Technology Mapping for Electrically Programmable Gate Arrays

Silvia Ercolani and Giovanni De Micheli

Center for Integrated Systems
Stanford University
Stanford, CA 94305

Abstract-

We describe a new approach for technology mapping of electri-
cally programmable gate arrays (EPGAs). These are arrays of
uncommitted modules, where the personalization is achieved by
fuse/antifuse technology and can be modeled by stuck-at and/or
bridging inputs. We present a matching algorithm that determines
whether a portion of a combinational logic circuit can be imple-
mented by personalizing a module. The algorithm has the ad-
vantage of considering the entire library of functions that can
be implemented by the module without resorting to an explicit
enumeration. The benefits are an increased efficiency in technol-
ogy mapping, as well as portability to different types of electri-
cally programmable gate arrays. Experimental results on standard
benchmarks are reported.

1 Introduction

There has been an increasing interest in digital-system prototyping
using Electrically Programmable Gate Arrays (EPGAs) due to
their fast turn-around time and low manufacturing costs. One
class of EPGAs uses anti-fuse technology, where logic gates and
their interconnections are programmed by shorting wire segments
in prescribed locations [1].

An EPGA consists of repeated arrays of identical logic modules.
Each module is a multiple-input single-output combinational logic
gate. A module can be configured to implement a logic function
by forcing any input to logic low or logic high or by bridging
inputs [1].

System design with EPGAs requires specific logic design tools.
In particular, technology mapping is crucial for achieving an ef-
ficient implementation. Technology mapping is the process of
transforming a set of logic equations into an interconnection of
parts that are instances of the elements in a given library. In the
case of EPGAs, the “library” consists of the set of combinational
logic gates that can be derived from the uncommitted module.

Existing approaches to technology mapping include algorithms
and tools that support an explicit arbitrary library definition, such
as Misll [3] and Ceres [4]. In this case, the library of cells that
can be derived from the uncommitted module needs to be derived
explicitly. Since the enumeration of the library cells may be long,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the titie of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

a subset of the library may be used to increase the mapping speed
at the expense of the quality.

The Mis_pga program (2] is a specialized technology mapper
for the EPGAs fabricated by Actel Inc. This program exploits the
particular structure of the uncommitted module, based on multi-
plexers, in the mapping process. As a result, the program can
model the entire library based on a few primitive building blocks.
Unfortunately, the algorithms of Mis_pga support only multiplexer-
based EPGAs.

This paper describes a new approach to technology mapping
for EPGAs that:

o Does not require an explicit library enumeration.

e Supports generic EPGAs based on fuse/anti-fuse technol-
ogy. The uncommitted module is assumed to be an arbitrary
single-output combinational function.-

The full library description is replaced by using the description
of the uncommitted module only. The technology mapping algo-
rithms check whether a given logic function can be implemented
by programming the uncommitted module. Indeed, the process of
personalizing an uncommitted module can be modeled by creating
some input stuck-at 0, input stuck-at 1 or input bridging faults on
the uncommitted module. Therefore, the EPGA library can be
represented by the set of equivalent gates that these faults induce
on the uncommitted module.

As a result, any EPGA can be used as a target architecture by
just describing the logic function of the uncommitted module. In
this paper we use two EPGA modules developed at Actel Inc. as
examples. The modules are called actl and act2, and their logic
diagram is shown in Fig. 1.

e e
t t
c

S G d G
g]
h h

o a b a b

act1 act2

Figure 1: EPGAs uncommitted modules developed at Actel Inc.

The ease of retargeting the implementation to different EPGAs
with different uncommitted modules is extremely important in val-
idating the choice of modules. So far, uncommitted modules have
been chosen by looking at the circuit configurations and perfor-
mance. No analysis of the ease of mapping has been done, as in
the case of Field Programmable Gate Arrays (FPGAs) [5]. An

28th ACM/IEEE Design Automation Conference®

Paper 15.2
234

©1991 ACM 0-89791-395-7/91/0006/0234 $1.50

efficient technology mapper can be useful in researching module
primitives that support efficient implementations.

This paper is organized as follows. First we describe the over-
all organization of the technology mapping program in Section 2.
We then focus on the crucial problem in EPGA mapping, called
matching, that consists of recognizing whether a logic function
can be implemented by programming the uncommitted module.
This is the major contribution of the paper. We show matching
algorithms that use a generalization of Binary Decision Diagrams
(BDDs) in Section 3. We then describe our implementation and
report on experimental results and comparisons (Section 4). Fi-
nally, extensions and future directions are presented in Section

2 Technology mapping

Algorithms for technology mapping were pioneered by Keutzer [6],
Rudell {7] and Detjens [8]. Similarly to their approach, we use a
heuristic method based on three different tasks:

e Partitioning. Partition a network into a collection of
multiple-input single-output combinational sub-networks.

e Decomposition. Decompose each sub-network into two-
input functions, to increase the network granularity.

¢ Covering. Cover each decomposed network by committed
modules so that either area or delay is optimized.

Standard techniques are used for the first two tasks [6, 7, 8].
The covering algorithm is borrowed from Mailhot [4]. It uses
the notion of cluster and cluster function. After partitioning and
decomposition, the sub-network to be mapped is represented by
a directed acyclic graph. The nodes of this graph correspond to
the sub-network’s inputs, output and two-input functions, and its
edges represent the dependencies. A cluster is a connected sub-
graph having only one node with zero out-degree. The associated
cluster function is the Boolean function obtained by collapsing
the Boolean expressions associated with the nodes into a single
Boolean function [3].

As an example [4], consider the Boolean sub-network of Fig. 2
that, after decomposition, is described by:

fo= i+t
J Ty

T e+ z
y = a+c
z = TH+d

With each of the variables is associated one or more clusters,
e.g. there are six possible cluster functions associated with vari-
able j, due to the increased depth in the collapsing step:

kj1 = Ty

w2 = zf{atec)

f33 = (e+z)y

ke = (45 ate)
Kjs5 = (e +7+d)y

r;6 = (e+T+d){a+c)

The covering algorithm selects clusters repeatedly and attempts
to match them to modules. A cover of a sub-network is a set

c

Figure 2: Clusters and cluster functions of variable j.

of clusters that are matched to modules and that cover the sub-
network. A covering may optimize the overall area or timing cost.
Each module has unit cost, because committed modules have the
same area and similar delay.

The arca cost of a cover is computed by adding one to the
cost of the covers of the sub-graphs corresponding to the support
variables in the Boolean cluster function, while the timing cost
is obtained by adding one to the maximum of the cost. When
matchings exist for multiple clusters, for any given decomposition
with tree-structure, then the choice of the matching of minimal
area (timing) cost guarantees minimality of the total area (time)
cost of the matched sub-network [6, 8].

The technology mapping algorithm described here, which is
dedicated to EPGAs, differs from library-based mapping in the
matching step. The general framework is based on program
Ceres [4]. This paper focuses on the matching step and describes
it in detail.

3 The Matching Algorithm

The algorithm presented here performs a run-time customization
of the EPGA module: by comparing the cluster and the module
functions, it determines which module inputs should be set to 0/1,
which should be bridged together, and which input ordering, if any,
makes the module implement the cluster function. If no match is
found, the algorithm returns that no matching exists and another
cluster function is tried. :

Both the uncommitted module of an EPGA and the cluster
function are represented by their Boolean functions, denoted by
G(z1,22,...,2n) and F(zy, 22,....%m) respectively. The set of
corresponding input variables is sup(G) and sup(F).

We call stuck-at set of the module the set of input variables
that are set to 0/1 and we denote it by: S = S0 U S1. Note that
S0 N S1 = 0. We call bridge set the set of input variable subsets
that are bridged together and we denote it by B = U;B;. Since
bridging is transitive, B; N By, = 0, V5 # k.

We define G s the function obtained from G by setting each
variable z; € S to0/1. Similarly we define G s to be the function
obtained from Gs by by bridging the inputs corresponding to
variables z; € B,, VB;. Thus, given S and B, the function G s5

Paper 15.2
235

is uniquely identified. The cardinality of the set of independent
input variables R of ('sp representing the committed module is:
|R} = |sup(GsB)| = n —|S| =](]BJ| — 1), where n =
|sup(G)].

As an example, in the case of the uncommitted module «c{1 of
Fig. 1 G = (¢ + b)(ce +Tf) + (« + b)(dg + dh) and sup(G) =
{a.b,c.d.¢, f.g. h}. Supposethat 5 = 50 = {¢,f = 0} and
B = By U By = {a,b} U {d. g}, by substitution we have G s =
@d+h)and R = {a.d,h}.

‘We define the matching problem as follows:

Given a cluster function F{yy,... ym), and the module func-
tion G(ry,....xn) m < n find a stuck-at set S, a bridge set B
and an ordering S}(R) such that: F = G sp($2(R)) is a tautol-
ogy.

Note that a necessary condition for matching is that the cluster
function and the committed module must have the same number of
inputs, i.e. |R| = m or, equivalently, m = n—|S|— Z](|BJ|—1).

3.1 The simplified matching problem

For the sake of explaining the matching algorithm’s steps, we
consider first a simplified matching problem for EPGAs, in which
bridging is not allowed.

The simplified matching problem can be stated as follows:

Givena cluster function F(y1,....ym), m < n and the module
function G(z1.....%n) find a stuck-at set S, and an ordering
2(R) such that: F = G s(2(R)) is a tautology.

In this case, a necessary condition for matching is that the inputs
to the cluster function equal in number the unstuck inputs of the
committed module, i.e. m = n — |S|.

This problem can be solved by using Binary Decision Diagrams
(BDDs) to represent Boolean functions [9, 10, 11]. A BDD is a
directed acyclic graph that is leveled, each level being associated
with a variable. Every node is associated with a function and has
two outgoing edges, labeled 1 and 0. The root is associated with
the Boolean function that the BDD represents. An internal node
is associated with the sum of the co-factors with respect to the
variables on the paths to the root, with the phase defined by the
edge weights.

Unfortunately, a function does not have a unique BDD, since
the structure of the BDD depends on the ordering of the input
variables used to levelize the graph. However, given an input
ordering, the reduced BDD [10] ({.e. a BDD such that no two
sub_BDDs are isomorphic to each other) is a canonical form [10].

Sub-isomorphism between the cluster function and the mod-
ule function BDDs can be used to detect matching. Consider for
example the module with G = a(bc + b’'d) + a'(fe + f'g) and
n = 7. Fig. 3 shows its BDD for the alphabetical input order-
ing (a.b,c,d,e, f,g). Suppose that the cluster function is the
2-input multiplexer F' = 1y + z'z, whose BDD is shown for the
alphabetical ordering (z,y.z) in Fig. 3. Since the latter BDD
is isomorphic to a sub-graph of the former one, the module can
be committed to perform the cluster function, by selecting as set
S=51={a=1}

Unfortunately, matching is more complicated than performing
a sub-isomorphism check. Indeed, in our case we do not ques-
tion the equivalence between two functions, but their equivalence
after a pin assignment (or variable ordering), which we call P-
equivalence. Therefore we must be able to recognize matching
corresponding to different variable orderings, and therefore to dif-
ferent BDD structures.

Consider for example the same module function G of Fig. 3,
with a different input ordering («.d.b.c.e. f.g) whose corre-
sponding BDD is shown in Fig. 4. There is no sub-isomorphism
between this BDD and the BDD of the cluster function, even
though a matching exists for the previous input ordering of G.

Paper 15.2
236

i
/A

G = a(bc + b’d) + a’(fe + 'g)

Figure 3: For the chosen orderings, the BDD of G has one sub-
graph (for a = 1) which is isomorphic to the BDD of F.

Therefore, all the BDDs corresponding to different variable or-
derings in the module function should be computed and checked
for sub-isomorphism against the cluster function BDD, until a
matching is found.

An algorithm for the simplified matching problem using BDDs
is described here:

Matching0(G, F)

/= generate the BDD for a given function and input ordering =/
BDD_F = GenerateBdd(F, ¢); /* % is the alphabetical ordering */
for (each permutation ¢ ; of sup(G)) {
BDD.G = GenerateBdd(G, ¢;);
if (Sublsomorph.0(BDD.G, BDD.F, m)) { /[« m = |sup(F)| «/
2 = DetermineOmega();
S5 = DetermineStuckatSet();
return(TRUE);

return(FALSE);

Procedure Sublsomorph 0 inspects all the subgraphs of BDD.G
of level m, until an isomorphism with BDD.F is found.

G = a(be + b'd) + a'(fe + ')

F=xy+xz

Figure 4: For this particular ordering, the BDD of G has no
subgraph isomorphic to the BDD of F.

Sublsomorph X BDD.G, BDD.F, level)
{

nodef = Root(BDD.F);

for (each of the subgraphBDD..G of height m) {
node.g = Root(subgraphBDD.G);
if (Isomorph(node.g, node.f)) retura(TRUE);

return(FALSE);

Procedure Isomorph has been derived from Bryant’s [10] BDD
traverse procedure. Starting from the roots it inspects the branches
until a terminal node is reached.

Isomorph(node.x, node_y)
{

/* Level.Table and Node.Table keep track of the 1-to-1 */

/* correspondence between the levels and the nodes of the two BDDs */
Level Table = InitializeLevelTable();

Node.Table = InitializeNodeTable();

if ((nodex == node.y == ZERO) || (nodex = node.y == ONE))
return(TRUE);

if (IsTerminal(nodex) || IsTerminal(node.y))
return(FALSE);

if (nodex and node.y are already mapped on each other)
return(TRUE);

if (level(node x) and level(node.y) are unmapped)
MapLevelsOntoEachOther(node x, node.y, Level.Table);

else if (level(nodex) and level(node.y) are not mapped on each other)
return(FALSE);

if (nodex and node.y are unmapped)
MapNodesOntoEachOther(node x, node.y, Node Table);

else If (nodex and node.y are not mapped on each other)
return(FALSE);

/* Inspect subtree =/
return{Isomorph(node x- > low, node.y- > low) &&
Isomorph(node x- > high, node.y-> high));

The matching 0 algorithm compares the BDD of the cluster
function (with an arbitrary input ordering) with the BDDs of the
module function (using all possible orders). It is therefore guar-
anteed to find a match - if one exists - by setting to 1 or O the
first [S| = n — m variables in the order corresponding to the
BDD in which a sub-isomorphism is detected. Procedures Deter-
mineOmega and DetermineStuckatSet are straight-forward.

It is important to remark that comparing all the BDDs related to
the cluster function against the subgraphs of the module BDD is
not guaranteed to detect a matching, because the set of variables of
G that need to be stuck may not be adjacent in the input ordering
chosen for the BDD of the module cell, as it is shown in Fig. 5.

G = a(be + b'd) + a'(fe + fg)

(]

Figure 5: In this example, although F is functionally equivalent
to G when S = 50 = {c,e,g = 0}, comparing all the different
BDDs of F against that of G' doesn’t detect a matching.

3.2 Global Boolean Decision Diagrams

The complexity of algorithm matching 0 is due to the inspection
of all the BDDs of the module function, one for each input permu-
tation. Actually, it is not necessary to explore all the BDDs, but
only those BDDs that are different from one another. For a cell of
n inputs there are n! input permutations, but far fewer significant
BDDs. Indeed, every symmetry between the input variables re-
duces by a factor 2 the number of non-isomorphic BDDs and then,
due to some structural symmetry their number is further reduced.

Nevertheless, even if the input and structural symmetries of the
module function decrease the number of BDDs to be inspected,
their number is still very high. Table 1 shows the number of
different BDDs for the module functions used in the Actel EPGAs
actl and act2 (Fig. 1).

EPGA Input Different | # of nodes for | # of nodes for

module || permut. BDDs different BDDs global BDD
actl 40320 11855 295361 39976
act2 40320 7470 217948 33996

Table 1: BDD statistics for modules «ctl and act2.

To reduce the complexity of the algorithm we propose a new
structure, called global BDD (GBDD) that gathers in a compact

Paper 15.2
237

form the information of the different BDDs corresponding to the
variable orderings of a function.

We define a GBDD as follows:

A GBDD is a two-terminal DAG with k roots, whose subgraphs
induced by the nodes reachable from each root node is a BDD of
the function for some variable ordering.

A GBDD is constructed as follows. Starting from the observa-
tion that different BDDs have subgraphs isomorphic to each other,
we performed a reduce [10] on all the BDDs. The structure we
obtain has as many roots as there are different BDDs. The num-
ber of nodes is much lower because there are no two subgraphs
isomnorph to each other.

GenerateGlobalBdd(G)
{
/x create all the different BDDs x/
for (each permutation ¢ ; of sup(G)) {
BDD.G = GenerateBdd(G, ¢,);
if (BDD.G is isomorph to any other previously generated BDD)
Free(BDD.G);

GBDD.G = Reduce(Linked.List-of BDDs.of-G);

In this way, although we do not reduce the number of BDDs,
we decrease the computational effort and the memory used by
the program. Table 1 shows the total number of nodes for all
the different BDDs against that of the GBDD for «c?l and acit2.
Since the GBDD shares common subgraphs, we do not repeat
the inspection of subgraphs that are isomorphic to each other, in
the Sublsomorph procedure, thus improving the efficiency of the
matching algorithm.

‘We show now the algorithm for the simplified matching prob-
lem using the GBDD.

Matchingld(G, F)

GBDD.G = GenerateGlobalBdd(G);

BDD.F = GenerateBdd(F', ¢ };

if (Sublsomorph1(GBDD.G, BDD.F, m)) {
£2 = DetermineOmega();
§ = DetermineStuckatSet();
return(TRUE);

}
return(FALSE);

Procedure Sublsomorph.1 inspects all the subgraphs of GBDD_G
of level m, until an isomrphism with BDD_F is found.

Sublsomorph1(GBDD.G, BDD.F, level)
{

nodef = Root(BDD.F);

for (each of the subgraphGBDD.G of height m) {
node.g = Root(subgraphGBDD.G);
if (Isomorph(node.g, node.f)) retura(TRUE);
return(FALSE);

3.3 An algorithm for the full matching problem using
GBDDs

We now consider the complete matching problem, by extending
the previous considerations. Given a function H(x,,...,%n),
bridging % of its n inputs together produces a new function H g,
whose support cardinality is n. — (k — 1). Consider the bridging of
two input variables, say z.: and z;. The Shannon decomposition
with respect to variables z;, z; gives:

H(zy,..., In) = Zi(IJH,'J + I;H,]l) + I:(IJHUJ -+ it;'Hilj:),

Paper 15.2
238

where the terms H.;, Hy,, H;;; and H, ; are the cofactors of

H with respect to #;z,,z;x,, =) and x x| respectively. If we

bridge z; with r, the above equation becomes:
He(zy,... . zicoo,an) =2 Hiy + r:Hi:],,

where B = {zi,1,}.

H‘l" ““‘ '."'.' H l

o s,

Figure 6: Bridging two variables z;, r,, in ordered adjacent posi-
tion,

When the two variables z; and 7, occupy adjacent positions
of a given ordering, the effect of variable bridging on 2 BDD
diagram is shown as in Fig. 6. Bridging the two variables z.;. 7,
corresponds to merging the nodes related to z; into the nodes
corresponding to z;, and removing the dead branches.

This argument can be extended to bridging any k < n succes-
sively ordered variables. Note that by considering all the input
permutations of the module function, we ‘implicitly consider all
possible sub-sets of input variables whose bridging could be used
to personalize the module to the given cluster function. This guar-
antees that the algorithm finds a match - if one exists - that can be
obtained by bridging inputs of the module function (in addition to
forcing them to 1 or-0).

The introduction of input bridging increases the possible ways
to implement the cluster function F with m inputs. Let suppose
m = n ~ 1, we have two possible solutions: one input of G stuck
or two inputs bridged together. If m = n —2, the possible choices
increase to 4: two inputs stuck, one input stuck and two bridged,
two sets of two input bridged together, and three inputs bridged
together. In looking for a possible matching solution, it follows
that we have to explore ail possible combinations of bridgings and
stucks, whose number increases with the difference n — m.

For the above reasons, and since the bridging procedure adds
run-time cost, our algorithm first attempts to find a matching only
using stuck-at inputs, as already described; if it fails, it starts
to perform all the possible combinations and searches for a sub-
isomorphism between the modified (i.e. bridged) GBDD of G and
the BDD of F. Thus, by introducing the input bridging to reduce
the degree of freedom of the module cell, as well as using the
GBDD, the mapping algorithm can be rewritten:

Matching2(G, F')
{

/* no bridging at first attempt */
if Matching.l(G, F)) retura(TRUE);
for (each set of feasible B of G) {
GBDD.G = BridgeBdd(GBDD.G, B);
if (Sublsomorph.1(GBDD.G, BDD.F, m)) {
£2 = DetermineOmega();
S = DetermineStuckatSet();
return(TRUE);
b

}
return(FALSE);

The procedure BridgeBdd modifies a BDD performing the
bridging on a set of variables B in adjacent positions.

BridgeBdd(BDD.G , B)
{

bridgesize = size(By) - 1;
bridge Jeve! = FirstInput(B 1); /> level-of the first element of B j */
for (each node ; of bridgelevel) {
/* bypass as many levels as the bridge.size */
next = node.j- > low;
while (levelof(next) > (bridgelevel - bridge.size)) {
node j->low = next->low;
next = next-> low;

next = nodej->high;

while (levelof(next) > (bridgelevel - bridgesize)) {
node.j->high = next- > high;
next = next->high;

}
}
DisposeUnreachableNodes();

4 Implementation and Results

The algorithms presented here have been incorporated in Ceres [4]
to form an option called Proserpine. 1t reads the logic descrip-
tion of the module and creates the global BDD data structure.
The partitioning, decomposition and covering tasks are those of
Ceres, while the matching algorithm is based on the BDD sub-
isomorphism described in this paper. Proserpine has been im-
plemented in C and has been tested on the MCNC and ISCAS
benchmarks. Two different EPGA modules (Actel «.ctl and acf2)
have been used.

Circuit || Proserpine | Mis.pga
actl | “aciZ I act

duke2 177/178 164 198
fSim 63/65 52 56
bw 67 64 80
clip 73774 62 62
vg2 46 41 46
rd84 70175 63 72
Sxpl 53/54 48 53
CA499 1707274 170 173
misex1 25 23/24 -
misex2 45/46 40/42 -
alud 350 310 -
apex6 396/411 293/302 -
apex7 121/122 107/108 -
rot 465/472 422/427 -

Table 2: Implementation cost for some circuits using EPGA actl
and «ct2. For actl a comparison with Mis_pga is shown.

Table 2 summarizes our results, giving the number of modules
needed to implement a logic circuit (cos?). When two entries
are reported, the first refers to solving the full matching problem,
while the second refers to the simplified one. When only one data
is reported the full and simplified problems achieve the same cost.

Comparisons to Mis.pga have been done considering heuris-
tic 1, with no iteration. They are provided only for the cell actl,
since there are no published data for act2. The total cost for the
compared set of circuits is favorable to our solution being 619 for
Proserpine against 640 for Mis_pga.

S Conclusions and Future Work

We have presented a new matching algorithm for technology map-
ping of electrically programmable gate arrays. The algorithm per-
sonalizes an uncommitted module to perform a desired logic func-
tion - if it is possible - by determining the set of input variables

that need to be stuck at 0/1 or bridged together. This matching
algorithm allows a mapping program to capture the entire family
of functions that can be implemented by a module by describing
only one logic function, thus avoiding the enumeration of the en-
tire library. In addition, the algorithm is not specific to a type of
module, but can be applied to any type that can be represented by
a single-output combinational logic function.

The matching algorithm has been implemented as a part of a
technology mapping program called Proserpine. We have tested
the program on a set of benchmarks and have concluded that it
compares favorably to other approaches.

An outcome of this research has been the development of a tool
to evaluate the effectiveness of different modules, for use in future
EPGAs. Future research will address both the perfectioning of the
algorithm and the comparative study of EPGA architectures, for
implementing a given benchmark suite.

6 Acknowledgment

The authors would like to thank Alessandro Bedarida for devel-
oping and implementing part of the program and Frederic Mailhot
for several stimulating discussions. This research was sponsored
by an AEI/IEEE scholarship and by DEC and AT&T, jointly with
NSF, under a PYI award. We acknowledge also support from
ARPA, under contract No. J-FBI-89-101.

References

[1] A. El Gamal, J. Greene, J. Reynery, E. Rogoyski, K.A. El Ayat,
and A. Mohsen, "Architecture for Electrically Configurable Gate
Arrays”, IEEE Journal of Solid-State Circuits, April 1989, pp. 394-
398

[2] R. Murgai, Y. Nishizaki, N. Shenoy, R.K. Brayton, and
A. Sangiovanni-Vincentelli, “Logic Synthesis for Programmable
Gate Arrays”, 27" ACMIIEEE Design Automation Conference, Or-
lando, June 1990, pp. 620-625

[3] RK. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.R.
Wang, "MIS: A Multiple-Level Logic Optimization System”, JEEE
Transactions on CAD, November 1987, pp. 1062-1081

[4] E Mailhot and G. De Micheli, ” Technology Mapping with Boolean
Matching ", European Design Automation Conference, Glasgow,
Scotland, March 1990, pp. 212-216

[5] J. Rose, R. Francis, D. Lewis and P. Chow, "Architecture of Field
Programmable Gate Arrays: The Effect of Logic Block Functionality
on Area Efficiency”, IEEE Journal of Solid State Circuits, Vol. 25,
No.5, October 1990, pp. 1217-1225

[6] K. Keutzer, "Dagon: Technology binding and local optimization by
dag matching”, in 24th ACM/IEEE Design Automation Conference,
1987, pp. 341-347

R. Rudell, Logic Synthesis for VLSI Design, PhD thesis, U. C. Berke-
ley, April 1989, and Memorandum UCB/ERL M89/49

[8] E.Detjens, G. Gannot, R.L. Rudell, A. Sangiovanni-Vincentelli, and
AR. Wang. "Technology mapping in mis”, International Conference
on Computer-Aided Design, November 1987, pp. 116-119

[7

—

[9]1 S.B. Akers, "Binary Decision Diagrams”, IEEE Transactions on
Computer, June 1978, pp. 509-516

[10] R. Bryant, "Graph Based Algorithms for Boolean Function Manipu-
lation”, IEEE Transactions on Computer, August 1986, pp. 677-691

[11] K. Brace, R. Rudell and R. Bryant, “Efficient Implementation of
a BDD package”, 27t% ACMIIEEE Design Automation Conference,
Orlando, June 1990, pp. 40-45

Paper 15.2
239

