Recurrence Equations and the Optimization
of Synchronous Logic Circuits.

Maurizio Damiani

Giovanni De Micheli

Center for Integrated Systems
Stanford University

Abstract

In this paper we present a formulation for the problem of op-
timizing synchronous logic across register boundaries. We de-
scribe the degrees of freedom (i.e. the don't care conditions) of
an embedded subnetwork by means of sets of execution traces,
described implicitly by Synchronous Recurrence Equations. The
optimization problem reduces 1o that of finding minimum-cost so-
lutions to such equations. An exact solution algorithm for this
problem is presented, along with approximations that improve its
computational efficiency. Eventually, we demonstrate the feasibil-
ity and effectiveness of the approach on synchronous benchmark
circuits.

1 Introduction.

Synthesis and optimization problems for combinational and
synchronous logic circuits are currently the object of intense
investigation. Boolean methods for combinational networks
{1, 2 3, 4,5, 6, 7, 8] have matured both from a theoretical and
application viewpoint. Such methods allow incomplete specifi-
cation of the global behavior of a network, and work directly
on its structural, hierarchical representation. They improve itera-
tively on the initial network by extracting subnetworks to be op-
timized and identifying precisely the degrees of freedom in their
desired terminal behavior. Two-level optimization algorithms are
then used for their optimization. In particular, in the case of
single-output subnetworks, it has been proved that such degrees
of freedom are fully represented by a don'’t care set [2).

By contrast, synthesis and optimization of synchronous cir-
cuits have so far relied on procedures based on (possibly itera-
tive) manipulations of their behavioral models, typically in terms
of state transition graphs (12, 13, 9, 10, 14, 11].

There are several disadvantages associated with this approach.
First, a state diagram description does not allow us to represent
any degree of freedom in the global behavior of a synchronous
circuit. It is indeed often the case (see, for example, the control
synthesis problem from high-level specifications [19, 20]) where
the cycle-by-cycle behavior of a synchronous machine is only in-
completely specified, and several not equivalent finite-state ma-
chines may meet the specifications. The second drawback of this
approach is the remoteness of the state diagram model from the
final implementation, that makes it difficult to evaluate the key

figures of merit, such as area, testability and performance, during
the optimization process.

It is then desirable to have available methods that, similarly
to the combinational case, can optimize synchronous circuits di-
rectly from structural models, i.e. netlists, (according to some
given area/performance metrics) and can take into account in-
complete specifications [15, 24].

We show in this paper that, unlike the combinational case,
capturing the degrees of freedom (the “ don't care conditions”)
associated to a synchronous subnetwork entails being able to rea-
son about sets of sequences of values in the synchronous network.
This capability would allow the automation of logic transforma-
tions otherwise impossible. The following example is taken from
[25]:

Example 1. The circuit shown in Fig. (1) computes a second
order-moment M of the luminance of an image:

M= E 1] ai;
%)

where a;; is the luminance of the pixel of coordinates ¢,3. The
binary counters C;, C; scan by rows the space of coordinates
(i,7). Cj is clocked faster than C, and the product p = ¢ j
is first computed by the muliiplier M. Its output feeds a second
multiplier M, along with the input a;; 1o compute the term ¢ j a;.
These terms are eventually added up in the accumulator register
acc. My cannot be optimized by any combinational method. All
input combinations are, in fact, asserted at its inputs by the two
counters, so that ther are no extemal controllability don’t cares .
Moreover, any change at its outputs would be revealed by an error
in the final result, and therefore we have no extemal observability
don'’t cares . .

It is possible, however, to optimize M by observing that its input
signals are fed in a precise order by the counters. Since during the
scan of a row only C; is incremented, the outputs of M at two
consecutive time-points, n and n + 1, are related by the recurrence:

Prpi =i+ D) =ij+izpati

suggesting the simpler realization shown in Fig. (2). This opti-
mization would have been impossible without knowledge of the
recurrence.

In this paper we consider first a behavioral representation of
a synchronous circuit in terms of execution traces, as these allow
us to capture degrees of freedom at the sequential level, and then
consider the ensuing optimization problem.

A first attempt to the structural optimization of general syn-
chronous circuits is the retiming/resynthesis sirategy (considered,
for example, in [18, 16, 17]). It essentially consists of identify-
ing pipeline-like subcircuits, pushing the registers to their periph-
ery, and then optimizing the resulting combinational subcircuit.
The following very simple example shows the limitations of the
method.

29th ACM/IEEE Design Automation Conference®

556

Paper 35.1 0738-100X/92 $3.00 © 1992 IEEE



]
¥

Figure 1: A circuit for a second-order moment computation.

Ot

Figure 2: Optimization involving sequential information.

Example 2. Consider the circuit shown in Fig. (3). It
can easily be verified that the inverter driving the variable y can
be replaced by a simple i ion, i.e. that the function
f(z) = z' can be replaced by g(z) = z. Since there are no
pipeline-like subcircuits, no retiming operation is possible on the
circuit, and consequently retiming would not remove the inverter.
The inverter can be removed even though there are no don'’t care
fitions associ it in the binati s

this, 1t ﬁﬁm”g'éﬁeﬁe“m'i‘z ‘uhny %-'.": care c&leﬁg: mT?&Boc:k
z' would result in the possibility of replacing the inverter with a
constant 1 or 0, which is clearly incorrect. O

S
s
s

@)

Figure 3: a) anonretimable, but optimizable, circuit. b): possible
circuits replacing the inverter in part a).

In this paper we tackle the problem of optimizing an arbitrary
subnetwork in a synchronous system. We first determine a de-
scription of the acceptable terminal behaviors for the subnetwork
in terms of a recurrence equation.

Logic optimization is then reduced to finding the minimum
cost circuit whose terminal behavior satisfies the recurrence equa-
tion. We review an exact solution algorithm, presented in [22],
and show that the general problem involves in particular a diffi-
cult binate covering step [8, 29).

We then present a strategy for improving the efficiency of

the optimization strategy by avoiding the binate covering step,
so that conventional covering approaches can be considered. We
conclude by presenting experimental results on synchronous logic
benchmarks.

2 Synchronous Recurrence Equations.

We first introduce the conventional terminology associated to the
manipulation of finite sequences (or s ) of Boolean values.
Let B denote the Boolean set {0,1}. A k-dimensional

Boolean vector X=[z1,---,z)T is an element of the set B*.
The set of all finite sequences over a finite set S (the Kleene
closure of S) is conventionally denoted by the symbol S * [21].
We thus denote by (B*)* the set of all finite sequences of k-
dimensional Boolean vectors. An element of (B*)* is termed a

synchronous sequence and denoted by x(-). The n ** element
of the sequence is denoted by X .

The terminal behavior of a n;-input, n,-output synchronous
circuit is described by the correspondence it establishes between
input and output sequences, each pair representing a possible
execution trace [27, 28} for the circuit. An execution trace is
thus identified as an element of (B™i"0)*,

In general, external specifications do not impose a unique
correspondence between input and output sequences, but rather a
relation between them, i.e. an arbitrary set of traces. Intuitively,
this is due to: a) not all sequences are usually possible at the
inputs of a synchronous circuit, and b) for a given input sequence,
usually more output sequences are permitted.

Definition 2.1 A trace set specification of an n;-input, n,-
output synchronous circuit is a subset T C (B™i+%0)*,

A sequential synthesis problem could be formulated as fol-
lows:

Synchronous synthesis problem.

given atrace set 7,
determine an optimum circuit whose terminal
behavior is contained in 7.

Given an arbitrary network, the extraction of the individual
trace sels associated to its subnetworks is in general a complex
task. For this reason, we first focus on definite (or feedback-
free) networks. Any network can be decomposed into a definite
portion, containing all the logic and delay elements, and a set of
feedback interconnections. We first consider the problem of opti-
mizing the definite portion, by assuming the feedback inputs and
output to be ordinary primary inputs and outputs, respectively. In
Sect. (3.3) we take feedback into account.

The terminal behavior of a definite network at time n is spec-
ified by a function S(Xn,Xn—1,...,Xn—d). } Usually, this speci-
fication is implicitly provided by the initial network.

We also assume that the external don't care conditions as-
sociated to the network can be descril by an expression
DC(XnXn-1,...,Xn—a). Such don't cares represent the input
sequences (of length up to d) that either do not occur or such
that the network output is not observed [23].

The knowledge of S and DC identifies precisely the set of
possible terminal behaviors for the network. A network realizing
a function F(Xy, ... ,Xn_d) meets such specifications if and only
if F =S for every sequence not in DC.

Another, equivalent, description of the set of terminal be-
haviors is in terms of the functions Frin = SN DC’ and
Finez = SU DC. Specifications are met by F if

Fmin gFgqus

'Bodlean functions can be seen as describing sets. Therefore they are refer-
enced also as_sets in this paper. Union and intersection denote sum and product,
respectively. D and C denote containment.

Paper 35.1



The following examples show some contexts in which trace
sets arise naturally in the optimization of synchronous circuits.

Example 3. In the circuit in Fig. (3a), we attempt to
replace the input inverter by a simpler logic gate, producing the

internal signal y. The replacement is possible as long as the global

terminal iQr i i inal jog f
R ok 10 destetbed by o oSy gy or for
The primary output 2y, can also be expressed in terms of the intemal

signal y (to be re-synthesized) as 2z, = yn ® yn—1. The signal y
must therefore satisfy the constraint:

@z, 1 CYn®yYn-1 C2n@z)_y, 20

In this case, n; = no = 1, and the above equation represents the
constraint on the sequences of (z,y) pairs in the circuit.

For any given input sequence z(-), there exist more than one output
:e'gumce y(-) that satisfies the equation. Two possible solutions

y-1 =Ty y-1=0

n=2n Yn>0 Yn =2n D Zn1 Dyn-1 Yn > 0.
(The d solution is ob d simply by adding y 1 to both
terms of the equation).

The solutions correspond non equivalent circuits replacing the orig-
inal inverter, shown in Fig. (3b). The assignments of y_; corre-
spond to the assignment of the initial conditions for the subcircuit.
Although in this case the original circuit is combinational, the sec-
ond solution is not, and the new network contains a feedback in-
terconnection. O

b"_,_gl.

N1

—f

Figure 4: Circuit for the optimization problem of Example (4)

Example 4. As a more complex example, consider the op-
timization of the subnetwork N1 in Fig. (4). The desired terminal
behavior of the entire network can be described by

S = bp—2bn_1(an—1+ bn)
Its output is expressed in terms of the interal signal y by:
bn—1{ynByn—-11(bn + an_1 + yn-1)
Therefore, for every input sequence, y must satisfy
bn—1[ynByn_1](bn + an—1 + ¥yn_1) = S

which represents the recurrence equation to be satisfied by any
subnetwork generating the signal y.

Suppose that a don’t care information (say, DC = a n(an—_1+bn))
is added. The above eqmligclhm would have to be satisfied only
for those sequences not in DC. Consequently, y must satisfy only
the recurrence:

S DC’ C bn—1[yn®yn-11(bn + an—1 + yn-1) € S+ DC
a
In all the above examples trace sets are most naturally repre-
sented implicitly as solutions to a recurrence equation, involving

the elements yp, ...,yn—a of the output sequences of the circuit
to be synthesized. We thus introduce the following definition:

Definition 2.2 A Synchronous Recurrence Equation (SRE) is
a Boolean equation of type

Fmin € F(Xn, -+ ,Xn-2d,¥n,"**,¥n-d) C Frmaz; Yn >0.

558

Paper 35.1

A feasible solution of the SRE is a function

f(xm vy Xn—dy Yn—1,"""* ,Yn—d)
and an initial value specification

Y—d=g-d(X_d,---,X_24)

.y—x = g-1(X-1,-*+,X_q)
such that if
¥rn=10(Xn, -, Xned, Yrels -+ ¥nea) ¥n >0
then Eq. 2.2 holds true.

3 Solving the SRE.

We consider in this paper terminal specifications for a syn-
chronous circuit provided in form of a SRE. Each solution f
to the SRE corresponds to a possible realization of such speci-
fications, with an associated cost. The task of logic synthesis is
in this case to determine the minimum cost (typically, minimum-
hardware) synchronous circuit whose terminal behavior satisfies
the SRE:

Synthesis from SRE.

an SRE,

its minimum cost feasible solution
@if one exist).

given
determine

A synchronous network realizing a function as in Eq. 2.2 may
in general contain feedback interconnections, as y », is expressed
in terms of the past values yn_1,---,Yyn—a (one such example
is shown in Fig. (3b)). We are not interested in this type of
solutions, as they alter the network topology during optimization.

We therefore focus our attention on simpler solutions, in the
form f(X.,---,Xn—d) only. These solutions, yielding feedback-
free (or definite) realizations, are hereafter termed definite.

3.1 Definite solutions.

We focus now on the optimization of a single-output function f,
the extension to the multiple-output case being straightforward.
An exact solution procedure for two-level expressions of f was
outlined in [22]. We define a cube c(Xy, - - ,Xn—4) on the vari-
ables of Xo,---,X_g as the product of some of such variables,
in either true or complemented form (in practice, we allow also
outputs of other internal gates to appear as factors of a cube).
We seek expressions of f as a sum of cubes:

N
f= Eck.
k=1

A cube c is an implicant if there exists a feasible solution f
containing c. An implicant ¢ is a prime if there exists a feasible
solution f for which c is prime, i.e. for which no implicant ¢’ of
f strictly contains ¢. A procedure is outlined in [22] to determine
the prime implicants of a SRE.

Example 5.
(1).0

The primes for Example (4) are shown in Table

Once the set S of primes has been built, Petrick’s method is
used to construct the subsequent covering problem [26, 7, 8] as
follows. The general solution is written as

15}

r=Youe
r=1



rrimes

] = ba—l

€2 = @n-1bn-1
— b’

€3 = 0nGn-1

C4 = 0nbn_1

Table 1: List of primes for the problem of Example (4).

where the parameter vanable a, is 1 if ¢, is present in the solu-
tion, and a, = 0 O

This expresslon of f replaces y in the SRE, to obtain a new
equation in terms of the input variables x; and the parameters a.

Example 6. Table (1) contains the primes for Example
(4). Corresponding to the assignment by, = b, = lian_; =
8n—2 = bp_2 = 0 the SRE reduces 10

0C lln-éyn—l co

On the other hand, g to that assig
Yn—1 =01, hmusuhemfombeoq Bos= 1.
By repeating the same process over all assignments, and by forming
the product of all the resulting constraints on the o ;, the global
constraint equation (already in conjunctive normal form) follows:

SREq. =

¥n = a4 and

(o1 + a2 + a3)(a] + aj)(a] + o3)
(§i+§'f)(a’+ab :) 1+og

In gnicuhr, the last two products correspond to the factors of
o 4.

Ti‘le mir:imum—con solution to SRE » = 1 is represented by o1 =
1,02 = a3 = a4 = 0, comesponding to f = b/ _ - 0

The synthesis problem is thus eventually reduced to that of
finding the minimum cost assignment to the parameters « » such
that the new equation holds for all assignments of the variables
z;. This problem is known in the literature as Minimum Cost
Satisfiability or Binate Covering problem.

Its binate nature comes from the possibility for some of the
parameter variables a; to appear in both forms, true and com-
plemented, in the conjunctive form of SRE,,. For instance, the
variable a; appears in both forms in the SRE, of Example (6).

3.2 Unate Covering Problems

The potentially exponential number of primes and the binate na-
ture of the covering step represent the difficulties associated with
the optimization problem.

Binate covering may arise simply because of the nature of the
function F in the SRE. In particular, if F contains yn,---,yn—d
in both true and complemented forms, then the coefficients o ;
will generally appear in SRE, with mixed polarity.

The binate nature of the covering problem reflects an intrinsic
difficulty in the covering step. In the unate case, the effect of
adding / removing a prime to a partial solution is always pre-
dictable: we increase / decrease the cover given by that partial
solution. This is not necessarily true in the present case. Since
F is of mixed polarity wr.t. yn,---,yn—d, the effect on F of
addmg a cube to y becomes unpredictable.

It is thus desirable to remove the mixed-polarity dependency
of F on y. Such a dependency occurs  only if there are paths from
the gate under opnm:zauon to the primary outputs with different
parity of inversions.

Definition 3.1 A function F(yn,...,Yn—d) is termed positive
(negative) unate in y if it.is positive (negative) unate in each
of ¥n, -+ ,¥n—d)-

Definition 3.2 A network is termed unate w.r.t. a gate g if all

reconvergent paths from g have the same parity of inversions. A
network is internally unate if i is unate w.r.t. each of its gates.

559

The output of a network unate wr.t. a gate g is a unate
function of the gate output. Any network can be made internally
unate by duplicating the gates with different parity of inversions
in their fanout paths. The new network is at most twice the
size the original one. In practice, the increase is generally much
smaller.

a"bn-l
bn "y a a, o
Yn
a, g b
(b"b"_')' @)
a,b,_;
a a, o
(bnbn—f)'
(b)

Figure 5: Unate transformation of a network.

Example 7. In the circuit of Fig. (5a), we seck the
optimization of the gate with output y. The network realizes the
function

5= anbl_; + anbh(an-1(an-2 + bn_y) +af_jal,_,)

We assume no extemal don’t care conditions. Consequently,
Fin = Fmaz = S. The output is expressed in terms of the
y by

F =anb,,_; +ana,_ayn + (bnbn_1)ynyn_1
Fig. (5b) shows the unate version of the example in Fig. (Sa).
The gate 1o be optimized has been duplicated, the two new outputs
being v, y2. The output is now a unate function of cach of y1,y2:

F= an“:;_zyin + (bnbn—y )Iyl,n!/l,n—l

a

_Primes

Cl = Gn

2 =bn

€3 =QnGpn_-1
C4 = bnbn—l
cs = anbl_;
cs = bnay_,

Table 2: List of primes for the problem of Example (7).

The following example shows that the unateness of F alone,
however, is not a sufficient condition to insure unateness of cov-
ering problems.



Example 8. Table (2) contains a list of primes of y;. The
prime by, however, can never appear in the same cover with, for ex-
ample, anan—y3. This can be verified as follows. Consider, for in-
stance, a cover of y containing @ nan—1+bn. The product yn yn -1
would then contain the cross-product b nanjan—2. Comespond-
ing to the assignment by, = ap—) = ap.2 = l;apn = b1 =0
we have F' = 1 and Frpqz = 0, thereby violating the constraint
F C Fnaz- O

In the case of unate covering problems, two partial covers can
always be merged to obtain a larger valid cover. In Example (8)
instead, the appearance of the cross-product b nan—185-2 inval-
idates the union of any two covers containing @ nan—1 and b,,
respectively, by violating F C Fp,».

In order to construct unate covering subproblems, a more ac-
curate understanding of the effect of adding / expanding an im-
plicant to a partial cover is therefore necessary.

Assume, for simplicity, that F' is positive unate in y, and con-
sider the effect on F' of elementary operations, such as the addi-
tion / expansion of an implicant to y. Due to the positive unate-
nessof F' in y, corresponding to each assignmentof X »,, ... ,Xn—d,
an elementary operation can at most change F = 0 to F = 1, but
not viceversa. Each elementary operation therefore preserves the
inequality Finin C F, and only the second inequality F' C Fnax
needs be checked. In Example (8), precisely this constraint is vi-
olated by the cover anan_1 + b,. This leads to the following
definition:

Definition 3.3 (Maximal set of primes.) A set of implicanis is
said to be maximal if no implicant can be expanded | added to
it without violating F C Fyq;.

As Example (9) implicitly points out, there may be more than
one maximal set of primes.

Example 9.
For the circuit shown in Fig. (5), the following are maximal sets
of primes for the variable y:

S1 = {anbn,anan_1,bnbn_1, anb:,_l ’ bnaln_l 15
SZ = {bn}
83 = {en,bna, 1 };

]

Once a maximal set of primes has been built, the removal
of any primes can only change F = 1 w0 F = 0 for some
assignments of Xy, ... ,Xn_q. Therefore, removal of any primes
can never result in a violation of F C Fyna.. The covering step
can thus be formulated as

minimize the number of implicants/literals of y;
constraint: Fy,i, C F.

To achieve exact minimization, all possible maximal sets of
primes should be generated and the subsequent covering step
solved. This is obviously inefficient and costly in terms of CPU
time. A useful approximation is instead that of building only one
maximal set of primes upon the original set. For example, for
the network of Fig. (5) only S) or S3 would be derived.

Once the internally unate network is optimized, it can be
folded back into an arbitrary, internally binate, network.

Example 10. Beginning from the set S, of Example (9),
the optimum two-level realization of y) is anan_) + bpbp_;. It

could then be shown that an optimal realization of y is bl,. The
network after the above transformations is shown in Fig. (6). O

3.3 Adding Feedback.

In the optimization process followed so far, we treated the feed-
back inputs and outputs as ordinary primary inputs and outputs,

Paper 35.1

Figure 6: The optimized version of the network.

respectively. In practice, at any point in time the value at a feed-
back input is fixed by the network, and we expect that not all
feedback sequences will be possible. Moreover, the feedback
outputs are not perfectly observable. We can model both effects
by means of suitable don't care conditions, as shown by the fol-
lowing example.

Figure 7: Don't care conditions for a circuit with feedback.

Example 11.  Consider the network of Fig. (7). It represents
essentially the same network of Fig. (4). In this case, however,
an is not an external signal, but rather a feedback input. In par-
ticular, 3, = (an—1 + bn)’. We can therefore add an extemnal
controllability don’t care set DC = an @ (an—1 + bn)’ to the
specifications.

The input ay, is also not observed at any time in the future if
bn41 = 1. We can therefore associate an observability don’t care
set bp 41 to the feedback output. O

Unlike the combinational case, however, the controllability
and observability don’t care conditions derived from the feedback
interconnection cannot generally be used simultaneously in the
optimization of the network. Indeed, using the observability don't
care set implies changing the feedback function, and possibly
invalidating the corresponding controllability don’ care set.

3.4 Experimental Results

The algorithms outlined in this paper have been written in C and
tested on standard synchronous logic benchmarks. The results of
applying the exact method of Sect. (3.1) are shown in Table 3.4.
They were obtained on a DEC 5000 workstation. In particular,
the first four columns refer to the initial benchmark statistics, in
terms of inputs, outputs, literal, and register counts, respectively.
Column opil reports the final number of literals and registers
obtained, while cpu shows the CPU time in seconds.

4 Summary and Conclusions.

In this paper we outlined a model for the optimization of syn-
chronous circuits across register boundaries. We use the concept
of sets of execution traces, rather than state diagrams, to spec-
ify the desired terminal behavior (and its associated degrees of
freedom) of a synchronous circuit.

For synchronous logic optimization problems, Synchronous
Recurrence Equations represent an efficient way of represent-
ing trace sets. We can thus cast the synthesis problem of a syn-



Circuit || inputs || outputs }} lits || regs || optl |i cpu
5208 11 2 166 || 8 108 || 3
5298 3 6 244 || 14 155 || 14
s344 9 11 269 || 15 186 { 25
5420 19 2 336 || 16 251 | 258
s444 3 6 352 || 21 202 || 142
5641 35 24 539 |t 19 241 |t 302

Table 3: Experimental results for some logic optimization bench-
marks.

chronous circuit as that of finding the minimum-cost solution to
such equations.

An exact two-step solution algorithm has been proposed. The
first step transforms the synchronous problem into a combina-
tional one, which we have shown to differ from those previously
considered in the literature. An exact algorithm for the latter
problem is then presented.

We have shown that the solution of this problem involves a
difficult binate covering step, for which efficient algorithms are
under investigation [29]. To overcome this difficulty, we have
shown that by making the network internally unate it is possible
to reduce the covering step to a much simpler unate one.

Experimental results show that this approach is viable for the
hierarchical optimization of synchronous circuits, with a solution
space not otherwise reachable.

5 Acknowledgements.

This research was sponsored by DEC, jointly with NSF, under a
PYI Award and by NSF/DARPA, under contract # MIP 8719546
and its renewal.

References

[1] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, A. Wang ,
“MIS: A Multiple-Level Logic Optimization System"”, /EEE Trans-
actions on CAD/ICAS, Vol. CAD-6, No. 6, pp. 1062-1081, Novem-
ber 1987.

K. A. Bartlet, R. K. Brayton, G. D. Hachtel, R. M. Jacoby,
R. Rudell, A. Sanglovanm-Vmoenlelh and A. Wang, “Muliilevel
Logic Minimization Usin, licit Don’t Cares”, IEEE Transac-
lwmonCAD/lCAS vol. CAD7 No. 6, pp. 723-739, June 1988.

S. Muroga, Y.Kambayashi, H.Lai and J.Culliney, “The Transduc-
tion Method - Design of Logic Networks Based on Permissible
Flglg;tims". IEEE Trans. Comp., vol. 38, No. 10, pp. 1404-1424,
1989.

[2

—

3

—

4

=

E. J. McCluskey, “ Minimization of Boolean Functions,” Bell Syst.
Tech. Jour., vol. 35, pp. 1417-1444, 1956.

W. V. Quine, “ The Problem of Simplifying Truth Functions *, Am.
Math. Monthly, vol. 59, pp. 521-531, 1952.

R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L.
Sangiovanni- Vi 1li, Logic Minimization Algorithms for VLSI
Synthesis, Boston, Kluwer Academic Publishers, 1984.

R. K. Brayton and F. Somenzi, “ Boolean Relations and the Incom-
plete Specification of Logic Networks"”, IFIP VLSI 89 In1. Confer-
ence, pp. 231-140, Munich, 1989.

R. K. Brayton and F. Somenzi, * An Exact Minimizer for Boolean
Relations”, Proc. ICCAD 1989, pp. 316-319, S. Clara, Nov. 1989.

S.Devadas, T.Ma, A. Newion, and A.Sangiovanni-Vincentelli, “A
Synthesis and Optimization Procedure for Fully and Easily Testable
Sequential Machines”, /EEE Transactions on CAD/ICAS, Vol
CAD-8 No. 10, pp. 1100-1109 October 1989.

(51

(6]

7

(8

—

91

561

(10}

[11]

(12]

{13]

[14]

(15]

[16]

17

(18]

(19]

[20

-

(21}

[22)

[23]

[24]

[25]

{26]

[27)

128]

[29]

S. Devadas and A. R. Newton, “ Decomposition and Factorization
of Sequential Finite State Machines”, /EEE Trans. on CAD, vol. 8,
pp. 1206-1217, 1989.

G. Saucier , M. Crastes de Paulet and P. Sicard, “ASYL: A Rule-
Based System for Controller Synthesis”, I[EEE Transactions on
CAD/ICAS, Vol. CAD-6, pp. 1088-1097 November 1987.

J. Hartmanis and H. Steams, Algebraic Structure Theory
tial Machines, Englewood Cliffs, N.J., Prentice-Hall, 1

Z. Kohavi, Switching and Finite Automata Theory, 2™¢ cd., New
Y:7r§. Englewood Cliffs, N.J., Prentice-Hall [1966]) McGraw-Hill,
1978.

Sequen-

K. T. Cheng and V. D. Agrawal, “State Assig t for Initializabl
Synthesis”, Proc. ICCAD 1989, S. Clara, Nov. 1989.
G. De Micheli, “ Synchronous Logic Synthesis: Algorithms for

Cycle-Time Optimization”, IEEE Trans. on CAD, vol. 10, pp. 63-
73, 1991.

S. Malik, E. M Sentovich, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “ Retiming and Resymhem imizing Sequential
Networks with Combi ques”, /i Trans. on CAD,
vol. 10, pp. 74-84, 1991.

S. Dey, F. Brglez, and G. Kedem, “ Partitioning Sequential Cir-
cuits for Logic Optimization”, Proc. 37¢ Int'l Workshop on Logic
Synthesis , Research Triangle Park, 1991.

C. E. Leiserson, F. M. Rose, and J. B. Saxe, “ Optimizing Syn-
chronous Circuitry by Retiming”, in R. Bryant, ed., Proc. 379 CAL-
TECH Conference on Large Scale Insegration, Computer Science
Press, Rockville, 1983.

W. Wolf, A. Takach, and T. C. Lee, ™ Ardmectnrnl Optimiza-
tion Methods for Control-Dominated Machi *,in C; >and
Wolf (editors): High-Level VLSI Synthesis, pp. 231-254 Kluwer,
1991.

D. Ku, D. Filo and G. De Micheli, " Control Optimization Based
on Resynchronization of Operations”, Proc. 1991 DAC Conf., S.
Francisco, June 1991.

A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Tech-
niques, and Tools, Addison-Wesley, 1986.

M. Damiani and G. De Micheli, * Synthesis and Optimization of
Synchronous Logic Circuits from Recurrence Equations”™, Proc.
EDAC 1992, Bruxelles, March 1992.

M. Damiani and G. De Micheli, “ Don’t care conditions in Com-
binational and Synchronous Logic Networks”, To appear on JEEE
Trans. on CAD

M. Damiani and G. De Micheli, “The Role of don’t care conditions
in Synchronous Loglc Optlmluuon". in Proceedings of Synthesis
and Simul. and International Interchange (SASIMI),
pp. 55-62, Tokio, 1990.

N. Weste and K. Eshraghian, Principles of CMOS VLSI Design,
Addison-Wesley, 1988.

S. R. Petrick, * A Direct Determination of the Irredundanl Forms of
a Boolean Function from a set of Prime Implicants, * A. F. Cam-
bridge Res. Center Report AFCRC-TR-56-110, Bedford, Mass.,
1956.

D. L. Dill, Trace Theory for Automatic Verification of Speed Inde-
pendent Circuits, MIT Press, Cambridge, 1988.

M. Rem, J. L. A. VanDeSnepscheut and J.T. Udding, “Trace The-
ory and the Definition of Hierarchical Components™, in R. Bryant,
ed., Proc. 374 CALTECH Conference on Large Scale Integration,
Computer Science Press, Rockville, 1983.

M. Pipponzi and F. Somenzi, * An lterative Algorithm for the Bi-
nate Covering Problem”, Proc. EDAC 1989, pp. 208-211, Glasgow,
March 1989.

Paper 35.1



