Synthesis and Optimization of Synchronous Logic Circuits from
Recurrence Equations.

Maurizio Damiani

Giovanni De Micheli

Center for Integrated Systems
Stanford University

Abstract

In this paper we present a general solution framework for opli-
mizing synchronous networks across register boundaries. We for-
mulate the problem as that of finding minimum-cost solutions to
Synchronous Recurrence Equations. We propose an algorithm
for the solution of such equations that relies on their transfor-
mation into a new combinational logic optimization problem. An
exact solution algorithm for this problem is presented, and exper-
imental results on synchronous benchmark circuits demonstrate
the feasibility of the approach.

1 Introduction.

Synthesis and optimization problems for combinational and syn-
chronous logic circuits are currently the object of intense inves-
tigation. Synthesis methods for combinational networks have
achieved, over the past few years, a significant level of maturity.
In particular, several theoretical aspects of two-level [14, 16] and
hierarchical multiple-level [1, 2, 3, 20, 22] optimization are well
understood, and effective tools exist that take advantage of those
theory. Such methods work directly on structural representations
of the logic network, and rely upon the ability to manipulate sets
(such as don’t cares [2) or equivalence classes [22)) by means
of Boolean expressions.

By contrast, the optimization of synchronous circuits has so
far relied on procedures based on (possibly iterative) manipu-
lations of their behavioral models, typically in terms of state
transition graphs (9, 10, 4, 5, 11, 6]. The major drawback of this
approach is the remoteness of the state diagram model from the
final implementation, that makes it difficult to evaluate the key
figures of merit, such as area and performance, during the opti-
mization process. Consequently, recent research efforts [7, 8, 21]
are focusing on methods that, similarly to the combinational case,
can optimize synchronous circuits from structural models, i.e.
netlists, according to given area/performance metrics.

In the combinational case, the basic optimization steps consist
in iteratively extracting subnetworks to be optimized, identifying
the degrees of freedom in their input/output specification, and
then resorting to known algorithms for their optimization. In the
case of single-output subnetworks, such degrees of freedom are
fully represented by a don't care set associated to their function,
due to the embedding of the function in a larger network [2].
For multiple-output subnetworks, it has been shown that the in-
put/output specifications are best described by Boolean relations
{20] (A Boolean relation associates a set of possible output as-
signments to each input assignment).

The structural model generally adopted for synchronous cir-
cuits is the synchronous Boolean network [7]. ‘A synchronous
Boolean network is described by a network graph, whose ver-
tices correspond to logic gates, and directed edges to intercon-
nections. Flip-flops are modeled by unit delay elements. The
retiming/resynthesis operation [19] has been proposed for the

0-8186-2645-3/92 $3.00 © 1992 IEER

L
optimization of such networks [19, 8, 21]. It essentially consist
of identifying pipeline-like subcircuits, pushing all the delay ele
ments to their periphery, and then optimizing the remaining com
binational portion with combinational optimization techniques
This approach does not fully capture the optimization space for
synchronous networks, as shown by the following simple exam.
ple.

Example 1. Consider the circuit shown in Fig. (1). It
can easily be verified that the inverter driving the variable y can
be replaced by a simple interconnection, i.e. that the function
f(x) = z' can be replaced by g(z) = z. Since there are no
pipeline-like subcircuits, no retiming operation is possible on the
circuit, and consequently retiming would not remove the inverter.
It is also interesting to observe that the inverter can be replaced
even though there are no don’t care conditions associated to it. To
check this, it suffices to observe that any don’t care condition on
f(z) would result in the possibility of replacing the inverter with
a constant 1 or 0, which is clearly incorrect. O

TR
]—G—’_)D_ Z
>

()

Figure 1: a) anonretimable, but optimizable, circuit. b): possible
circuits replacing the inverter in part a).

In order to capture the degrees of freedom for a subnetwork
embedded in a synchronous system, it is necessary to be able to
fully describe the terminal specifications imposed on that subnet-
work. In the synchronous case, the most general terminal specifi-
cations are represented by the set of its possible execution traces
[17, 18]. A trace is defined as a pair of input/output sequences.
For this reason, we consider trace sets as specifications for a
synchronous subnetwork. In this paper, trace sets are implicitly
described as solutions to Synchronous Recurrence Equations.
In the next section we show that this type of description arises
naturally from the optimization framework considered here.

The task of logic optimization is that of finding the minimum

cost circuit whose input/output behavior satisfies the recurrence
equation. We present an exact two-step solution algorithm for
this problem. The first step consists of reducing the synchronous
logic optimization problem to a combinational logic optimization
one. We show that the reduced problem is more general than
those so far considered in the literature {14, 16, 22]. We con-
clude the paper by presenting an exact solution algorithm for the
reduced problem and some experimental results on synchronous
benchmark circuits.

2 Synchronous Recurrence Equations.
2.1 Terminology

Let B denote the Boolean set {0,1}. A k-dimensional Boolean
vector X= [z1,---,zx]7 is an element of the set B*. The set
of all finite sequences over a finite set S (the Kleene closure of
S) is conventionally denoted by the symbol S* [17]. We thus
denote by (B*)* the set of all finite sequences of k-dimensional
Boolean vectors. An element of (B*)* is termed a synchronous

sequence and denoted by x(-). The n th element of the sequence
is denoted by X».

The input / output functionality of a n;-input, no-output syn-
chronous circuit is described by the correspondence it establishes
between input and output sequences, each pair representing a
possible execution trace [17, 18] for the synchronous circuit.

In general, external specifications do not impose a unique
input/output correspondence, but rather a relation between input
and output sequences, i.e. an arbitrary set of traces. Intuitively,
this is due to: a) not all sequences are usually possible at the
inputs of a synchronous circuit, and b) for a given input sequence,
usually more output sequences are permitted.

Trace sets represent the most general type of terminal speci-
fications for synchronous circuits. The following examples show
some contexts in which they arise naturally as specifications for
a synchronous (or even combinational) circuit.

Example 2. In the circuit in Fig. (la), we seek to re-

place the input inventer by a simpler logic gate, generating the

intermediate signal y. The replacement is possible as long as the
input/output behavior of the whole network is unaffected. The de-
sired input/output behavior for the network is zn = zh bzl

The primary output z can be expressed in lerms of the internal

signal y (1o be re-synthesized) as zn = yn & yn—1. The signal y

must therefore satisfy the constraint:

Yn @ yn-1 =T By, YR 20

The above equation represents the constraint on the execution traces

by the circuit replacing the inverter. It is worth remarking that for

any given input sequence z(-), there exist more than one output

sequence y(-) that satisfy the equation. Two possible solutions are

Y1 = T_1; y1 =0

'yn=1'nvn201 Yn = Tn D Tnal D Yn—1 V"IZO'
In particular, the second solution is obtained by adding y -1 0
both terms of the equation.
Such solutions correspond to different circuits replacing the original
inverter, shown in Fig. (1b). The assignments of y _1 correspond
to the assignment of the initial conditions for the subcircuit. Note
that, although in this case the original circuit is combinational, the
second solution is not, and contains a feedback interconnection. O

N1

Figure 2: Circuit for Example (3)

227

Example 3. As a more complex example, consider the
optimization of the subnetwork N1 in the cascade interconnection
of Fig. (2). The desired input/output behavior of the entire network
can be described by
F= bn—an-l(an—l + bn)
Its output is expressed in terms of the intemal signal y by:
F= bn——llyngyn—ll(bn +ana+ !In—l)
Therefore, for every input sequence, y must satisfy
bn—?.bn—l(a'n—l + bn) =

bn-1[yn®yn—11(bn + an—1 + yn-1)
or, equivalently,
bn—zbn—l(ﬂn-—l + bn)@

bn-—l[yn@yn—l](bn +an-1+ yn—l) =1,

which represents the recurrence equation to be satisfied by any
subnetwork generating the signal y. O

Example 4. Fig. (3) shows the flow graph for a simple
sequence of arithmetic operations. A control unit is o be de-
signed that receives an input cnta, signaling the firing of O Py,
and activates the operations O P and O P, by means of cntb and
ente, according 1o some timing constraints. In this example, (0] 21
must be activated either 1 or 2 clock cycles after the activation
of OP,, while O P, must be activated between 2 and 3 clock cy-
cles after O P;. Such constraints can be expressed as implications
between the control signals cnta(-), cntb(-), entc(-) at different
time points. In panicular, cnta, 2 = 1 implies that OP; must be
activated either at time n — 1 or at time n. This is expressed by

cntan_z C cntby—) + cntby Vn 20
or, equivalently, by

ental, 5+ cntby_1 + cntby, =1 Yn 2> 0.
The second implication is that if O Py is activated at time n, then
either cnta,—y = 1 or cntap_z = 1. This is described by the
clause

cntan_y + cntan—2 + cntby, = 1.
Similarly, the activation of OP; is described by the constraints:

cntb!, _3 + cnteny + enten =1

cntey, + cntby_3 + cntbp_2 = 1

All of the above constraints must be satisfied simultaneously, and
can be cast in a single product to form a recurrence equation to be
satisfied by the signals cnta(-), cntb(-). O

cnta

Control

Unit

Figure 3: High-level flow graph and control unit for a sequence
of operations.

In these examples trace sels are described as solutions to
a recurrence equation, involving the elements of the input

and output sequences of the circuit to be synthesized. In
Examples (2) and (3), the recurrence equation is generated
by imposing the equivalence of the input/output behavior of
the original and modified networks, whereas for the synthe-
sis problem of Example (4) it is derived directly from high-
level specifications. We thus introduce the following definition:

Definition 1. We call Synchronous Recurrence Equation
(SRE) a Boolean equation of type

R(Xnyoev s Xn_2d, Yy - o Yn—d) =1; Vo > 0.
The Boolean function R is the characteristic function of
the equation. The (nonnegative) integer d is termed the

memory depth of the equation. We call a feasible solution
of the SRE a function

f(X", oy Xned, Yo-1, - ,yn—d)
and an initial value specification

Y-d = g_a(X—da, - ,X_24)

Y-t =g_1(X_1, -+, Xq)
such that if
Yo =f(Xn, Xn_dy¥n-1,--+,Yn-a) ¥Vu >0
then Eq. 2.1 holds true. D

We assume in this paper that the input/output specifications
for a synchronous circuit are provided in the form of an SRE.
Each solution f to the SRE corresponds to a possible realization
of such specifications, with an associated cost. The task of logic
synthesis is in this case to determine the minimum cost (typically,
minimum-hardware) synchronous circuit whose input/output be-
havior satisfies the SRE:

Synchronous synthesis problem.
given an SRE,
determine its minimum cost feasible solution (if
one exist).

A synchronous network realizing a function as in Eq. 2.1 may
in general contain feedback interconnections, as y , is cxpressed
in terms of the past valuesy,_1, - - ,Yn—q. In this paper we focus
our attention on simpler solutions, in the form f(X,, - - - Xy_a)
only, and defer the description of the general synthesis procedure
to a later paper, for reasons of space. The solutions considered
here, yielding feedback-free (or definite) realizations, are here-

after termed definite. Definite solutions do not need initial value
specifications.

3 Finding definite solutions to the SRE.

Our solution procedure is essentially divided in two steps. The
first step consists of transforming the synchronous synthesis prob-
lem into a combinational one, by providing a characterization of

the feasible solutions to an SRE. .
We recall that Eq. 2.1 represents a functional equa-

tion, ie. an equation in which the unknown is the function
f(Xn,- - Xn_q). In the Boolean domain, f is completely de-
scribed by its truth table; we can thus regard the truth table en-
tries of the function f as the actual unknowns of the problem.
The first step will thus consist of determining a representation of
the truth tables corresponding to feasible solutions. The second
step consists in the search procedure for optimum solutions. We
focus in particular on minimum two-level representations of f.

3.1 Representing feasible sclutions

For the sake of simplicity, in this paper we limit our attention 1o
the synthesis of a single-output function f, the generalization to
the multiple-output case being straightforward. The support of f
is formed by the n; x d variables representing the components of
the vectors Xn, - - - X, 4. Any such function can be represented

by its truth table, of 2"+ %< entries. These entries are here denoted
by fi0 =00, 2m %4 1,

A function f is completely specified once all f;’s have been
assigned a value. At the beginning of the solution process, none
of the f; are known, and there are in general several possible
assignments, corresponding to feasible solutions of different cost.

Example S. For the problem of Example (1), we seek a

function f(rn,z,_1) of minimum cost that can replace the in-

verter. The function is_entirely described by its truth table, rep-
resented in Table 1. The entries fo, f1, f2, f3 represent the un-
knowns of the problem. Definite feasible solutions are represented
by fo=1,f1 = 1, f2 = 0, f3 = 0 (corresponding to the original
inventer) and by fo = 0, fy = 0, f2 = 1, f3 = 1 (corresponding to
the simple interconnection). O

For each assignment of X», - - - ,Xn_24, Eq. 1 specifies a con-
straint on the possible assignments 10 y,,--+,yn_a. Such con-
straints can be expressed by means of a relation table associated
to the characteristic function R. The left-hand side of the ta-

ble represents the assignments of the inputs X, - - - ,Xn_24, While
its right-hand side represents the corresponding assignments to
Yn. - Yn—a thatresultin R = 1.
z(n)z(n =D f
00 fo
0 1 1
1 0 i
1 1 §i)

Table 1: Symbolic tabular representation of an unknown function

f(Ivh 1'rz—l)~

Example 6. For the problem of Example (1),

R = (5t 22 1)@(yn B yn-1)-
Corresponding 1o the assignment, say, (zpn,Zn_i,Tn_2) =
(0,1,0), the equation R = 1 reduces to the constraint y, &
yn—1 = 1. Table 2 contains the relation table for R, and in particu-
lar the second column shows the assignments of y »,, y,—1 that sat-
isfy R = 1, corresponding to each assignmentof =, Tp_1, Zy_32.

The relation table for the problem of Example (3) is shown in Table
3.0

Ty Tpo1l ITno2 Yn Yn_1 Yn Yn—1
0 0 - 00.11 Il (fo+ fo)(fo+ fo) =1
0 1 - 01,10 A+)+ f)=1
1 0 - 0L10 || (f; + /) (f2+ 1) =1
1 1 - 00,11)| (f+H)+f)=1

Table 2: Relation table for the inverter optimization problem.
The second column shows the possible assignments 10 y 5, yn_i
corresponding 1o each input sequence; the third one expresses
those assignments in terms of the entries f;.

ay by dn- gn-.] An-2 Bn_2 I yn yn_1
-0 0 1) - 0—,—0
- 1 ; 0 01,10
. 1 } 0 01,10
- - 1 ; 1 00,11
- 1 - 1 - 1 00,11

Table 3: Relation table for the problem of Example (3). Dashes
represent don’t care conditions.

We recall at this point that we are seeking solutions in the
form y, = f(x,.--- X,_q). Corresponding to each entry of the

relation table, we can re-express the right-hand sidc constraints
on Yn, - -,Yn—da as constraints on the f,’s, as shown by the
following example.
Example 7. For the relation table of Table 2, correspond-
ing to the assignment (Zn,Zn_1,%n_2) = (0,0, 1), the possible
assignments for (yn,yn—1) are either (0,0) or (1,1), ie. it must
be
(yn + Y1) yn + ¥n-1) = 1.
Since we assume yn = f(Tn,Tn-1) and yn_1 =
f(xn—lyxn—Z)» we have yn = j(0,0) = fo and yo_1 =
f(0,1) = f1. Therefore, the possible assignments for yn_1,yn
are also described by

(fo+ Mfg+ Hi) =1
The same process is repeated for all rows of the relation table.
The resulting constraints on the entry variables f; are described in
column 3 of Table 2. O ’

A function f represents a feasible solution to an SRE if and
only if all the constraints appearing on the right-hand side of the
relation table hold true. It is thus possible to represent such con-
straints by means of their conjunction, i.e. by a single equation
of type

K(f;5=0,-.,2"*_1)=1

Example 8. In the problem of Example (3), by considering a
solution in the form f(bn,an—1,bn_1), we have eight unknowns
f533=0,... ,7. It can be verified that they must satisfy

K= (fi+ U+ 1)U+ XA+ 1)
o (A0 f) 3 f6)(1@ fa)(fs @ fa) = 1

The synchronous logic synthesis problem of Sect. (2) has thus
been transformed into the following :

Combinational logic optimization problem.

given an expression A(f,) in terms of the
27i%d _ 1 entries f, of f;
determine the minimum cost function f such that

K=1

It is worth remarking on the differences between this problem
and others previously considered in the literature. The classic
theory of incompletely specified functions [14, 15] considers in-
complete specifications in which each entry is either assigned a
value, or is a don't care . In the present case, instead, assignments
to different entries are “correlated” : for example, by looking at
the expression K in Example (8), it is easy to see that fq and fs
must always be assigned opposite values.

A first generalization to the classic theory (the minimization
of Boolean Relations [22]) has been considered recently in the
context of optimization of multiple-output combinational circuits
[20]. It was shown in particular that for some multiple-output
logic optimization problems correlations exist between assign-
ments to the same entries of different incompletely specified func-
tions. Note, however, that different entries of a single function
(in our case, fs and fs), could still, in that case, be chosen inde-
pendently.

4 Finding minimum cost solutions.

In this section we consider an algorithm for solving the above
combinational optimization problem. As mentioned, we consider
two-level, sum-of-products realizations, and we build in particu-
lar upon the Quine-McCluskey algorithm for Boolean functions
[14, 15, 16, 22]. To this purpose, we first extend the definitions
of cube, implicant and prime of a Boolean function to the present
combinational optimization problem.

229

Definition 2. A cube ¢(Xyn,--+,Xn_d) on the variables of

Xn, -+, Xn—d is the product of some of such variables, in

either true or complemented form. The variables appearing

in c are termed the support of c. A cube c is an implicant if

there exists a feasible solution f containing c. An implicant

c is a prime if there exists a feasible solution f for which

c is prime, i.e. for which there is no implicant ¢’ of f that

strictly contains c. O

We represent a feasible solution as sum of implicants. If a
cube c is part of a feasible solution f, then for each assignment
of Xn, -+ ,Xn_a such that ¢ = 1 it must also be f = 1. We call
the set of entry variables f; for which ¢ = 1 the span SP. of
¢. We denote by K the function obtained from K by assigning
the value 1 to all the f;’s in SP.. Checking whether a cube ¢
is an implicant thus reduces to checking whether there exists a
solution to K. = 1.

The support SU PPk is the set of entries f; appearing in K.
SU PPy provides a first information on don'’t care conditions
in the feasible solutions: since every solution to K = 1 repre-
sents an assignment only to the entry variables f; appearing in
SU PPy, all the other entries of f will always be left unspeci-
fied. They consequently represent don’t care conditions common
to all feasible solutions.

Example 9. For the function X derived in Example (8),

SUPPx = {f1, f3, fa: fs, f6, f1}. The entries fo and f will be

left unspecified in every solution of X = 1, and therefore are a

don’t care common to all feasible solutions.
Consider the cube ¢ = bhan_.1. We have SP. = {f2,f3} and

Kc = f]fi§¢fsf1. The assignment f1 =0, fs =0, fs =0, fs =
1,f7 = 1 clearly solves K. = 1; therefore c is an implicant. It
can also be verified that, corresponding to that assignment of the
f;'s, ¢ cannot be expanded, and it is consequently a prime. O

4.1 Extraction of primes

A minterm is defined as a cube of minimum size, i.e. whose
span contains a single entry f; € SUP Px.

Similarly to the case of ordinary two-level logic minimiza-
tion, all primes can be extracted simultaneously by starting from
the set of minterms and iteratively expanding them [15, 14, 16].
The loop for finding all primes is illustrated by the procedure
AllPrimes. At the k*" step, all the implicants in the set I and
produced at the previous iteration are first checked for primeness.
Larger implicants are then produced by removing a literal from
implicants from the previous iteration {15, 14, 22].

The routine ExpandImplicants checks the satisfiability of
K.=1.

To verify the primeness of an implicant c, it is similarly nec-
essary to check the existence of a feasible solution f for which ¢
is prime. By definition, c is prime if there exists an assignment of
the f,’s such that K. = 1 and K, = 0 for all cubes ¢, obtained
by expanding c, i.e. by removing a single literal from it. The
check for primeness on ¢ thus consists in determining a solution

to
K J[ki =1
cx€Ec
where E. denotes the set of cubes obtained by removing a single
literal from c. The sclection of primes is performed by the routine

PrimesOf.

AllPrimes(K., S);
input: expression K, set S of minterms;
output: set of primes;

P =¢;
I1=5;
for (k=1,k <n, xd, k++){
P =P PrimesOf(1,K);
{ = ErpandImplicants(I,K);

return (P);

Primes

r
= bn—l
€2 = 8n_10n)
€3 =bnan_y
c4 = bnbn_

Table 4: List of primes for the problem of Example (2).

4.2 Covering Step.

Once the list of primes has been built, Petrick’s method can be
used to construct the subsequent covering problem {23, 20, 22).
Let N denote the total number of primes c1, - - -, ¢ n. The general
solution is written as

N
f = Z QrCyr,
r=1

where the parameter variable a - is 1 if ¢, is present in the solu-
tion, and o, = 0 otherwise.
The cost W of the solution is expressed by

N
W = E Wrar
r=1

where wy is the cost associated with each prime c ., for example
its number of literals [22].

Let x? denote the j'* assignment (of dimension n, x d) to the
variables X, --- Xn_a (ie. x° = 00..0, x' = 00...1, ...). For
each f; in SU P Px, it must be

fi= Zﬁ__l arce(x?).

This equation expresses the entries f; in terms of the param-
eters o,. By substituting these expressions in K, we obtain a
new expression K, (ar;7 = 1,..., N) of the feasible solutions
in terms of the variables o .

The synthesis problem is thus eventually transformed into that
of finding the minimum cost assignment to the variables a , such
that K, = 1, and it is known in the literature as Minimum Cost
Satisfiability or Binate Covering problem. Iis binate nature
comes from the possibility for some of the parameter variables o ,
to appear in both true and complemented form in the conjunctive
form of Ka, as shown by the following example.

Example 10. For the optimization problem of Example (8),

fo= 0 fs= oa
fa= oa2toasy fo= on
fa= an; 1= o2+ as

[m]

Note in particular that the entry f; is not covered by any
cube. The equation K’ = 1 can now be rewritten as
Ko = El +ai)(1+ agf(l +oag)(1 + oﬁg
a1 @ (a2 + a3)][on @ (a2 + as))lar G ad] = 1.
This constraint can, for example, be reduced to a conjunc-
tive normal form:
Ko = 501 + a3+ as;}ai + a3)(a) + of)
a1+ a2+ as)(a] + of)(a] + al)(a1 + as) =
The minimum-cost solution to Ko = 1 is represented by
ay = o2 = a3 = a4 = as = 0, corresponding o
f=b
It is perhaps worth noting that it may be the case that a given
recurrence equation does not have definite solutions. In this case
no assignment of the entries f; can satisfy the constraints imposed
by the relation table, and the search of primes necessarily aborts.
In the case of logic optimization, however, we already know

—

230

the existence of at least one definite solution (corresponding to
the original subnetwork), and therefore, given enough time, the
synthesis procedure will always complete.

4.3 Experimental Results

We implemented in C the algorithms described in this paper, and
tested them on standard synchronous logic benchmarks. Follow-
ing the framework of combinational logic optimization [1], the
circuit is partitioned into single-output synchronous subnetworks,
each of which is then optimized using the algorithms outlined in
this paper. The global feedback paths of the circuit were cut and
treated as primary outputs. Optimization is then repeated until
no improvement occurs.

The results obtained on a DEC 5000 workstation are shown
in Table 4.3. In particular, the first four columns refer to the

initial benchmark statistics, in terms of inputs, outputs, literal, and
register counts, respectively. Columns optl and optr report the
final number of literals and registers obtained, while the column
labeled cpu shows the CPU time in seconds.

Circuit || inputs || outputs || lits regs || optl || cpu
["s208 T Z 166]| 8 3
s298 3 6 244 | 14 155 || 14
s344 9 11 269 1 15 186 || 25
5420 19 2 336 || 16 251 f§ 258
s444 3 6 352 || 21 202 || 142
5641 35 24 539 || 19 241 || 302

Table 5: Experimental results for some logic optimization bench-
marks.

5 Summary and Future Work.

In this paper, we have considered a novel formulation to the syn-
thesis and optimization problems for synchronous networks. We
have shown that, in order to fully capture the degrees of free-
dom for optimization, the terminal specifications of synchronous
circuits are best provided in terms of sets of execution traces,
rather than state diagrams.

In this paper, we used Synchronous Recurrence Equations
to describe such trace sets. This description arises from the nature
of the original specifications provided in this paper, in terms of
netlists; the analysis of trace specifications on state-diagram level
descriptions is the object of ongoing research.

The synthesis problem for a synchronous circuit was cast as
that of finding the minimum-cost solution to such equations. We
presented a two-step exact solution algorithm for such equations.
The first step transforms the synchronous problem into a com-
binational one, which we have shown to differ from those pre-
viously considered in the literature. An exact algorithm for the
latter problem is then presented. We showed that the type of
solutions achievable in this way are in general not reachable by
existing approaches to synchronous logic optimization.

Preliminary experimental results indicate the feasibility of the
approach for the hierarchical optimization of large synchronous
networks; the development of heuristics for exact or approximate
solutions to the binate covering problem represent, however, fu-
ture progress necessary to improve its efficiency.

Currently, the global feedback function of the optimized net-
work is not changed. This actually represents an unnecessary
restriction to optimization: the feedback function can, in princi-
ple, be altered, as long as the observable terminal behavior of
the entire network is not affected by this change. Further inves-
tigation on this aspect could result in algorithms leading to better
quality optimization results.

References

(1]

{2}

[3]

[4

-

(5]

(6]

7

[8

—

(91

{10]

(11}

{12]

(13]

[14]

[15]

{16]

17]

R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, A.
Wang, “MIS: A Multiple-Level Logic Optimization Sys-
tem”, IEEE Transactions on CADIICAS, Vol. CAD-6, No.
6, pp. 1062-1081, November 1987.

K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby,
R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, “Mul-
tilevel Logic Minimization Using Implicit Don’t Cares”,
IEEE Transactions on CAD/ICAS, vol. CAD-7, No. 6, pp.
723-739, June 1988.

S. Muroga, Y.Kambayashi, H.Lai and J.Culliney, “The
Transduction Method - Design of Logic Networks Based
on Permissible Functions”, [EEE Trans. Comp., vol. 38,
No. 10, pp. 1404-1424, 1989.

S.Devadas, T.Ma, A. Newton, and A.Sangiovanni-
Vincentelli, “A Synthesis and Optimization Procedure for
Fully and Easily Testable Sequential Machines”, JEEE
Transactions on CAD/ICAS, Vol. CAD-8 No. 10, pp. 1100-
1109 October 1989.

S. Devadas and A. R. Newton, * Decomposition and Factor-
ization of Sequential Finite State Machines”, IEEE Trans.
on CAD, vol. 8, pp. 1206-1217, 1989.

G. Saucier , M. Crastes de Paulet and P. Sicard, “ASYL: A
Rule-Based System for Controller Synthesis”, JEEE Trans-
actions on CAD/ICAS, Vol. CAD-6, pp. 1088-1097 Novem-
ber 1987.

G. De Micheli, ** Synchronous Logic Synthesis: Algorithms
for Cycle-Time Optimization”, IEEE Trans. on CAD, vol.
10, pp. 63-73, 1991.

S. Malik, E. M. Sentovich, R. K. Brayton, and A.
Sangiovanni-Vincentelli, * Retiming and Resynthesis: Op-
timizing Sequential Networks with Combinational Tech-
niques”, IEEE Trans. on CAD, vol. 10, pp. 74-84, 1991.

J. Hartmanis and H. Stearns, Algebraic Structure Theory of
Sequential Machines, Englewood Cliffs, N.J., Prentice-Hall,
1966.

Z. Kohavi, Switching and Finite Automata Theory, 274 ed.,
New York, Englewood Cliffs, N.J., Prentice-Hall [1966])
McGraw-Hill, 1978.

K. T. Cheng and V. D. Agrawal, “State Assignment for
Initializable Synthesis”, Proc. ICCAD 1989, S. Clara, Nov.
1989.

M. Damiani and G. De Micheli, “Synchronous Logic
Synthesis: Circuit Specifications and Optimization Algo-
rithms”, Proc. ISCAS 1990, pp. 1566-1570.

M. Damiani and G. De Micheli, “The Role of don't care
conditions in Synchronous Logic Optimization”, in Pro-
ceedings of Synthesis and Simulation Meeting and Inter-
national Interchange (SASIMI), pp. 55-62, Tokio, 1990.

E. J. McCluskey, ** Minimization of Boolean Functions,”
Bell Syst. Tech. Jour., vol. 35, pp. 1417-1444, 1956.

W. V. Quine, “ The Problem of Simplifying Truth Functions
" Am. Math. Monthly, vol. 59, pp. 521-531, 1952.

R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A.
L. Sangiovanni-Vincentelli, Logic Minimization Algorithms
for VLSI Synthesis, Boston, Kluwer Academic Publishers,
1984,

D. L. Dill, Trace Theory for Automatic Verification of Speed
Independent Circuits, MIT Press, Cambridge, 1988.

231

(18]

(19]

(201

[21]

(22)

(23]

M. Rem, J. L. A. VanDeSnepscheut and J.T. Udding,
“Trace Theory and the Definition of Hierarchical Compo-
nents”, in R. Bryant, ed., Proc. 3" CALTECH Confer-
ence on Large Scale Integration, Computer Science Press,
Rockville, 1983.

C. E. Leiserson, F. M. Rose, and J. B. Saxe, * Optimiz-
ing Synchronous Circuitry by Retiming”, in R. Bryant, ed.,
Proc. 3™ CALTECH Conference on Large Scale Integra-
tion, Computer Science Press, Rockville, 1983.

R. K. Brayton and F. Somenzi, *“ Boolean Relations and the
Incomplete Specification of Logic Networks”, IFIP VLSI 89
Int. Conference, pp. 231-140, Munich, 1989.

S. Dey, F. Brglez, and G. Kedem, ** Partitioning Sequential
Circuits for Logic Optimization™, Proc. 374 Jnt’l Workshop
on Logic Synthesis , Research Triangle Park, 1991.

R. K. Brayton and F. Somenzi, “ An Exact Minimizer for
Boolean Relations”, Proc. ICCAD 1989, pp. 316-319, S.
Clara, Nov. 1989.

S. R. Petrick, “ A Direct Determination of the Irredundant
Forms of a Boolean Function from a set of Prime Implicants,
" A. F. Cambridge Res. Center Report AFCRC-TR-56-110,
Bedford, Mass., 1956.

