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Abstract

This paper presents a heuristic approach to the module selection problem in
high-level synthesis. In contrast to the common assumption made by most
high-level synthesis systems, which consider one available resource for each
type of operation, we assume that several resources with different delays and
areas are available in a functional-block library. The proposed algorithm
solves the scheduling, resource sharing and module selection problems at
the same time to achieve a circuit structure with near minimal area under a
given overall latency constraint. Following the presentation of the algorithm,
experimental results are reported.

1 Introduction

Most work in high-level synwcsis addressed the scheduling and module
binding problems [1]. When considered together, these problems are com-
putationally hard and heuristic approaches have been proposed to solve them.
It is a common assumption that one functional block can implement a given
type of operation. For example, multiply operations would be bound to one
specific hardware multiplier.

Module selection is the problem of choosing a particular functional unit
from a library of components for each operation. The component library
contains different alternative implementations for each resource type, that
are characterized by different area and delay estimates. As an example,
different hardware multipliers (e.g. parallel, iterative, ... ), with different
area and speed, can be chosen in the search for the best implementation.
Module selection was originally considered by Leive [2], who proposed a
method to decide how abstract structures could be implemented by hardware
resources in a database.

Ideally, module selection, scheduling and binding should be solved con-
currently. Because of their complexity, these problems have been tackled
separately by using heuristic algorithms in existing high-level synthesis sys-
tems.

This paper proposes a new module selection algorithm for high-level syn-
thesis. The algorithm combines module selection with scheduling and re-
source sharing. We model hardware behavior as a hypergraph [3]. We
propose a heuristic algorithm, that has been successfully implemented in
program MSSR. We also present some experimental results for standard
benchmarks to show the effectiveness of the algorithm.

2 Problem formulation

We model hardware behavior as a hypergraph H(V,E,S), where the vertex
set V={v} represents the operations, the directed edge set E={e} (ordered
vertex pairs) represents the dependencies and the hyperedge set S={s} (
unordered subsets of " ) represents the sharing of hardware among opera-
tions. We denote by vg and vy the vertices corresponding to the first and last
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operation to be performed. We assume that the directed edges do not form
cycles. The hyperedge set S forms a partition of |/, i.e. we assume that
operation-groups sharing a resource do not overlap and that each operation
that is not shared is represented by an hyperedge as well, consisting only of
the corresponding vertex. Hence:

Us:lr’ Simsjzw(i;éj)

A resource sharing configuration is defined by the set .5 and by a correspond-
ing set of edges that represent the serialization of the operations bound to
the shared resources. We indicate by So the configuration with no shared
resources. Note that each set s; in Sy includes one and only one v; € V" as
element.

We assume to be given a resource set R={r} as a functional-block library.
For each resource r, its delay-cost delay(r) and its area-cost area(r) are
specified. The delay is a positive integer, corresponding to number of cycles
needed to execute the operation. Each vertex and resource have a type(r),
such as add, multiply and subtract, representing the kind of operations. We
assume that, for each resource r, dclay(r) is lower than the delay of any other
resource with the same type and inferior area, i.e. if delay(r,) < delay(ry)
and type(r,) = type(ry) then area{r,) > area(r;). Vertices having the
same type can share one resource with that type to execute the operation.
A trivial resource set Iy is a resource set which has only one resource for
each type.

Given a resource sharing configuration .5, a module selection is a mapping
jt© S — R associating one library element to each hyperedge. The overall
area-cost is the sum of the area-cost of resources mapped to the hyperedges.

Given a resource sharing configuration 5, a schedule is an integer labeling
¢ 1V — Z%, such that o(v;) > @(v;) + delay(r) (v = p(s),v; € s) if
there is an edge (v;,v;) € K, where (1) = 0. We call A = ¢(uy) the
latency of the hypergraph. We assume that the overall latency A has a given
upper bound A, We also define the earliest starting time ¢(v) and the latest
starting time {(¢) for each v € 1" as the minimum and maximum values
of ¢(r) subject to the latency bound. Most work in high-level synthesis
addressed the scheduling and resource sharing problems for trivial resource
sets, that in this framework can be characterized as follows:

lsl=1.

Given a hypergraph H(VE,S), a trivial resource set R and a maximum
latency ), find a set S and a schedule  : V' — Zt, with o(vy) < A, that
minimize the overall area.

Given a resource sharing configuration, the module selection problem can
be stated as follows:

Given a hypergraph 11(1', ', S), a resource set R and a maximum latency
find a mapping jt : S — R and a schedule p : V' — Z 7%, with ¢(vn) <
that minimize the overall area.

X
X,

We consider in this paper a combination of the two problems, ie. we
consider the module selection problem together with scheduling and resource
sharing:
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Given a hypergraph H (V, E, So), a resource set R and a maximum latency
X, find a set S, a mapping i : S — R and a schedule ¢ : V' — Z+, with
¢p(vn) < A, that minimize the overall area.

3 The algorithm

Since the problem we want to solve is computationally hard, we use a heuris-
tic approach. Our algorithm is based on iterative improvement. We repeat
the following steps. First we compute a resource sharing configuration. For
this configuration, we compute the best module selection, i.e. a module se-
lection with the minimal overall area, such that the corresponding schedule
does not violate the latency constraint. Then a new resource sharing config-
uration is tried by merging two hyperedges. These two steps are repeated
until no improvement in the solution is found.

The algorithm consists of three procedures INITRS, OPTSHR and OPTSLT
which are invoked and controlled by procedure MAIN.

o INITRS determines the initial hyperedge set. First we assume to be
given a dependency graph with no resource sharing. For every type of
vertices in the graph, the procedure finds iteratively a directed path in
the graph that includes a maximal number of vertices with the ype to
make an initial hyperedge set S. The initial hyperedge set represents
the initial resource sharing for the problem. The overall latency A does
not increase by the initial resource sharing because every vertex sharing
one resource is already serialized by being on a directed path.

OPTSHR chooses two hyperedges and merges them to make a new
hyperedge. A distribution graph, as proposed by Paulin [4], is used to
determine a schedule for vertices in the two hyperedges. To specify a
new resource sharing represented by the new hyperedge, some directed
edges may have to be added to the edge set E. For example let us
consider a dependency graph shown in figure 1. The current hyperedge
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Figure 1: Merging two hyperedges.

setis S = {s1,52.53}, where s; = {vs,v6},52 = {va2,v4, 5,09} and
s3 = {vs3,v7}. If two hyperedges, s, and s3 are chosen to be merged
and a schedule ¢(v3) < p(v2) < ¢(vs) < @(v7) < p(rs) < p(vg) has
been obtained by using a distribution graph, three edges (v3, v2), (4, v7)
and (v7,vg) will be added to E to make a new edge set [, .y

OPTSLT selects appropriate resources in the library to be mapped to
each hyperedge. The procedure is based on the longest path algorithm.
Starting from a mapping with the largest resource for each fype, the
procedure finds iteratively a smaller area resource to be mapped to a
hyperedge. The selected resource is the largest among those that are
smaller than the current one. Therefore the overall area decreases at the
expense of increased latency. For each new mapping, the overall latency
Atemp iS computed by using the longest path algorithm to check whether
the given latency constraint is satisfied. If A, is less than or equal
to X, the new mapping is accepted as a better solution, otherwise the
mapping is rejected and the procedure no longer tries to map a smaller

resource to the hyperedge. When there are no smaller resources that
can be mapped, the procedure returns a new mapping y and flay = 1
if it has found a mapping with a smaller overall area. Otherwise it
retums flag = 0.

e MAIN calls first INITRS and OPTSLT. Then it invokes iteratively pro-
cedures OPTSHR and OPTSLT until a smaller area solution under the
overall latency constraint is found.

The algorithm can also solve the scheduling and resource sharing prob-
tems for a trivial resource sets and the module selection problem stated in the
previous section, respectively. The complexity of procedures INITRS, OPT-
SHR and OPTSLT is O(|V|(|V] + |E])), O(A|V [?) and O(IR(|V] + 1E1)),
respectively.

4 Implementation and experimental results

The algorithm has been implemented in program MSSR, that is written in
the C programming language. The program reads a dependency graph (SIF)
generated by program Hercules [5], a functional block library and a maxi-
mum latency A. MSSR generates a schedule, a resource sharing configuration
and a module selection that minimize the overall area.

Program MSSR was tested on a number of examples. Three sets of ex-
perimental results, based on benchmarks used in the literature, are presented
here. For each example, two kinds of experimental results will be shown.
The first result is obtained by using the same assumptions as in the origi-
nal references, i.e. by using a trivial resource set as the library. Thus, the
output of algorithm OPTSHR can be compared with those obtained by other
systems. The second result is obtained by using a resource set which has
several functional blocks, and it shows the performance of program MSSR.
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Figure 3: Dependency graph for the differential equation example.

A. Digital Elliptic Filter Example

The first example is taken from Kung’s book on signal processing [6] and
it was chosen as a benchmark for the 1988 High-Level Synthesis Workshop.
This is a practical example which contains 26 add operations and 8 multiply
operations. Figure 2 shows a dependency graph for this example.

Table 1 compares the results reported in the literature [4] [7] [8] with
MSSR. We use a trivial tesource set, which includes one adder and one
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Figure 4: Dependency graph for the Facet example.

A A | Area Adders Multipliers
14 14 576 addl x 4 mpyl x 2
15 15 304 addl x 3 mpyl x 1
16 16 | 293 [addl x 2,add2 x 1 | mpyl x.1
18 18 288 addl x 2 mpyl x1
30 27 | 272 addl x 1 mpyl x 1
60 60 176 addl x 3 mpy2 x 4
70 70 144 addl x 1 mpy2 X 4
100 93 80 addl x 1 mpy2 x 2
160 | 156 | 37 add2 x 1 mpy2 x 1
300 | 288 | 36 add3 x 2 mpy2 x 1
450 | 448 | 34 add3 x 1 mpy2 x 1
1050 | 1040 | 12 add3 x 2 mpy3 x 4

Table 2: Digital elliptic filter with various resources.

Systems | FDS | FDLS | MSSR |
C FDS | FDLS PBS | ALPS | MSSK | 3 = n =
% 17182117 182117 [18[21[17[18[21[17]18]21 FofALUA | 2 2 3
#add | 3 | 3 | 2 |3 212 |3[2]2]3}|2]2)j3[2]2 FofALUD | 2 7 2
¥mul | 3 |2 |1 |3 |21 |32 |1 [3}12[t1[3]2]T1

Table 1: Digital elliptic filter with a trivial resource set.

multiplier. The delay of the adder and the multiplier are 1 and 2 respectively,
to be compatible with the results achieved in other systems. The second
row of Table 1 indicates the given maximum latencies . The third and
the fourth row show the number of resources used to synthesize the circuit.
MSSR solves the problem with the minimal number of adders and multipliers
for each X,

Table 2 shows an experimental result obtained by using several functional
blocks. We assume the following resource set:

adder:
addl: delay(addl) = 1, area(addl) = 16
add2: delay(add2) = 4, area(add2) = 5
add3: delay(add3) = 16, arca(add3) = 2

multiplier:
mpyl: delay(mpyl) = 1, area(mpyl) = 256
mpy2: delay(mpy2) = 16, area(mpy2) = 32
mpy3: delay(mpy3) = 256, area(mpy3) = 2

We assume a 16 bits word length for each operation. The different opera-
tion types correspond to a parallel, serial/parallel and a serial implementation
respectively. The area of each resource is estimated by the number of full
adders and flip—flops used in the resource.

Program MSSR was executed with several values of X. The module se-
lection results are shown in Table 2. The first column of Table 2 shows X.
The second and the third column show the computed overall time ) and the
overall area, respectively. The last two columns show the resources used.

B. Differential Equation Example

This example is taken from a paper describing HAL system [4]. The ex-
ample is a circuit to solve a differential equation and it includes six multiply
operations, two add operations, two subtract operations and one compare
operation in the dependency graph, as shown in figure 3.

Table 3 shows a result obtained by MSSR with a trivial resource set and
the results achieved by HAL. We assume two ALUs, ALU_a and ALU.b, as
functional blocks. ALU.a can execute add, subtract and compare operations,
while ALU_b can execute a multiply operation. Both resources have delay
=1.

Table 4 shows the results obtained by using several functional blocks. We
assume the following resource set:

ALU _a( add, sub and compare ):

alu_al: delay(alual) = 1, area(alu_al) = 24
alua2: delay(alu.a2) = 4, area(alu.a2) =7
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Table 3: Differential equation with a trivial resource set.

alua3: delay(alu_a3) = 16, area(alu_a3) =3

ALU_b( multiply ):

alu_bl: delay(alu_bl) = 1, area(alu_bl) = 256
alu_b2: delay(alu_b2) = 16, area(alu_b2) = 32
alu_b3: delay(alu_b3) = 256, area(alu_b3) = 2

C. Facet example
This example is taken from

[9].

It includes three add operations, one

subtract operation, one multiply operation, one divide operation, one logical
and (&) and one logical or (|) operation. Figure 4 shows a dependency
graph for the example.

Table 5 shows the experimental results with a frivial resource set as a
library. It compares our result with those obtained by other synthesis systems
[9] [10] [11]. The library has three ALUs, ALUI, ALU2 and ALU3 . Each
of the ALU resources has delay = 1.

Table 6 shows the results obtained by using several functional blocks. We

assume the following three types of ALUs.

ALU_a( add and sub ):

alu_al: delay(alu_al) = 1, area(alu_al) = 20
alu_a2: delay(alu_a2) = 4, area(alua2) = 6
alu_a3: delay(alu.a3) = 16, area(alu_a3) =2

ALU_b( muitiply and divide ):

alu_bl: delay(alu_bl) = 1, area(alu_bl) = 384
alu b2: delay(alu_b2) = 16, area(alu_b2) = 48
alu.b3: delay(alu_b3) = 256, area(alu_b3) =3

[ Y] X [Area] ALUa ALUb
4 4 560 [alual x 2 |alubl x2
5 5 536 |alual x 1| alubl x2
7 7 280 |alual x 1 {alubl x1
12 12 1 270 {alua2 x 2 | alubl x1
20 | 20 | 263 |alua2 x 1 | alubl x1
40 | 40 | 110 | alua2 x 2 | alub2 x 3
60 | 60 7V |alua2 x 1| alub2 x2
100 [ 100 [ 39 |alua2 x 1 |alub2 x1
5201520 | 15 jalua2 x1 | alub3d x4

Table 4: Differential equation with various resources.



Systems | Facet | Splicer | ADPS MSSR
A 4 4 4 4
ALUL |+, %1 | +*] +, | +, |
A2 |+ &+ & |+ &|+ - &

ALU3 / / *, *,

Table 5: Facet example with a trivial resource set.

A A | Area ALU.Aa ALU.b ALUCc

4 4 428 | alual x 2 |alubl x 1 |alucl x2
5 5 406 [alual x 1 |alubl x1 |alucl x1
7 7 405 |alual x 1 |[alubl x1 {aluc2 x1
14 | 14 | 397 |alua2 x2 | alubl x1 {aluc2 x 1
18 18 | 391 |alua2 x 1 |alubl x1 |aluc?2 x 1
19 | 19 | 120 |alual x 1 |alub2 x2 |alucl x 2
20 | 20 | 118 |alual x 1 |alub2 x2 {aluc2 X2
22 | 22 | 117 |alual x 1 | alub2 x2 |aluc2 x 1
28 | 28 | 103 [alual x2 | alub2 x2 |aluc2 x 1
34 | 34 70 [alual x1jalub2 x1 |aucl x1
38 38 55 |alua2 x1 |alub2 x1 |aluc2 x 1
52 | 52 53 |alua3 x2|alub2 x1 |aluc2 x1
66 | 66 51 |alua3 x1|alub2 x1 |aluc2 x1
259 {259 | 30 |alual x1{alub3l x2 |alucl x2
260 1260 | 28 |alual x 1 jalubl x2 |aluc2 x 2
262 {262 | 27 {alual x1jalub3l x2 |aluc2 x1
268 {268 | 13 lalua2 x 1 |alubl x2 |auc2 x1
292 | 292 9 alual x 1 |alub3 x2 |aluc2 x 1
529 | 529 7 aluad x 1 |alub3 x1 |alucl x 1
530 | 530 6 |alual x1|alub3 x1laluc2 x1

Table 6: Facet example with various resources.

ALUc( & and | ):
alucl: delay(alu_cl) = 1, area(alucl) =2
alu_c2: delay(aluc?) = 2, area(aluc2) = 1

Table 7 shows average CPU run times to obtain each result for the exam-
ples. CPU run times are reported in seconds while running on DecStation
3100 with 16MBytes of memory. Figure S shows delay/area curves repre-
senting experimental results shown in Table 2, Table 4 and Table 6.

5 Summary

We have formulated the problem of module selection with scheduling and
tesource sharing by using a hypergraph model. We have proposed a heuristic,
polynomial-time algorithm that has been implemented in program MSSR.
Experimental results show that MSSR can perform optimal scheduling and
resource sharing on several recent benchmarks with a trivial resource set.
Moreover, the program can provide a spectrum of solutions with an efficient
area/delay trade-off, when different functional blocks for each operation are
given as a resource set. Further research will be devoted to investigate an
extension of the algorithm to incorporate interconnection and storage costs.

[ Example A Example B. | Example C |
| trivial | various | trivial | various | trivial | various |
[CPU® ] 72 | 95 [<01] 05 [<01] 01 |

Table 7: CPU mn times for the examples.
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