example of how changing the inputs of a proposed replace-
ment subnetwork can change the set of legal substitutions,
even possibly from an empty set to a non-empty one.

These methods can also be applied to the mixed mode
rectification problem considered by Watanabe and Bray-
ton [10]. Let W, X, Y and Z be sets of wires, as in fig-

T T,

- Y

Tx

Figure 6: Mixed Mode Rectification

\

ure 6. Let T = (X, Z, R) be a specification of desired in-
put/output behavior for the circuit, and let 73 = (Y, W, Rz)
be an existing implementation. We wish to find 77

(X uW), (YUZ), R)) such that

prof(X U Z) T | T2) € T.
By theorem 2, this is true if and only if

Ty C mir(proj(W U X UY U Z)(Ts || mir(T)))
= mir(1s || mir(T)).

This characterization of the possible implementations of 7}
allows more flexibility than the characterization given by
Watanabe and Brayton [10]. Since their model could not
completely represent the ramifications of loops introduced
by having Y depend on W in T{, they had to give a more
conservative characterization to guarantee correctness. In
fact, it can be shown that for any mixed-mode rectification
problem, and for any rectifying circuit 77 that is allowed
by Watanabe and Brayton, there exists a circuit that is
no larger and no slower than 7} that directly implements
the specification T without making any use of the original
circuit T2. Because our model can handle loops, we can
give an exact characterization of the legal implementations
of T{, allowing the full potential efficiency of rectification.

4 Conclusions

This work generalizes models of combinational circuits to
support non-cascade composition of modules, which is cru-
cial for hierarchical reasoning about circuits. We hope that
this foundation can be applied to a variety of problems. In
synthesis, it provides a theory of combinational don’t cares
that works for non-cascade composition. Also, it gives a ba-
sis for defining and perhaps proving the soundness of syn-
thesis and optimization techniques: starting with a given
specification, the result of synthesis or optimization should

conform to the specification in the precise sense we have
defined.

617

This model should also be useful for verification. The
use of hierarchical and compositional methods is crucial
for containing the computational complexity of verification
methods, and allowing non-cascade composition greatly ex-
pands the ways that hierarchical methods can be used.

This research is intended to be a major step towards find-
ing a hierarchical, relational model of the sequential behav-
ior of synchronous machines, such as Mealy machines. One
of the central problems in modeling non-cascade composi-
tions of Mealy machines is dealing with apparent combi-
national loops, which can occur because the output of a
Mealy machine may respond to an input through a combi-
national path. The results described here solve that core
problem, so the extension to the sequential case should be
straightforward.

Another direction for further investigation would be to
explore some concepts of trace theory [7] that are missing
from the theory here: failures (inputs that the environ-
ment of the circuit is not allowed to generate), conforma-
tion equivalence and canonical forms. It remains to be seen
whether the benefits of such a theory outweigh the addi-
tional complexity it would entail.

References

[1] A. Appel. Simulating digital circuits with one bit per
wire. IEEE Trans. CAD, 7(9):987-993, Sept. 1988.

K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M.
Jacoby, C. R. Morrison, R. L. Rudell, A. Sangiovanni-
Vincentelli, and A. R. Wang. Multilevel logic mini-
mization using implicit don’t cares. IEEE Trans. CAD,
7(6):723-740, June 1988.

J. F. Beetem. Hierarchical topological sorting of ap-

parent loops via partitioning. IFEE Trans. CAD,
11(5):607-619, May 1992.

R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-
Vincentelli. Multilevel logic synthesis. Proc. IEEE,
78(2):264-300, Feb. 1990.

R. K. Brayton and F. Somenzi. Boolean relations and
the incomplete specification of logic networks. In Proc.
Int. Conf. VLSI, pages 231-240, Aug. 1989.

M. Damiani and G. D. Micheli. Observability don’t
care sets and Boolean relations. In Proc. Int. Conf.
CAD, pages 502-505, 1990.

D. L. Dill. Trace Theory for Automatic Hierarchical
Verification of Speed-Independent Circuits. ACM Dis-
tinguished Dissertations. MIT Press, 1989.

J. C. Ebergen. A technique to design delay-insensitive

VLSI circuits. Report CS-R8622, CWI, The Nether-
lands, June 1986.

M. Fujita, Y. Tamiya, Y. Kukimoto, and K. Chen. Ap-

plication of boolean unification to combinational logic

(2]

(3]

(8]

[9)

synthesis. In Proc. Int. Conf. CAD, pages 510-513,
1991.
[10] Y. Watanabe and K. K. Brayton. Incremental synthe-

sis for engineering changes. In Proc. Int. Conf. Com-
puter Design, pages 40-43, 1991.

