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Abstract

We present a new approach for performing technology mapping onto
Field Programmable Gate Arrays (FPGAs). We consider one class
of FPGAs, based on two-output five-input RAM-based cells, that
are used to implement combinational logic functions. We describe a
heuristic algorithm for technology mapping that performs a decompo-
sition of the circuit in the FPGA primitives, driven by the information
on logic functional sharing. We have implemented the algorithm in
the program Hydra. Experimental results shows an average of 20 %
to 25 % improvement over other existing programs in mapping area
and 67-fold speedup in computing time.

1 Introduction

There has been an increasing interest in digital-system prototyping
using Field Programmable Gate Arrays (FPGAs) due to their fast
turn-around time and low manufacturing costs. One class of FPGAs
uses a RAM-based architecture, where logic blocks in the form of
look-up tables are used to implement combinational logic. The ad-
vantage of this architecture is that a logic block can perform any
combinational function of its inputs.

System design with FPGAs requires specific logic design tools. In
particular, technology mapping is crucial for achieving an efficient
implementation. Technology mapping is the process of transforming
a set of logic equations into an interconnection of parts that are in-
stances of the elements in a given library. In the case of FPGAs, the
“library” consists of the set of combinational logic equations satisfy-
ing constraints on the number of 1/Os and their dependencies. Since
this set is large and since it can be expressed more conveniently by
the constraints than by enumeration, no specific library representation
is used.

Existing approaches to technology mapping include algorithms and
tools that support an explicit library definition, such as Mis/I [3} and
Ceres {7]. These tools are inefficient for FPGAs because they require
an explicit library representation. Technology mapping algorithms
for cell generators [2] were developed to be used in conjunction with
module generators that could synthesize combinational logic gates
under some technology constraints. They can be used for single-
output FPGAs, but they cannot exploit the multiple-output feature of
some FPGAs.

Recently, several specific mappers for RAM-based FPGAs have
been developed in addition to the proprietary Xilinx XNFOPT (10}
mapper. Mapping of FPGAs with emphasis on placement and routing
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is described in {1] and is implemented in the ASYL system. Other
mappers which target the reduction of area include Chortle 5], which
uses a dynamic programming approach for mapping table look-up
architectures. The Chortle approach was shown to be consistently
better than the one in Misl! for look-up tables with fan-in of 3, where a
“library” could be generated exhaustively. This algorithm is limited to
single-output lookup tables; however, the approach has been recently
extended in Chortle-crf [9]. The algorithm of Chortle-crf performs
technology mapping for single-output functions in a first phase, and
later it attempts to merge functions into multi-output blocks. Another
mapper for RAM-based architecture is Mis-PGA [8]. This algorithm
also focuses on single-output cells first, and then considers merging.

This paper describes a new two-output RAM-based technology
mapper called Hydra, which maps combinational logic networks to
FPGAs, such as the Xilinx 3000 Gate Array Architecture [11]. This
approach differs from the others mentioned in that multiple-outputs
are considered early in the mapping process. Experimental results
show that this choice correlates to superior results. Presently, Hydra
is constrained to combinational circuits, and is aimed to minimize
mapping area. The target architecture being considered consists of
an array of Configurable Logic Blocks (CLBs). At present, the largest
gate array in the Xilinx 3000 family supports 320 CLBs. A CLB is
a RAM-based cell that can implement one of the following:

¢ Any single-output logic function of up to five input variables.

* Any two-output logic function of up to five input variables, with
each output depending on at most four input variables.

The technology mapping problem can be divided into two phases:

1. Feasible mapping. Map a combinational logic network into an

interconnection of CLBs satisfying the above constraints.

. Optimal mapping. Minimize the number of CLBs in a feasible
mapping.

Effectiveness of the second phase is heavily influenced by the ac-
tions of the first phase. The first phase attempts to produce expression
pairs which can later be merged into one CLB.

The rest of the paper is organized as follows. A detailed descrip-
tion of the mapping algorithms is given in Section 2. In Section 3,
experimental results are presented and compared to those obtained
by Mis-PGA and ASYL. Extensions and future directions are then
presented.



2 The Mapping Algorithm

Combinational circuits are modeled by a directed acyclic graph called
a Boolean network [3). Vertices in the Boolean network represent
logic functions, and edges rep: the dependencies among them.
The direction of the edges of the network is from primary inputs
to primary outputs. Given vertices v; and v;, v; is a predecessor
(successor) of v; if there exists a directed edge from (to) v; to (from)
v 'j

For each vertex r; in the Boolean network there is an associated
variable and a function f(S;), where S; is the support of f; (i.e. S;
is the set of variables corresponding to the predecessors of ;).

Technology mapping for FPGAs is based on repetitive decompo-
sition of logic functions to achieve feasibility. In general, a decom-
position of a function f with support S can be written as follows:

f=9(h(5"),58) where S, S8 C S and SAUSE =5
I in addition, 54 N S8 = 0, then g.is a simple-disjoint
decomposition of f [4] [6].

A simple-disjoint decomposition is attractive because it allows a
function to be decomposed very efficiently. When the function / is
decomposed into functions /: and g as shown above, the combined
support for the two functions has cardinality |5 4| + |57| + 1. This is
a minimum when $ N $7 = @ (i.e. the decomposition is disjoint).

The guiding principle in the technology mapping algorithm pre-
sented here is to use the disjoint decompositions in conjunction with
a method that tries to exploit the use of both CLB outputs. Therefore
special attention is paid to function pairs having common support
variables.

Figure 1: Example of CLB Mapping Using Shared Inputs

Consider the example network shown in Figure 1. The vertices
x and y have a combined total of 7 predecessors, 4 of which are
common to both. If f, and f, were decomposed independently, then
at least 3 CLBs would normally be required because the support
of f, is greater than five. However, by considering the common
predecessors, it is possible to map the network into 2 CLBs, provided
an appropriate disjoint decomposition can be found for both f, and
J, as shown in the figure.

535

Figure 2: Block Diagram of Hydra's Mapping Steps

The mapping algorithm can be summarized as the following two
tasks. First, a feasible mapping is found by using two decomposi-
tion techniques, the simple-disjoint and the AND-OR decompositions.
Simple-disjoint decompositions are the most desirable. They are ap-
plied to function pairs to extract common predecessors, as described
in detail later. Unfortunately, simple-disjoint decompositions may
not be sufficient for generating a feasible network. Repetitive appli-
cation of the AND-OR decomposition yields feasible networks, but
it does not exploit logic functional sharing. Since the latter decom-
position technigue is much faster than the former, it is applied twice.
In the preprocessing stage, the AND-OR decomposition splits func-
tions with large support to make the simple-disjoint decomposition
more efficient. AND-OR decomposition is applied again after the
simple-disjoint decomposition to insure feasibility of the network.

The second task is the search for an optimal mapping. A greedy
heuristic algorithm is used to match the vestices of the feasible net-
work to CLBs. A cost function based on the CLB’s number of shared
inputs and input utilization is used to determine the best merging can-
didate for a given vertex. A block diagram-of the mapping steps is
presented in Figure 2.

We now describe the steps of technology mapping in more detail.

2.1 Preprocessing

We assume that logic synthesis and optimization algorithms have been
applied to the network so that it is minimal in the number of literals.
An initial decomposition is performed to decompose functions at
vertices with in-degree larger than a given threshold. The input is
a Boolean network in AND/OR form. The result of this phase is
an equivalent Boolean network in which the in-degree of vertices
are bounded by the input limit specified by the user. The AND-OR
decomposition, described in Section 2.4, is used for this step.

2.2 Construction of Shared-input Griph

It has been observed that in a Boolean network a large number of
vertices have common predecessors. This is particularly true of net-
works that have been optimized using kerneling techniques [3]. These
hared-input relationships are used to drive the simple-disjoint de-




composition. This information is represented by a weighted graph
G(V, E,11"). The vertex set |’ corresponds to the one in the Boolean
network. For each pair of vertices v;, »; € V that have common
predecessors, there is a corresponding edge ¢;; € E with a weight
w;j € W, where w;; is the number of common predecessors. This
graph is constructed by traversing the Boolean network using an al-
gorithm with complexity O(3), where n is number of vertices.

2.3 Simple-Disjoint Decomposition

Each edge ¢;; € £ of the shared-input graph is traversed to check for
simple-disjoint decompositions into functions with support common
to both v; and r;. The edges with the highest weight are traversed
first so that decompositions with a high degree of sharing are found.
Once a disjoint decomposition is found, a cost function is used to
decide whether or not to accept it. The cost is based on the number
of shared inputs used as well as the overall number of inputs in the
extracted functions.

The algorithm is based on the notion of residues presented in [6].
Assume that we search for a disjoint decomposition

S(S)=g(h(54).5B) with $'nSB =9

Let 1?5 be the set of residues of / obtained by replacing the variables
in 57 by constants. The function J has a simple-disjoint decompo-
sition g if and only if (Vr € R®) r € {0.1,h(54),h'(54)} [6]. By
testing each residue r, it can be determined whether or not ¢ is a
valid decomposition of f.

Checking a residue is exponential in |$5|. Since the number of
different sets 5! is factorial in n = | |, the overall complexity of
checking for every possible disjoint decomposition of / has com-
plexity O(n12"). It is important to remark that n is small because of
the preprocessing step, which limits the fan-in of the vertices. Fur-
thermore, far less than all possible combinations need to be checked,
because only pairs of decompositions having shared support are con-
sidered.

2.4 AND-OR Decomposition

After the simple-disjoint decomposition is applied to the network, the
AND-OR decomposition is used to decompose the remaining infea-
sible vertices. Functions are represented by Boolean factored forms
(including sum of product representations) {3], and can be described
by trees, as shown in Figure 4.

A heuristic approach that performs a post-order traversal of the
equation tree is used. At each vertex of the tree the algorithm de-
scribed in Figure 3 is applied.

while (support of predecessors > limnif) do
find group of predecessors with combined support < limit
combine these into a new vertex in the Boolean network

replace predecessors with the new vertex
end while

Figure 3: AND-OR Decomposition Heuristic

It is always possible to find a combination of predecessors that
have a combined support of no more than {imit. This is insured by
use of a post-order traversal of the equation tree.

X=[fa+bj(abc)(d+e+f(gh)(d+e)f

Figure 4: Equation Tree for a Vertex of the Boolean Network

Heuristics are used to select the best combination of predecessors
to combine. The following parameters are used to characterize a
particular combination.

o The size of overall support
¢ The maximum support of a single vertex
o The number of vertices in the combination

For example, the best combination (for /imil. = 5) of predecessors
for the vertex ¢, in Figure 4 is indicated by the shading. The corre-
sponding function (i.e. (@ + b)(abe)(gh)) is extracted and associated
to a new vertex of the Boolean network. The complexity of this al-
gorithm for each vertex is O(»2), where n is the cardinality of the
support of the function.

2.5 Local Elimination

At this point, a local elimination [3] of vertices is performed. Starting
from the primary inputs of the network, vertices with one or more
successors are tested to see if they can be eliminated into their succes-
sors. If the resulting vertices are still feasible, then the elimination
is performed. When a vertex has only one successor, elimination
is allowed if the in-degree of the resulting vertex satisfies an upper
bound of 5. When a vertex has multiple successors, the bound is
lowered to 4 to allow pairs of successor vertices to share a CLB.
This step reduces the number of vertices in the final implementation
and provides better utilization of CLB inputs.

2.6 Covering/Mapping

The covering step is performed last. Each vertex is compared with
every other vertex in the network. If two vertices can be merged into
one CLB, then a cost is calculated based on the following formula.

COST = a(sharcd_inpuls) + Bllotal _inpuis)

Different weights can be chosen to emphasize different mapping
preferences. For example, if one wants to map CLBs based on higher
shared-input usage, then a higher weight can be given to a. Similarly,
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if better utilization of CLB inputs is desired, then /J can be given a
higher weight. Better results have been obtained by placing emphasis
on shared inputs.

Vertices with in-degree equal to 5 are mapped first, because they
require one CLB. Then the following steps are iterated:

1. An unassigned vertex with maximal in-degree is selected;

2. A second unassigned vertex is chosen, so that the pair has the
highest cost;

3. The pair is assigned to a CLB.

Eveatually the vertices that cannot be paired to others are mapped to
a CLB. The complexity for the covering heuristic is O(n?2), where n
is number of vertices in the Boolean network.

Circuit Hydra | Mis-PGA | Difference | Time
10bitreg 10 10 0 0.2
10count 22 23 -1 05
180degc 22 21 1 05
3to8dmux 20 30 -10 0.6
4-16dec 10 12 -2 02
4cnt 12 17 -5 0.9
8bappreg 23 27 -4 0.6
8count 29 20 9 1.0
9bcsacl 28 34 -6 08
9bcasc2 27 29 -2 0.7
arbiter 22 21 1 0.6
S5xpl 21 23 -2 0.7
C499 51 50 1 1.9
Cs315 302 497 -195 154
apex6 159 191 -32 17
apex7 45 50 -5 1.0
duke2 80 105 -25 3.9
rd84 29 32 -3 1.1
rot 134 153 -19 6.4
vg2 21 21 0 05 |
Total 1067 1366 -299 452

Table 1: Mapping Results (Number of CLBs), input limit = 9

3 Implementation and Results

Hydra consists of about 2500 lines of C code, based on the Struc-
tural/Logic Intermediate Form (SLIF) framework {7]. Two sets of
benchmarks have been run. The first set is a series of industrial ex-
amples. The d is a set of selected files from the standard MCNC
benchmarks. All files have been logically optimized using the Misi/
standard script beforehand.

3.1 Analysis

In the first set, Hydra uses an input limit (i.e. the threshold for
preprocessing) of 9, « = 3 and 3 = 1. Results are compared against
those obtained from Mis-PGA (8] in Table 1. The run times (on a
DECstation 3100) listed in Table 1 range from less than 1 second for
most benchmarks to at most 16 seconds on the largest one. The total
run time of 45.2 seconds is compared to Mis-PGA’s total run time of
8163 seconds (On a VAX-8800). Taking the hardware performance
ratio ! into account, Hydra runs approximately 68 times faster. For

“The DECstation runs 24000 Dhrystones per second, while the VAX-8800 runs
9000 per second. This translates to a ratio of 2.67.

the benchmarks in Table 1 Hydra results in 22% fewer CLBs than
Mis-PGA. It should be noted, however, the C5315 benchmark places
a large bias on the overall resuit.

By specifying an input limit in the preprocessing step, we control
the granularity of the network. For circuits with highly connected
shared-input graphs (those with more sharing), such as C5315, the
input limit is used to reduce the computation time of finding disjoint
decompositions. In general the input limit for an optimal mapping is
different for every network. Although the results in Table 1 are not
the best mapping possible, they are not far from optimal. By varying
the input limit, it is possible to achieve an additional overall reduction
of 45 CLBs for the benchmarks in Table 1.

In the second set of results, additional MCNC benchmark circuits
are mapped. The best possible mappings are obtained by varying
the input limit. They are listed in Table 2. These results are com-
pared with Mis-PGA and ASYL, when their results are available. It
is observed that a lower input limit gives better results for small to
medium sized circuits. Hydra consistently gives better results than
Mis-PGA in larger circuits, while both mappers give comparable re-
sults for smaller circuits. For the benchmarks in Table 2, Hydra
results in 26% fewer CLBs than Mis-PGA. When compared to other
existing mappers on the same set of benchmarks, Hydra is 30% better
than XNFOPT and comparable in quality to Chortle-crf [9]. Selected
benchmark results have been verified by the logic simulator in Mer-
cury [7}.

Name || Hydra | Mis-PGA [ ASYL
|| CLBs | Time" | CLBs | Time" | CLBs

Sxpl 21 05 23 | 455 | 23

9sym 57 29 59 - -
9symml | 33 1.1 43 - -
C499 51 1.8 50 1375 -
C5315 299 23.0 497 3467 -
C880 71 9.0 82 - -
alu2 94 29 102 - -
alud 105 43
apex2 67 35 70 - -
apex6 131 359 191 1377 -
apex7 || 43 | 09 | s0o | 73| -
count 26 0.5 28 -
duke2 79 19 105 357.1 -

e64 47 0.7 61 - -
misexi 8 02 10 - 14

rd84 27 0.6 32 - -

ot 134 6.4 153 | 84438 -

vg2 20 03 21 25.6 21
z4ml 4 0.1 7 -

73 13 | o4 - - 23
misex2 | 20 | 04 - - 24
sa02 36 | 12 - -2 1 38

“DECstation 3100
bVAX-8800

Table 2: MCNC Benchmark Results

3.2 Comparison With Mis-PGA Approach

The main difference between the Hydra algorithm and FPGA mappers
that focus on mapping onc-output cells (such as Mis-PGA) is the way
in which multiple outputs are treated. For example, in Mis-PGA,
merging of functions to form muiti-output CLBs is performed as a
last step. Murgai [8] reports that merge improves Mis-PGA results
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[ Circuit | % Multi-Output | % Shared Inputs
10bitreg 100.0 0.0
10count 54.2 29.2
180degc 59.1 40.9

3to8dmux 68.0 76.2
4-16dec 100.0 100.0
4cnt 833 58.3
8bappreg 68.0 48.0
8count 81.5 59.3
9bcasc2 73.1 61.5
9bcsacl 74.1 51.8
arbiter 739 60.9
5xpl 54.5 68.2
C499 304 48.2
C5315 48.6 332
apex6 64.4 56.2
apex7 43.5 543
duke2 61.0 54.9
rd84 484 412
rot 61.8 48.5
vg2 348 348

Table 3: Percentage of Celis with Multi-outputs and Shared Inputs

by 5-15%. This means that the majority of the CLBs mapped by
Mis-PGA contain one output only. In Hydra, the mapping algorithm
is aimed at merging multiple outputs into one CLB. From Table 3,
an average of 64% of the CLBs mapped by Hydra contain multiple
outputs.

Like Mis-PGA, Hydra makes an effort to minimize routing com-
plexity, without performing a routability analysis. One measure of
wiring costs is the number of edges created as a result of a decom-
position [8). In Hydra, disjoint decompositions yield a minimum
number of edges; hence routing costs are reduced. Targeting shared
inputs also eliminates many of the wiring costs, since a shared signal
is used in two logic functions. The percentage of CLBs implement-
ing two functions with some shared inputs is reported in Table 3. An
average of 51% of CLBs fall in this class, indicating the efficiency
of targeting shared inputs.

4 Conclusions and Future Work

This work has shown a new approach to technology mapping for
two-output RAM-based FPGAs. The main idea in our approach is
to use the shared-input relationship in a network to drive disjoint de-
compositions. Results have shown that, compared to other tools, this
approach is competitive for small circuits, and consistently superior
in larger ones. In particular, results show an improvement of about
20% in the number of cells and a 60-fold speed-up in computing time
with respect to Mis-PGA. Hydra can be easily extended to map any
m input, 2-output RAM-based architecture.

Future work will address expanding the search for other types of
disjoint decompositions; for example, to include the don't care sets.
1t is also interesting to evaluate the efficiency of other possible ar-
chitectures by extending to RAM-based FPGAs with more than two
outputs.
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