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Abstract

Mixed system designs consist of interacting hardware and software components. The hardware
component consists of a re-programmable component, like an off-the-shelf processor, and application-
specific chips. The software component consists of a set of concurrently ex«uting program fragments,
called threads. We have considered the {X'oblem of generating hardware and software components from
a given system model under input/output data rate constraints in [I). In this paper we present schemes
for implementation of the software component of mixed system designs. The primary motivation for
software implementation schemes is to provide a low overhead scheme for concurrent software imple-
mentation on a single processor which makes the overall hardware-software system design feasible.

As an illustration of the program implementation schemes and feasibility of mixed system designs,
we present design of a graphics controller and its simulation results.

1 Introduction

Prompted by the success in recent years in synthesis of large-scale integrated circuits either as a single
chip or as a collection of chips [2] [3] [4] [5]. attention has now been focused on synthesis of systems
where d1e target architecture contains application-spa-:ific as well as general puqx>se re-progrmnmable
components. The fe-programmable components of a system architecture refers to a microprocessor like
the Mips R3(xx) which executes part of the system functionality implemented as programs assisted by
dooicated ASIC hardware. Motivation to such a target architecture comes from d1e realization that most
complex system designs consist of mixoo components that blend ASIC chips with processors. memory
and other special purpose modules. The ASIC components are chosen to complement performance or
add functionality not achievable by pure program implementations.

Synthesis of systems containing fe-programmable components can be thought of as extension of high-
level synthesis techniques to systems containing 'generalizal resources'. However. due to differences
in the computation model of ~ operations implemented in re-{X"ogrammable and application-specific
components. the overall problem of system synthesis is much more complex. ~ fe-programmable
components implement system functionality in an instruction-driven software component as an ordered
set of machine instructions with a statically allocated memory space. whereas the application-specific
hardware components essentially operate as data-driven reactive computational elements. Because of
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Figure 1: System Syntbe$is Procedure

this difference in d1e hardware and software components. the problem of system synthesis is formulated
as a hardware-software co-design problem.

Figure I illustrates the overall approach to synthesis of systems containing both hardware and software
components. We model system behavior using the HardwareC [6] language that has a C-like syntax and
supports timing and resource constraints. HardwareC supports specification of unbounded and unknown
delay operations that can arise from data dependent decisions and external synclU"onization operations.
The HardwareC description is compiled into a system graph model based on data-flow graphs [6]. The
system graph model consists of vertices representing operations. and edges which represent serialization
among operations. Overall tre system graph model is composed of concurrent data-flow sections which
are ordered by tre system control flow.

Associated with input/output statements. the user can specify corresponding constraints on input/output
data rates. ~ input (output) rate constraints refer to bounds on the rates at which data is required to be
consumed (Produced). The system graph model is partitioned based on feasibility of the overall system
implementation and satisfaction of applicable data-rate constraints. One such scheme relies on identifying
and partitioning unbounded delay operations[l]. As a result of system partitioning. we have a set of
concurrently executing 'hardware' and 'software' models. These models consist of hierarchical acyclic
system graph models. We consider input/output operations related to message-passing and data-dependent
loops to be unbounded delay operations. Since data-dependent operations may offer unbounded delays it
becomes necessary to schedule d1eSe operations dynamically. Therefore. we refer to data-dependent delay
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operations as points of synchronization in die system model. Our approach to synthesis of hardware under
relative scheduling formulation has been described in detail elsewhere [6]. Briefty. ~ relative scheduling
formulation makes it possible to Khieve a data-driven dynamic schedule of operations widt respect to
synchronization points. Due to inherently different model and rate of computation between hardware and
software modules. it is n«essary to allow multiple executions of individual hardware aOO software models
in rxdef to achieve high system throughput Differences in rates of computation c:~uses variation in the
rates of communication across different models. In order to !acilitate d1is form of distributed computation.
appropriate buffering and handshake mechanisms between hardware aDd software components are n~oo
[7]. ~ software graph Joodels are d1en serialized to minimize temporary register storage requirements[8].
From ~ serializoo graph models. we gen~ate a corresponding C-code description. ~ C-cooe is then
compiloo into assembly code for ~ target processor using existing software compilers.

For simulation purposes. we use an event-driven simulator. named Poseidon. that perfonns concurrent
execution of multiple functional models imple~nted eithel' as a lXogram or as awlication-specific hard-
ware [7]. Poseidon currently suppons simulation of assembly code for the DLX micr~essor [9]. a
RlSC oriented load/store processor that supports inSb"uction-set architecture of the commercially available
Mips R3OO) lXocesS<X'. The hardware component of system design can be simularoo eJtheI' before rx afteJ'
the sttuctural syndlesis phase. Input to Poseidon consists of model declarations. interconnections and
corresponding interface protocols. Each Joodel has an associated clock signal and clock cycle-time used
for its simulation. InterfKe protocol for data-ttansfer between models is specifioo via guarded commands
[10]. Section 5 presents an example of intedKe protocol specification in Poseidon.

In this paper. we focus on the problem of generation of the software components from ~ graph
mooel that is ouq>ut of system partitioning as sOOwD by the shaded area in Figure 1.
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Target Architecture and Assumptions

We choose a target architecture that contains the essential elements of hardware-software systems. As
shown in Figure 2. the target architecture consists of a general-purpose processor assisted by application-
specific hardware components. The following lists the relevant assumptions relating to target architecture.

. We restrict ourselves to use of a single re-programmable component because presence of multiple
re-programmable components requires additional software synchronization and memory protection
considerations to facilitate safe multiprocessing. Multiprocessor implementations also increase the
system cost due to requirements for additional system bus bandwidth to facilitate inter-processor
communications. We make this simplifying assumption in order to make the sy? -=sis tasks man-

ageable.

. ~ memory used for program and data-storage may be on-board the proces$. However. the
interface buffer memory needs to be accessible to the hardware modules directl). Because of the
complexities associated with modeling hierarchical memory design. so far we have considered the
case w~re all memory accesses are to a single-level memory. i.e.. outside the re-programmable
component. The hardware modules are connected to the system address and data busses. Thus
all the communication between the processor and different hardware modules takes place over a
shared medium.

. ~ re-programmable component is always the bus master. Almost all processors come wim
facilities for bus control. On the other hand, inclusion of such functionality on me application-
specific component would greatly increase the total hardware cost

. All die communication between the fe-programmable component and the ASIC components is done
over named channels woose width (i.e. number of bits) is same as the corresponding port widths
used by read and write instructions in die software component The physical communication takes
place over a shared bus. The problem of encoding and sharing multiple virtual channels over a
physical bus is a subject of continuing research at Stanford.

. ~ fe-programmable component contains a 'sufficient' number of maskable interrupt input signals.
For purposes of simplicity, we assume d1at these interrupts are unvectored and there exists a
predefined unique destination address associated widl each interrupt signal.

2 Implementation of Software Components

As mentioned earIi~, die system 'software component' is described as a set of hierarchical acyclic
graph models where die vertices represent operations and edges represent dependencies. Through the
use of hierarchy when describing conditionals and loops, die graph model pushes the uncertainty of
conditional execution paths into the uncertainty of delay of execution of various vertices. In other
words, for a given graph model all its operations at any level of hierarchy are eventually executed and
the model does not contain any conditional (or cyclic) execution paths. The uncertainty of conditional
executions manifests itself as the uncertainty of delay of conditional operation nodes. Example I shows
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Figure 3: Example of a graph model cont8ining unbounded and unknown delay O~aliODS

a HardwareC process description containing 3 unbounded/unknown delay operations: message-passing
receive operation. conditional and loop.

Example 1: Example of a HardwareC process with unbounded delay operations

process example (a, b, c)
in port a[8) ;
in channel b[8) ;
out port c ;

boolean x[8), y[8), %[8)

x = read(a);
y = rec8iv8(b);
if (x> y)

Z=X-Yf
e18e

ZaX.Y,
while (z >= 0) (

write cay I
zaz-l,)

1.

Notes 08 execution semaDtia: (1). A prOCe$S in HardwareC executes concurrently with other
processes in the system specification. A p-ocess restarts itself upon completion of the last operation
in the process body. Thus there exists an implied outa'-most loop that contains the body of the
process model. In other languages, this loop can be s~fied by an explicit outer loop statement.
(2). Operations within a process booy need not be ex~uted sequentially (as is the case in a p-ocess
sp«ification in VJU>L. for example). A process body can be specified with varying degrees of
parallelism such as parallel, data-parallel or sequential. [J



Gupta, Coe/bo. De Micbe/i: Program bnpJemenution Schemes 6

Figure 3 shows the corresponding hierarchical graph model for the process ex amp 1 e that consists of
four graphs, labeled Go, GcO, Gct and G/oop. The double-circles indicate operations widt unbounded or
unknown execution delays. Depending upon the points of synchronization in a model, tl1e graph can be
implemented as a single or multiple routines. In absence of multiple points of synchronization, a simple
graph model can be implemented as a single routine. A hierarchical system model is implemented as a set
of routines where each routine corresponds to a graph in tl1e model hierarchy. A program implementation
of a graph is referred to as a program thread due to tl1e fact that the operations of the graph model are
serialized in software. Thus, ~ software component consists of a set of program threads. The program
threads may be hierarchically related. [n addition, some program threads may need to be executed
concurrently based on the concurrency among the corresponding graph models. Concurrency between
program threads can be achieved by using an inter-leaved execution model as explained later in this
section.

A program thread may be initiated by a synchronization operation, such as a blocklng receive operation
(rcv_synch). However, within each ttu-ead all operations have fixed delay. The (unknown) delay in
executing tl1e synchronization operation appears as a delay in scheduling dte program thread and it is
not considered a part of the thread latency. ~refore, for a given re-programmable device the latency
of each d1read is known statically. Referring to the example in Figure 3, ~re are four program threads
To, T/oop, TcO and Tct. Thread, To consists of the receive operation followed by dle {X>rt read operation
while the other threads consist of serialized operations in the corresponding graph bodies.

Tel TelTo
rcv-synch
read
detach

op
detach

op
detach

T loop_synch

write
op
detach

Though only a feature of representation. this use of hierarchy is well suited to eventual implementation
of the ,software component as a set of program routines. Since all the operations in a given graph model
are always executed. the corresponding routines can be constructed with known and fixed latencies as
explained earlier. As with the graph model. ~ uncertainty due to data-dependent delay operations
is relatOO to invocations of ~ individual routines. A software implementation consisting of dynamic
invocations of fixed latency program threads simplifies the task of software characterization for satisf~tion
of data rate constraints. Satisfaction of imposed data rate constraints depends upon the perfonnance of the
software component Even in presence of unbounded delay operations bounds on software pedonnance
can be determined basoo on its implementation of program threads. In the following sections. we
describe a code-level transf<XIDation of the data-dependent loop operations that makes it possible to
observe imposed input/output rate constraints. In cases. wOOre such transformations are not possible.
we use processor interrupts along with bounds on number of intem1pts and intem1pt latencies to ensure
satisfaction of rate constraints.
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Rate constraints and software perfonnance

The data rate constraints on ~ inputs and outputs of ~ software com(X)nent are derived based on
the corres(X)nding constraints on system inputs and outputs. A data rate constraint on an input (output)
s~ifies a lower round (in terw of samples/sec) on ~ rate at which ~ particular I/O data should
be consumed (produced). In case of a detenninistic software component. that is. software com(X)nent
with known and rounded execution delays. precise data rates can be computed and checked against
corres(X)nding data rate constraints. However. ~ presence of an unrounded-delay operation between
consecutive read (write) operations ~u1res computation of statistical measures (such as distribution of
input data value and inter-arrival time) in order to determine ~ rate of data production and consumption.
A major contribution to the variability of data rates is due to the data-dependent loop operations since
the delay due to these operations consists of active execution times ratrer than 'busy-wait'-type delays
encounterOO by other synchronization operations. In some cases. the need for statistical measures can
be avoided by transforming the dynamic loop execution model into a corresponding cyclo-static loop
execution model as follows. Consider. f(X' example, a software component that consists of reading a
value followed by a data-dependent delay operation shown in Example 2.

Example 2: Consider a mixed Implementation shown by the figure below.

The ASIC component sends to the processor so~ data OD ,port X at an input rate constraint of p
samples/sec. The functioD to be implemeD~ by the processcx IS mooel~ by the following HardwareC
process fragment

proc.ss t..t(x, ...

in port x (SIZE)
'11\read Tl 'nlread T2

read
detach

loop_8ynch
<loop~>x.x-l
detach

read x ;

wb!l. (x >- 0)
{

<loop-body>
xax-l;

x is a boolean array that re~ts an integ~. In itS software implementation, this behavior is translated
into a set of two program threads shown on the right, wbae one thread paiOmlS the reading operations,
and the otb~ thread consists of operations in the body of the loop. For each execution of thread TI
there are x execution of thread 1'2. (]

For the HardwareC process in Example 2. the interval betw~ successive ex~tions of the read
operation is determined by the overall ex~tion time of the whi Ie statement Due to this variable-delay
loop o~ation. the input data rate at port x is variable and is dependent upon value of x as a function of
time. For each invocation of ttU"ead Tl there are x invocations of d1read n. In other words. thread Tl
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can be resumed after x invocations of thread 1'2. In absence of any other data-dependency to operations in
the loop body, thread Tl can be restarted before completing all invocations of thread 1'2 by buffering the
data transfer from thread Tl to 1'2. Funher, if variable x is used only for indexing the loop iterations, the
need for inter-thread buffering can be obviated by accumulating value of x into a separate loop counter as
shown in example below. We call such an implementation of a loop construct in software a cyclo-static
loop based on ~ fact that an upper bound on the number of iterations of the loop body is statically
detennined by the data rate constraints on inputs and outputs that are affected by ~ data-dependent loop

operation.
A cyclo-static loop implementation assumes that there exists a repeat-count counter associated with

every loop and a loop body is required to be executed as long as its repeat-count is a non-zero number.
Additionally, the repeat-count is not used by the corresponding loop body for any purposes other than
keeping a count of number of iterations remaining. Under such conditions. ~ above component can be
transformed into two program threads where one thread reads port x and increments the repeat-count for
the loop body contained in the other thread.

Example 3: Transfonnation of data-dependent loop in Example 2 into a cyclo-static loop

,",read Tlproc... test(x. ...)
in port x [SIZE)

'n\read T2

r_d
add op
detach

loop_synch
<loop-body>
repeat-count--
detach

integer repeat-count = 0

read x ;
repeat-count = repeat-count + X

while (repeat-count >= 0)
(

<loop-body>
repeat-count = repeat-count-l

(I). For ~b execution of thread TI there are max(z, m) execution of thread 1'2 where constant
m is detennined by input data rate constraint. P. on the read operation in TI given by the relation:
!. = (..\Tl + m . An) . tey wb~ thread latencies ..\Tl and AT2 include synchronization overheads. tcSl
p .

fdenotes cycle time 0 the (X'ocessor.

(2). Initialization of variables is perfonned during system RESET state. 0

In this case, we can lX'ovide a bound on the rate at which port is read by ensuring that the read thread,
TI, is sc~uled, say after utmost m iterations of the loop body. Due to accumulation of repeat-count
additional care must be taken to avoid any potential overftow of d1is counter. [Generally, overflow can
be avoided if m is greater than or equal to ~ average value of x. In the extreme, it can be guaranteed
not to overftow if m is at least maximum of x which is equivalent to assigning worst-case delay to the

loop operation].

Decoupling output data rate from software non-determinism

Due to unbounded delay operations in the software component that is translated into a data-dependent
number of invocations of some thre~ of execution. use of cyclo-static loops may not always be possible
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or it may lead to implementations that under-utilize the system bus bandwidths. for example. by reserving
worst case data-transfer rates for some I/O operations. With concurrent threads. to a certain extent. we
can insulate the input/output data rates from variable delays due to other threads by buffering the data
transfers between threads. Thus. the inter-thread buffers hold the data in order to facilitate multiple
executions among program threads. Threads containing specific input/output operations are scheduled
at fixed intervals via processor interrupt routines as soown in the Example 4 below. In this scheme.
finite-sized buffers are allocated for each data-transfer between program threads. In order to ensure
the input/output data rates for each thread. we associate a timer process with every I/O operation that
interrupts the processor once the timer expires. The associated interrupt service routine performs the
respective I/O operation and restarts the timer. In case a data is not ready the processor can send the
previous output and (optionally) raise an error flag.

Example 4: Implementation of ~ogram threads in Example 2 with inter-thread buffer.

Thread T2 Timer Process Tl (interrupt ..rvice routine

loop_8ynch
<loop_body>
x=x-l
det.ach

read x
load timer = CONSTANT
enqueue (x) on dFIFO

timer-- per clock tick
if (timer a: 0)

interrupt

Thread Tl is now implemented into an intemlpt service routine Uta! is invoked at each expiration of
the timer process. Timer JX'ocess represents a processor timer (or an external hardware timer) Uta! is
used to generate interruptS at regular intervals. The intemlption interval CONSTANT is determined by
the rate constraint and latencies of intemlpt service routines. dFIFO in Ute interrupt service routine
refers to Ute buffer between threads Tl and 1'2. c

This scheme is particularly helpful in case of widely non-unifonn rates of production and consumption.
In this case, data transfer from processor to ASICs is handled by the interrupt routines thereby leading
to a relatively smaller program size for d1e cost of increased latencies of the interrupt service routines.
Section 6 presents implementation costs and perfonnance of this scheme.

Next we consider the problem of software synchronization and sc~uling mechanisms to make a
hardware-software system design feasible.

3 Control Flow in the Software Component

Our mooel of software component relies on tOO sequential execution of each thread of execution. Concur-
rency between threads is achievoo through interleavoo execution of the threads. Since multiple program
threads may be created out of a graph mooel each starting with an unboundOO-delay operation, therefore,
software synchronization is needoo to ensure COlTect ordering of operations within tre program threads
and between different threads.

In presence of multiple threads of executions due branching and loop operations, the control flow
between threads is represented by a directed flow graph the nodes of which are individual program threads
and ooges indicate control dependencies. Since the total number program threads and their dependencies
are known statically, the programs threads are constructoo to observe these dependencies. The threads
are identified by unique tags. A run-time FIFO, called control FIFO, maintains the identifier tags of the
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threads that are ready to run based on control ftow (while they may still be waiting for data). Before
detaching. each d1read performs one or more enqueue operations to the FIFO for its successor threads as
shown in Example 5 below.

Example 5: Inter-thread conb'ol dependencies.

before T1

~]~~=@
/\

@ @

~Tl

<bodY>
~e (1'2) Oft cFU"O
e~ (1"3) Oft cFU"O
detal:h

after T1

ITl~

Flow Graph Thread Control FIFO

<body> refers to die (linearized) set of operations from the corresponding graph models. Control
dependency from thread Tl to 1"2 is built into die code of Tl by the enqueue operation on the control
FIFO . C

A U'lread dependency on more d1an one predecessor d1read (d1at is a multiple indegree (fanin) node
in die flow graph) is observed by ensuring multiple enqueue operations for die d1read by means of a
counter. For example. a thread node wid1 a indegree of 2 would contain a synchronization preamble code
as indicated by the while statement shown in Example 6 below.

Example 6: Thread with multiple input control dependencies.

Thread T 1

wbile (count != 2)
{

count = COIIat + 1;
detach

<bodY>
count = 0
eoqueue <s'-~.. tbreads> on cFIR>
~b

a
Control transfer for multiple fanin nodes entails program overheads that add to ~ latency of the cor-
responding threads. For dlis reason, an attempt should be made to rOOuce multiple dependencies for a
program d1read through a careful dependency analysis. In case of multiple outdegree nodes in the ftow
graph, a necessary serialization among enabling of successor threads occurs. However, this serialization
is of little significance since there exists only a single re-programmable component

4 Concurrency in Software Through Interleaving

The problem of achieving concurrency through interleaved execution in the software component was
consideroo in [7]. The different program threads can be implemented as program subroutines that operate
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under a global task schOOuler (or the main program). It was shown that the overheads in terms of number
of cycles for each inter-thread control ttansfer operation can be reduced significantly by placing program
subroutines in a co-operative. rather than hierarchical. relationship to each other by implementing them as
Coroutines [11]. For ~ DLX microprocessor a coroutine implementation of program threads constitutes
an overhead of 19 cycles. Another scheme for implementation of ~ software component is to construct
a program routine using the metlx>d of Description by cases. In this metl¥>d. we attempt to construct a
single program with a unique case assignment for eoch thread (in a rather large conditional in the final
program). A set of global state registers is used to store the state of execution of each thread. The
overheads due to this scheme depends strongly upon the instruction set architecture of processor. For the
DLX microprocessor. the overhead amounts to 3S cycles for each inter-thread transfer operation. In case
of so-called 'CISC' processors this scheme reduces ~ overhead by reducing amount of ALU operations
in favor of a slight increase in memory input-oulput operations.

Hardware-Software Synchronization5

Due to the serial execution of ~ software comp)nent a data ttansfer from hardware to software must
be explicitly synchronizOO. Using a polling sttategy, the software component can be designed to perfonn
pre-meditated transfers from the hardware comp)nents based on its data ~uirements. This ~uires
static scheduling of the hardware comp)nent In cases w~ the software functionality is communication
limited, that is, the processor is busy-waiting for an input-output operation most of the time, such a sche~
would be sufficient Further, in absence of any unbouooed-delay operations, the software component in
this scheme can be simplified to a single program d1read and a single data channel since all data transfers
are serialized. However, this would not suPP<X1 any branching, no reordering of data arrivals since
dynamic scheduling of operations in hardware would not be supported.

In order to accommodate different rates of execution of the hardware and software components, and
due to unbouooed delay operations, we look f(X' a dynamic sc~uJjng of different threads of execution.
Such a sc~uling is done based on availability of data. One mechanism perform such scheduling is by
means of a conttol FIFO mentioned in the previous section which attempts to enforce the p)licy that data
items are consumed in the order in which d1ey are produced. The hardware-software interface consists
of data queues on each channel and a (conttol) FIFO that ooIds the identifiers for the enabled program
threads in the order in which ~ input data arrives. The conttol FIFO depth is sizOO widl the number
of threads of execution, since a thread execution is stalled pending availability of the ~uested data.
Example 7 below describes die hardware-software interf~

Example 7: Hardware-Software Inlerf~.

Figure 4 shows schematic conn~tion of the FIfO control signals for a smp data queue. In this
example. the data queue is nle8ory .apped at ac:k2ress Oxeec:xX> while the data queue request signal
is identified by bit 0 of address Oxee004 and enable from the microprocessor (up_en) is generated
from bit 0 of address Oxee008.

The control logic need~ f(X' generation of the enq~ue is described by a simple slate transition diagram
shown in Fi~ S. The control FIfO is ready to enqu~ (indicated by gn = 1) a (X'occss id if
the corresponding data request (q.:rq) is high and the process bas enabled the thread for ex~ution
(up_en). Signal up-ab indicates completion of a conuol FIfO read operation by the (X'ocessot.
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Figure 4: Control FIFO schematic

.
In case of multiple indegree queues, the enqueue-rq is generated by OR-ing the r~uests of all
inputs to the queues. In case of multiple-outdegree queues, the signal dequeue-rq is generated also
by OR-ing all dequeue requests from the queue. CJ

The control FIFO and associated control logic can be implemented either in hardware as a part of the
ASIC component or in software. In case the control FIFO is implemented in software the FIFO control
logic is no longer n~ed since the control flow is already in software. In this case. the q-rq lines
from data queues are connected to processor un vectored interrupt lines. where the respective interrupt
service routines are used to enqueue the thread identifier tags into ~ control FIFO. During ~ enqueue
operations the interrupts are disabled in order to preserve integrity of ~ software control flow.

The hardware-software interface protocol is described using guarded commands as shown in the
Example 8 below.

Example 8: S~iftcation of the control FR> based on two threads of execution.

queue [2J controlFlFO [lJ;

queue [16J line_queue [lJ, circle_queue [lJ

when «line_queue.dequeue_rq+ . I line_queue. empty) . !controIFIFO. full) do
controlFIFO enqueue 12;
when «circle_queue.dequeue_rq+ . !circle_dequeue..-pty) . !controIFIFO. full
do controlFIFO enqueue 11;
when (controIFIFO.dequeue_rq+ . !controIFIFO.empty) do controlFIFO dequeue
dlx.OxffOOO[1:0);

In this example. two data queues with 16 bits of width and I bit of depth. line...queue and
circle_queue. and one queue with 2 bits of width am I bit of depth controlFIFO are de-
clared. The guarded commands sp«ify the conditions on which the number I or the number 2 are
enqueued - here. a '+' after a signal name means a positive edge and a '.' after the signal means a neg-
ative edge. The first when condition states that when a dequeue request for the queue 1 ine_queue
comes and this queue is not empty and the queue controlFIFO is not full. then enqueue the value
2 (representing identifier for a corresponding program thread that consumes data from (be line queue)
into the controlFIFO. CJ
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Figure 5: FIFO control sure transition diagram

6 Results

In order to illustrate the effect of software and hardware-software interface implementation. we present
design of a graphics controller dlat outputs pixel coordinates for lines and circles given the end coordinates
(and radius in case of circle). The final implementation of tre system design consists of line and
circle drawing routines in dle software component while dle ASIC hardware performs initial coordinate
generation and coordinate transfer to the video ram. The software component consists of two threads
of execution corresponding to the line and circle drawing routines. Both program threads generate
coordinates that are used by the dalicatOO hardware. The data-driven dynamic scheduling of program
threads is achieved through the use of a 3-deep control FIFO. The circle and line drawing program
~s are identified by id numbers 1 and 2 respectively. The program threads are implemented using
the coroutine scheme described in Section 4. E~ple 9 shows the main program in case of a hardware
control FIFO implementation. Like the line and circle drawing routines. this program is compiled using

existing C-compiler.
Example 9: Main fKogram of the graphics controller software component

.include " transfer_to. h"

int lastPC(MAXCOROUTINES) = {acheduler, circle, line, .-in};
int current = MAIN;

int * controlFIFO_out . (int *) OxaaOOOO;
int *controlFIFO = (lnt *) OxabOOOO;
lnt *controlFIFO_outak = (int *) OxacOOOO;

linclude'line.c'
I include 'circle.c'

void Jlain() (

reswae ( SCHEDULER) ;

int nextCoroutine;

void scheduler() (
resume (LINE) ;

resume (CIRCLE) ;

while ( !RES~) (

do(
nexCCorouCine = .conCrolFIFO;

} while «nexcCoroucine ~ Ox4) 1= Ox4);
resu.e(nexcCorouCine ~ Ox3); } }

0
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Table 1: A comparison of control FIFO lmplementaJion schemes

Table I compares the perfonnance of different program implementations using control AFO either in
hardware or in software component The hardware implementation of a control FIFO with a fanin of
3, when synthesized by program Hebe and mapped to LSI 10K library of gates using program Ceres,
costs 228 gates. An equivalent software implementation adds 388 bytes to the overall program size of
the software component Note that the cost of hardware control FIFO increases as the number of data
queues increases. On the other hand, software implementation of control FIFO using intemlpt routines
to perfonn the control FIFO enqueue operations offers lower implementation cost for a 50% increase
in the thread latencies. In case of software implementation of control FIFO, the enqueue and dequeue
operations are described in C which are then compiled for DLX assembly. The overhead due to enqueue
and dequeue operations is reduced further by manually optimizing the assembly code for enqueue and
dequeue operations as indicated by the entry .Opt. Software CFIFO'. This one-time optimization of
enqueue and dequeue routines, which does not affect the C-code description of the program threads,
leads to a reduction in the program size and program thread overhead to 29.4% thereby improving the
rate at which the data is output Note that data input and output rates have been expressed in terms of
number of cycles it takes to input or output a coordinate. Due to the data-dependent behavior of program
threads, the actual data input and output rates would vary with respect to value of the input data. In
this example simulation, the input rate has been expressed for a simultaneous drawing of a line and 5
pixel radius with width of I pixel each and ~ results are accurate to one pixel. An input rate of 81
cycles/coordinate corresponds to approx.imately 0.25 million samples/sec for a processor running at 20
MHz. Similarly, a peak circle output rate of 30 cycles/coordinate corresponds to a rate of 0.67 million
samples/sec. An implementation of line and circle drawing program threads for the graphics controller
example using Inter-thread buffering and I/O timers mentioned in Section 2, comes to a total program
size of 5788 b~ for a 62% overhead delay per program thread.

Though instructive, the line and circle drawing algorithms are simple enough that their software
implementation do not fully exploit the potential of a mixed implementation. However, a more computa-
tionally intensive operation like spline generation or operations involving floating point arithmetic would
greatly benefit by their program implementations. As an example of complex system design, we present
design of an ethernet-based network co-processor. This processor is modeled as a set of 13 concurrently
executing processes which interact with each other by means of 24 send and 40 receive operations. The
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Emmple Program implementation Program size Max delay
bytes cycles

Graphics controller Coroutines. Hardware CFIFO 5972 806. 859
Network coprocessor Desc. by cases. Hardware CFIFO 8572 56

Table 2: SoJtware component for system examples

total HardwareC description consists of 1036 lines of code. A mixed implementation using a single pro-
gram containing 17 cases using the method of description by cases for the software component takes 8572
bytes of program and data storage but it reduces the overall cost of the application-specific component
by 23% from 10882 gates to 8394 gates using LSllogic 10K library of gates. The mixed implemen-
tation delegates much of execution unit and operations relating to frame assembly and dis-assembly to
a software component The mixed implementation meets the imposed performance requirements like
maximum propagation delay of 46.4 JLs, maximum jam time of 4.8 JLs, minimum interframe spacing of
67.2 JLS and input bit-rare for a 10 Mb/sec operation using ethernet protocol. Table 2 lists characteristics
of the software component for the graphics controller and the network co-processor.

7 Summary and Conclusions

Presence of re-programmable processors in wget architectures promises a practical approach towards re-
alizing complex system designs without associated increase in the cost of application-specific components
required to implement the system functionality. Existing software compilers and presence of hardware
special-purpose units like floating point. vector and graphics processing on-board the re-programmable
component makes it possible specify system functionality using operations like real and floating-point op-
erations. Where possible, such operations can be delegated to the software component without incurring
the cost of implementing these functions in the application-specific hardware components.

Synthesis of systems containing both general-purpose re-programmable as well as application-specific
components can be formulated as a hardware-software co-design problem due to two predominantly
different computation models used by the system components. Software component design for such
systems poses interesting problems due to inherently serial nature of program execution that must interact
widl concurrently operating hardware components. In our approach to system synthesis, the software
component is implemented as a set of program routines, called thr~s. Concurrency between program
threads, achieved by inter-leaved execution of threads, preserves concurrency inherent in die system
model. Further, dynamic scheduling of fixed latency threads avoids unnecessary serialization of operations
in a graph model for generation of the software component

The program routines corresponding to threads can be implemented as subroutines or coroutines. A
coroutine implementation reduces overheads by treating all routines symmetrically, therefore, the context
information needed to be saved/restorOO is rOOuced. However, the necessity to embed control ftow into
the individual coroutines reduces this gain somewhat At the same time, the ability to do intelligent
dependency analysis on the system graph model can reduce this overhead. There is a tradeoff between
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when graph serialization is done and when program threads are generatOO. We construct program now
graphs that consist of potential threads as basic blocks based on points of synchronization in the system
graph model. A completely serialized graph model would loose the advantage of coroutine implementation
and may benefit by the subroutine implementation instead. However. the loss of all concurrency may
make eventual software component in feasible with respect to the imposed data-rate constraints.

We have proposed a scheme to achieve hardware-software synchronization. We have demonstratOO
feasibility of control AFO-based hardware-software synchronization schemes where the FIFO control can
be implemented either as a dedicatOO hardware or as a program. The software implementation of control
AFO reduces the size of hardware component of system design. but it increases program size and adds to
the latencies of program threads. This makes the input data rate about 15% slower in case of the graphics
controller example. Depending upon the objective of system synrresis ei~r of tre hardware and software
alternatives can be selected and simulated using program Poseidon. Generally. an implementation that
aims to rapidly prototype the system design would favor software component of the system design for a

small loss of performance.
Using the synchronization screme proposed. we are able to synthesize and simulate mixed system

designs. As example. we have presented designs of a graphics controller and a network coprocessor that
employ software components to achieve part of rre system functionality.

Even with the simplifying assumptions relating to the target architecture. tre problems of accurately
characterizing software component and its synthesis are challenging problems. This work takes a first
step in solving the problem of system software synthesis. Work is in progress to extend the model to
include the effects of hierarchical memory schemes and reduction of communication overheads by using

channel sharing and data encoding schemes.
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