Invited Paper

Technology Mapping of Digital Circuits

Giovanni De Micheli

Center for Integrated Systems
Stanford University
Stanford, CA 94305

Abstract

Technology mapping is an important task of logic synthesis of digital circuits. It
consists of transforming a multiple-level Boolean network into an interconnection
of primitive gates that belong to a pre-specified library. Therefore technology
mapping is of utmost importance for designing in array-based and cell-based
methodologies.

Technology mapping aims at achieving minimal area or minimal delay circuits.
The problem is computationally hard. Rule-based methods and heuristic algo-
rithms have been applied. The algorithms rely on two important tasks, namely
matching and covering. Matching detects if a portion of a network can be imple-
mented by a library element. Matching can be based on structural or on Boolean
operations. Covering consists of choosing an appropriate sets of matched ele-
ments, that implement the original network and that optimize the overall area
and/or delay.

The major approaches to technology mapping are reviewed, with an emphasis
on the recent results achieved by Boolean matching methods that can exploit
the don't care conditions of a network. Specialized technology mappers are
described, that deal with functional-cell and programmable gate array libraries.

1 Introduction

Today, most digital circuits are designed by means of computer-aided logic
synthesis and optimization techniques. Efficient experimental and commercial
synthesis tools have successfully been used for designing commercial products.
Semi-custom circuit implementations, such as sea-of-gates, gate-arrays or stan-
dard cells, require conforming the digital circuit to the available cell primitives,
described by a library. This step, called technology mapping, is extremely crit-
ical for achieving high-performance and/or minimal area implementations. For
this reason, several approaches to technology mapping have been pursued and
implemented in research and commercial design tools.

Technology mapping can be seen as a logic synthesis task. Most systems
perform technology mapping after having optimized the logic circuit indepen-
dently of the available circuit primitives. This approach is justified by the overall
complexity of the synthesis task.

While most digital circuits are sequential and hierarchical in nature, the most
studied technology mapping problems deal with their combinational components,
because the choice of implementation of registers, I/O circuits and drivers in a
given library is often done by direct replacement, Therefore we consider here the
technology mapping problem for combinational circuits. Combinational circuits
can be defined by a set of Boolean equations, or equivalently, by an intercon-
nection of uncommitted gates, each one implementing a combinational logic
function. The technology mapping problem consists of transforming such a cir-
cuit into an I/O equivalent one, where each expression, or gate, is an instance
of an element in a given library. Multiple choices in mapping often arise. Since
library elements are characterized in terms of area and propagation delay, then
some optimal technology mapping problems can be defined, namely: i) mini-
mize the overall area cost (possibly under timing constraints); ii) minimize the
maximum I/O propagation delay (possibly under area constraints).

Technology mapping methods depend on the nature of the library ele-
ments. While the most common elements are combinational single-output func-
tions, some libraries contain multiple-output cells, such as full-adders and en-
coders/decoders. Some mappers support only single-output cell libraries. In
general, libraries can be described by enumerating its components with their
properties. However, emerging technologies, such as programmable gate-arrays
(PGASs), do not require full enumeration of the library, because this one can be

CH3001-5/91/0000/0580/$01.00 © 1991 IEEE

580

described in a functional way. For example, the library of some memory-based
PGAs contains all logic functions of up to a given number of inputs. There-
fore, when a functional library representation is possible, specialized technotogy
mapping methods can be used.

The technology mapping problem is a difficult one from a computational com-
plexity stand-point. For this reason, the solution methods that have been pro-
posed fall into two major categories: rule-based technology mappers [5, 10, 11]
and heuristic algorithms (2, 3, 6, 13, 14, 15, 16, 17]. In this paper we review
the existing approaches in these two classes, with particular emphasis on the
novel Boolean techniques developed at Stanford University. We consider then
techniques that perform logic optimization concurrently with technology map-
ping. Eventually, we consider the specialized technology mapping algorithms
for functional-cell and programmable-gate array libraries.

2 Rule-based technology mapping

Rule-based technology mapping is widely used, because of the flexibility of the
method. Some of the early logic synthesis systems, such as LSS [5] and Socrates
{10}, used a rule-based approach.

In a rule based system, a network is mapped by a step-wise refinement ap-
proach. The network undergoes local transformations that preserve its function-
ality. Each transformation can be seen as the replacement of a subcircuit by an
equivalent one that satisfies the technology requirements.

A database contains a family of circuit pattemns, and for each one the cor-
responding replacement patterns according to the target library and the overall
goal (such as optimizing area or delay). Several rules may match a pattern, and
a priority scheme is used to choose the replacement. The rules may be simple
or complex. An example of a simple rule is the replacement of a 4-input OR
gate by a tree of 2-inputs OR gates, in the case of a library that does not sup-
port 4-input gates. More complex rules can handle, for example, multiple-output
combinational and/or sequential logic elements.

The strength of this approach is that rules can be added to the database to cover
all thinkable replacement and particular design styles. This is also its weakness.
Databases are library specific, and adding or removing elements from a library
is not straight-forward. Compiling a library into a database is a time-consuming
task and, even though it is automated, it is best done by experts.

Another problem with rule-based systems is the order in which rules should
be applied and the possibility of look-ahead and backtracking. Rules must select
first the subcircuit to be replaced and then decide on the new pattern. Some
rule-based systems, such as LSS [5] and Lores/ex [11], used a greedy strategy.
The local "best” replacement according to some metric is chosen at each step.

Other systems, such as Socrates {10], use a more complex search for choosing
the transformations. The major concem is to explore the different choices and
their consequences before applying a replacement. Technology mapping is an
iterative technique that traverses a set of circuit configurations. A search strategy
is used to to select the "best” replacement. The breadth of a search is the number
of configurations that are taken into account and that can be reached by applying
one rule. The depth of a search is the number of consecutive transformations
that are considered. For a given value of the breadth and the depth, a set of
configurations can be evaluated in the search for the “best” one. The larger
the breadth and the depth, the better the look-ahead capability is. This affects
substantially the quality of the solution but also the computing time. A set of
meta-rules is used to decide which portion of the circuit should be replaced
and it controls the breadth and depth values. Meta-rules perform also trade-
offs between area and delays and between the quality of the solution and the
computing time.

3 Algorithms for technology mapping

Algorithms for technology mapping have been developed for libraries of combi-
national single-output cells, Even though this assumption may seem restrictive,
practical approaches (o technology mapping may involve several techniques.
Multiplc-output gates, as well as registers, may be identified, and mapped to
the corresponding cells, using simple replacement rules. We assume that the
library cnumerates the cells, by specifying their equivalent (single-output com-
binational) logic function and their area and timing properties. Cell timing is
generally specified as input/output propagation delay as a function of fanout.
Some PGA libraries (or subsets) can be cast in this format (e.g. the Actel li-
brarics) and therefore the algorithms described in this section can also be used
for these PGAs. Alleratively, specialized algorithm that exploit the structure of
these librarics can be used, as shown in Section 5.

In the sequel, we represent unmapped circuits by Boolean networks, i.e. by
directed acyclic graphs where vertices correspond to Boolean functions (repre-
sented also by uncommitted gates) and edges to dependencies. Edges are directed
from inputs (o outputs. Such networks may have been previously optimized by
technology independent procedures.

Algorithms for technology mapping were pioneered by Keutzer at AT&T Bell
Laboratories [13]. Keutzer realized the similarity between the technology map-
ping problem and the code generation task in a software compiler. In both cases,
a matching problem relates the identification of the possible substitutions, which
are chosen on the basis of an optimality criterion.

The technology mapping problem can be divided into a matching and a cover-
ing tasks. Matching consists of identifying whether a subnetwork (i.e. a subset
of the original network) can be replaced by a library cell. There are different
approaches to solving the matching problem, that relate to the representation
being used for the network and the library. Both can be described by Boolean
functions, or by graphs representing the algebraic AND/OR decomposition of
the expressions. We call the former approach Boolean and the latter structural.
Thus expression pattern matching approaches can be classified as structural tech-
niques. The graph-bascd structural approach was proposed by Keutzer [13], and
used later by Rudell [3] and Detjens [6] in program mis. An expression pattem
matching approach was introduced by Morrison [17]. The Boolean matching
technique was was proposed by Mailhot [16] and implemented in program ceres.

Two Boolcan functions fy(ry.02.... .4 ro) and ol i,) have
a Boolean match, if there exists a variable permutation i such that
fitey.rgeo) = fali(ry 0.0 xy)) s a tautology, ie. if the functions
yicld equivalent outputs for any input pattem. Given a structural representation
of two functions by two graphs in a pre-defined format (e.g. Boolean networks of
two-input NOR gates and inverters), there is a structural match if the graphs are
isomorphic. Clearly a structural match implies a Boolean match, but the converse
is not true. Consider for example the following two functions: [y = +y+77+7:
and [, = »y+ 7+ rz, that are logically equivalent, but entirely different in the
expression pattern and in its structural representation. Note that different struc-
tures for a given function arc due to the fact that there exist different possible
factoring and that there are even different sum of products représentations of the
same function.

Matching algorithms are described in Sections 3.1.1 and 3.2.1. Efficient algo-
rithms are important, but the major difficulty in solving the technology mapping
problem lies in selecting appropriate matches.

The covering task consists of choosing an adequate number of cells, that covers
the network and that satisfies some optimality properties. The optimum cover
problem is intractable [9]. Even though some covering problems have been
solved efficiently by branch and bound techniques {18], technology mapping
requires solving a particular covering problem, which Rudell has well charac-
terized and named binate covering problem [18] and others called covering with
closures. The problem can be described as follows. Given a network, consider
all possible matches and their cost, that can be, for example, the area costs of
the corresponding library cells. An optimum covering requires that we select
a set of matches covering the network and with minimum totai cost. Covering
the network implics that there must be a cell matched to the network outputs
and recursively a cell matched to any vertex that is an input to a matched cell.
Therefore, the selection of a match implies the selection of other matches. 1f
we denote by 117y a match and by \/ the set of possible matches at the inputs
of the cell corresponding to 1, then 1y implies .}/ or equivalently (7 + 1/)
is a clause of a conjunctive expression representing the feasible covers. Binate
covering takes its name from the fact that this expression is binate. There are
no efficient algorithms o solve the binate covering problems for networks of
interesting size.

To render the problem tractable, most heuristic approaches to technology ap-
ply a partitioning and a decomposition step before covering. Partitioning con-
sists of splitling the Boolean network into a collection of subgraphs, each mod-
cling a single-output network, and called subject graphs. Then each subject
graph is decomposed into an interconnection of base functions (e.g. 2-input
AND,OR,NAND or NOR and inverters). Note that the two steps are inter-
changeable in principle, but that performing decomposition after partitioning is

581

preferable in practice, because the latter is applied to circuits of smaller size.
These steps are exemplified by Figures 1, 2 and 3.

It is important to remark that the partitioning and decomposition steps are
heuristics that help in reducing the problem complexity, but that can hurt the
quality of the solution. Partitioning is also used to isolate the combinational
portion of a network from the sequential elements and from the I/Os, where ad
hoc techniques for mapping are used. Partitioning may be achieved by detecting .
the multiple fanout points that identify partition blocks. Decomposition into two-
input functions can then be applied recursively to the vertices of the Boolean
network. Decomposition is beneficial in increasing the gmnmmw of the network,
and therefore in easing the mapping process.

EN
daaoo]

Figure 2: Network decomposition.

Figure 3: Network covering.

Eventually each subject graph is covered by an interconnection of library cells.
For selected portions of the subject graph, all the cells in the library are tried for
a match and, when one exists, that portion is labeled with the area and timing
cost of the matching cell. The selection of a match is done according to different
covering schemes, as described in detail in the following section.

3.1 Covering algorithms based on structural matching

Without loss of generality, we consider here a subject graph that has been de-
composed using 2-input NANDs and inverters as the base function. We consider
also a representation of the library cells in terms of graphs, called target graphs,
with a similar decomposition.

Structural matching can be tested by checking the isomorphism between two
rooted graphs. Even though the complexity of this problem has not been assessed
{9], experimental results have shown that the computation time is negligible for
problem of practical size [6]. However, to further simplify the problem and
speed-up its solution, Keutzer considered that most cells in any library have
corresponding functions where literals are used only once, i.e. whose represen-
tations are trees. Notable exceptions are the exclusive (N)OR gates. He proposed
then to approximate the graph representation by trees, and to use tree matching
algorithms to detect the isomorphism. An example is shown in Figures 4 and 5.

CELL LIBRARY TARGET GRAPHS
R |
NAND2 :D,_ N\
=D e A
NOR2 h
™ M
AOIZ2

Figure 4: a) Simple library; b) target trees.

'UNMAPPED NETWORK (AFTER DECOMPOSITION)

e o ow

SUBJECT GRAPH

MAPPED NETWORK

Figure 5: Unmapped network: o = (abe 4 (d4¢)f)’; subject graph and mapped
network.

3.1.1 Tree-based matching

Let us assume then that the subject graph can be represented by a tree, by splitting
the terminal vertices, and that the library is also represented by a family of trees.
A library cell matches a vertex of the subject graph, if there is an isomorphic

582

subgraph. The problem can be solved in linear time. Several algorithms have
been presented for tree matching [12]. Some transform trees into patterns, and
use pattern matching techniques. A simple but efficient method is to compare
the in-degree of pairs of vertices in both the subject and the target trees, starting
from the roots and proceeding top-down until the leaves of the target tree are
reached. If there is a mismatch, the algorithm terminates with an unsuccessful
match. Else, the adjacent vertices are recursively visited.

3.1.2 Tree-based covering

Keutzer combined the tree matching algorithm with a dynamic programming
procedure to perform covering. To be specific, let us consider the case in which
an optimal area implementation is sought for. The algorithm traverses the subject
graph in a bottom-up fashion. At any intemal vertex, it attempts to match the
rooted subtree at that vertex with the trees corresponding to all cell libraries.
There are three possibilities for any given cell.

e The cell tree and the rooted subtree match. Then, the vertex is labeled with
the cell cost.

« The cell tree is isomorphic to a connected subtree of the rooted subtree with
the same root and a set of leaves L. Then, the vertex is labeled with the
cell cost plus the labels of the vertices L.

o There is no match.

If we assume that the library contains the gate implementing the base function
then, for any vertex, there exists at least one cell for which one of the first two
cases applies, and we can therefore label that vertex. Therefore, it is possible to
choose at each vertex of the subject graph the best labeling among all possibie
matches. At the end of the graph traversal, the vertex labeling corresponds to an
optimum covering. An example of this procedure is given in Figure 6.

Network Subject graph Vertex Match Cost
x NAND2(bs) NAND2
y INV(a) wv
z NAND2(x,d) 2NAND2
- NAND2(y,2) 3 NANDZ +INV
° INV(w) 3NAND2 + 2INV

AOR21(x,d;s) NAND2 + AOL2E

Figure 6: Example of structural covering: a) network; b) subject graph ; c)
possible matching at each vertex and corresponding cost.

Note that the overall optimality is weakened by the fact that the total area of
a mapped network depends also on the partitioning and decomposition steps.

In the case that a minimum delay covering is sought for, the algorithm can
still be applied with the following considerations. When the propagation delay of
each cell is insensitive to fanout, then the overall input/output delay of the subject
graph can be computed by adding the cell propagation delay to the maximum
arrival time at the cell inputs. Therefore, when a cell tree is isomorphic to a
connected subtree of the rooted subtree with the same root, then the vertex is
labeled with the cell cost (propagation delay) plus the maximum of the labels
in the set L. This guarantees the construction of a minimum delay mapping for
this delay model.

An accurate delay modeling of most libraries requires a fixed term plus the
product of a fanout coefficient and the capacitive load. Libraries have multiple
gates for the same logic function, according to the required drive. The higher the
fanout drive, the lower the fanout coefficient but the higher the input capacitance,
because larger devices are employed. The problem of selecting a cell in a
bottom-up traversal of the subject graph is difficult due to the fact that the input
capacitance of the following stages are unknown when matching, because the
following stages correspond to vertices closer to the root and therefore yet to be
mapped.

Rudell realized that for most libraries the values of input capacitances are a
finite and small set [18]. Therefore he proposed to use binning techniques to
label with integers the possible total capacitive loads at each vertex. This can
be done as a pre-processing step. The tree-matching algorithm is still used, but
for each vertex an array of solutions is kept, corresponding to the possible loads.
For each match, the arrival time is computed for each load value. For each input
to the matching cell, the best match for driving the cell (for any load) is selected

and the corresponding arrival time is used. If enough labels are used to cover
all possible loads, then the algorithm guarantees an optimum solution.

The computational complexity of the tree-covering approach can be evaluated
as follows. Let us consider the optimum area covering problem. Attempts for
matches are done at every vertex of the subject tree and for each library element.
Since the library size is a constant, the complexity is linear in the size of the
subject graph. Similar considerations apply to minimum delay covering, where
now there is an additional linear dependence on the number of labels used in the
discretization of the load values.

While the tree matching algorithm is very efficient, there are three pitfalls.
First, there are multiple non-isomorphic representation for some cells, because the
decomposition into a given base functions is not necessarily unique. Therefore,
a library cell may correspond to more than one target graphs. As a result, each
vertex of the subject graph must be tested for matching against a larger number
of target graphs, increasing the computational burden of the algorithm.

Second, cells with multiple use of literals, such an exclusive (N)OR gates,
cannot be represented by trees. The tree matching and covering algorithm can
be extended to subject and target graphs, where the input vertices (i.e. vertices
with null in-degree) can have multiple outdegree, i.e. where the corresponding
subgraphs obtained by deleting the input vertices are trees. In this case, such
target graphs can match vertices of the subject graphs as long as the corresponding
input vertices match input vertices. This provides a limited use of cells with
multiple use of literals.

Lastly, structural matching can detect a subset of the possible matches and it
does not permit the use of the don't care information in the mapping process.
This can lcad to solutions of inferior quality.

3.2 Covering algorithms based on Boolean matching

Boolean matching can overcome the pitfalls of structural matching, but it is in
principle a computationally more intensive task, because it requires to check the
tautology between a function (representing a portion of the network) and the
set of functions representing each library element, for all variable permutations.
Maithot showed [16] that the combination of Boolean matching techniques with
an effective reduction of the search space based on symmetry considerations can
lcad to efficient implementations that are competitive with the structural approach
in both computing time and quality of results.

We denote the function representing a portion of the network by
T{ri.rq.--.0y), and we call it cluster function. ~ We represent by
Glry.rq.---.x,) the target function, i.e. the function representing a library
cell. The covering algorithm tries to match selected cluster functions to all the
target functions in the library. In practice, filtering techniques, based on neces-
sary conditions for matching, can be used to screen the library and to improve
the computational efficiency. We defer the description of the covering procedure
until Section 3.2.2 and we describe first the Boolean matching algorithm.

3.2.1 Boolean matching

Boolean matching questions the existence of a variable order v, such that
Flayorgooay) = Gli(ryg g o0y, is tautology. Different methods
can be used for tautology checking. In particular, for a given ordering, binary
decision diagrams (BDDs) can be used as the basis for Boolean comparisons
[4]. The two logic function are represented by two trees, obtained by recursive
Shannon decompositions about their variables in the given order.

Equating the two functions is a tautology when the two trees have the same
value at the corresponding leaves. An example is shown in Figure 7. If don't
care conditions are taken into account, then it is sufficient to check that only the
values at the care leaves match. This test needs to be repeated for all possible
orderings + or until a match is found.

Boolean matching can be made practical, by considering filters that reduce
drastically the number of permutations to be considered. Filters check necessary
conditions for matching. For example:

o Any input permutation must associate each unate (binate) variable in the

cluster function to a unate (binate) variable in the function of the target
function.

o Variables or groups of variables that are interchangeable in the cluster
function must be interchangeable in the target function.

The first point implies that if the cluster function has i» binate variables, then
only ! {n — 1)} permutations of the input variables are needed. The second
point implies that symmetry classes can be used to simplify the search. A
symmetry class is a set of variables that are interchangeable without affecting
the logic functionality.For a given function /(4 y.ri ... P v,), and
+, belong to the same symmetry class if

B I A Vo) = Flee P Fivea. ry)

L=AB +BC+AC

Figure 7: Boolean matching with Binary Decision Diagrams.

The symmetry property of completely specified functions is an equivalence rela-
tion (it is reflexive, symmetric and transitive), hence if {.;. ;) and {r;..r}} are
two symmetry sets, then {+;, ;] is also a symmetry set. Being an equivalence
relation, the symmetry property of variables in logic equations implies a partition
of the variables into disjoint subsets.

Symmetry classes are used in three different ways to reduce the search space.
First, they are used as a filter to quickly find good candidates for matching. A
necessary condition for matching a cluster function ¥ by a target function ¢ is
that both have exactly the same symmetry classes. Hence only a small fraction of
the library elements need be checked by the computationally intensive Boolean
comparison. The symmetry classes for each library element are calculated once
before invoking the mapping algorithm.

Second, symmetry classes are used during the ordering of the variables. Once
a library element ¢ that satisfies the previous requirement is found, the sym-
metry sets of F are compared to those of G. Then only variables belonging to
symmetry sets of the same size can possibly produce a match. Since all variables
from a given symmetry set are equivalent, the ordering of the variables within
the set is irrelevant. This implies that the permutations need only to be com-
puted over symmetry sets of the same size. Thus the number of permutations
required to detect a match is: J]'_,(5;!), where ; is the number of sets of
cardinality /, and ¢ is the size of the largest symmetry set. For example, the gate
AOIl1 = (ab+ ¢d + ¢ [} in the LSI Logic library has 3 sets of coupled unate
variables ({u.b}. {¢.d}.{c. J'}), and thus for that library element 5, = 3.

Third, symmetry classes are used to simplify the generation of the BDDS.
Indeed, interchangeable variables have interchangeable cofactors, and therefore
the number of cofactors to be computed for an »—input function is less than
2. In general, for a symmetry set containing i variables, only :» + 1 cofactors
are different (corresponding to 0.1....:» variables set to 1). Assuming the
n variables of F are grouped into & symmetry sets of size ..., n;. (where
Z.k:o n; = n), then the number of required cofactors is ﬂfzo[zz, 4+ 1) <21,

Although in the worst case logic equations might have no symmetry at all, our
experience with commercial libraries (such as CMOS3, LSI Logic or Actel) is
that the library elements are highly symmetrical, the average 5; being less than
2, as shown in Figure 8.

1%
100
m
160

Number In the Library

Cardinallty of SI (Average: 1.36)

s] it [cvos

Figure 8: Distribution of symmetry sets .5;.

As a final remark, the unateness information and symmetry classes are used
together to further reduce the search space. Unate and binate symmetry sets are
distinguished, since both unateness and symmetry properties have to be the same
for two variables to be interchangeable. Thus 5; = S + 57, where 5! is the
number of sets of cardinality / made of unate variables, 5! is the number of sets
of cardinality / made of binate variables. This further reduces the number of
permutations to [T¢_, SFt-SH = [TI, SE1- (5 ~ SO < [T, Sit

3.2.2 Boolean covering

We describe here a procedure for Boolean covering of a subject graph. We
consider first Boolean covering for area optimization.

We define a cluster as a connected sub-graph of the subject graph, having
only one vertex with zero out-degree, called the root. It is characterized by its
depth (longest directed path to the root) and its number of inputs. The associated
cluster function is the Boolean function obtained by collapsing {3] the Boolean
expressions associated to the vertices into a single Boolean function.

As an example, consider the subject graph shown in Figure 9. The root of
the subject graph is v, comresponding to variable f. The base functions for the
decomposition of the subject graph are the 2-input AND and OR functions.

fo= j+t
Jo= 1y

r = 4z
y = a+c
z = T4d

We consider the clusters, that have ; as a root and we denote them by

{Kj.1,....#; n}. The corresponding cluster functions are:
LR} Ly
K2 = afatc)
k)3 = (c+z)y
K4 = (e+zia+rc)
K5 = (e+T+d)y
K6 = (e+T+dNa+c)

Figure 9: Clusters of the Boolean covering algorithm.

The covering algorithm attempts to match each cluster function r; ; to a
library element. The area cost of a cover is computed by adding to the cost
of the matching of the cluster »; ;. under consideration the cost of the clusters
corresponding to the support variables in the cluster function of #: ; ;. When the
library under consideration includes the base functions, then there is always at
least one match for each vertex rj. When more than one match is found, then
the minimal area-cost match is selected.

Let us consider now the problem of minimizing the the delay at vertex « and let
us assume fanout independent propagation delays. In this case, the propagation
delay through a cluster is added to the maximum of the arrival times at its inputs,
to compute the arrival time the vertex v;. When matchings exist for multiple
clusters, then the minimal arrival time match is selected.

The Boolean covering algorithm is based on the dynamic programming argu-
ment for structural matching described in Section 3.1.2. However, it is important
to remark that its complexity is higher, because when visiting each vertex of the
subject graph multiple clusters are matched. A heuristic to bound the number of
clusters is to limit the depth of the clusters. In this case, the rumber of clusters
can be considered constant and the algorithm complexity linear in the size of
the subject graph. However, limiting the clustet depth weakens the optimality
property.

584

The Boolean covering algorithm still yields optimum solutions for decomposi-
tions of the subject graph such that no vertex, other than the inputs, has multiple
out-degree, and when the depth of the clusters is unbounded. It is important to
stress that the optimality is related, as in the case of structural covering, to the
particular decomposition, i.e. the quality of the results could be improved by
changing the decomposition of the subject graph. Similarly the overall quality of
a mapped circuit depends on the partitioning step as well. Therefore the global
optimality of the covering step per se has a limited practical value, and near
optimal covering solutions are often more than adequate to obtain good mapped
networks.

3.3 Covering algorithms and phase assignment

We consider in this section the phase-assignment problem in connection with the
matching problem, because they are closely interrelated in affecting the cost of
an implementation. Therefore we consider the possibility of a match for a cell
that implements the function’s complement. Since a complemented signal can be
used to feed the following stages, we assume that signals and their complements
are available. The goal of considering the phase-assignment problem with the
technology mapping is to find the best cover, regardless of the phase of the
signals. Since inverters may be required, the cost of the inverters has to be
taken into account along with the cost of the cover. Therefore we reconsider the
covering algorithms.

3.3.1 Structural covering

The optimal phase assignment can be achieved by using a clever trick. Consider
the subject graph and the target graphs after decomposition into the base function.
All connections between base gates are replaced by inverter pairs, that leave the
overall function unchanged. The dynamic programming covering algorithm can
now take advantage of the existence of both phases for every signal in the subject
graph. It is important however that the newly introduced inverters are removed,
when not contributing to lowering the overall mapping cost. For this reason,
a fake element is added to the library. It consists of an inverter-pair, whose
actual implementation is a connection, and whose cost is zero. Because of the
optimality of the covering algorithm, the computed solution using inverter pairs
has lower (or at most equal) cost than a solution computed without the inverter
pairs. The only drawback is a slightly increased computational cost, due to the
larger size of the subject and target graphs.

3.3.2 Boolean covering

The Boolean match is redefined as follows. Let the cluster function be:

Flrio....). We denote the phase of variable »; by: o, € {0.1), where
ol = for ¢y = 1, 0 = 7 for o; = 0.

Given a cluster function £ (.ry.... .. r,,), and a target function G(y.... .)y @
match exists if there is an ordering « and a phase assignment {oy.... .o, }, of

the input variables of £, such that one of the following equation is a tautology.

f(.:"l‘",‘z';’,... Y = Gl g rn))
7:(,1*'1", ry? = Ge{ey. g0, vy}

In other words, if we define the NPN-equivalent set of a function F as the set of
all the functions obtained by input variable Negation, input variable Permutation
and function Negation we say that a cluster function £ matches a target function
G when there exist a NPN-equivalent function which is tautological to ¢;.

For example, any function F(a.h} in the set: {a + bh. 7 + h.u + b.7 +

b, ayp.@h. ab,7h} can be covered by the library element: Gy rp) = o + o9
Note that in this example ¢/{.ry,.r2) has » = 2 inputs, and can match n!.2" = 8
functions.

The covering algorithm described in Section 3.2.2 can still be used, provided
that the matching algorithm is extended. Therefore the Boolean matching al-
gorithm needs to compare two BDDs for all possible variable orders +* and for
all possible phase assignments o, of, at least, until a match is detected. Even
though in the worst case »!.2" comparisons are required, the state space reduc-
tion techniques based on symmetry and unateness considerations described in
Section 3.2.1 still apply. For example, only binate variables need to be checked
in both phases {16]. Experimental results have shown that Boolean matching
with phase assignment is very efficient.

4 Concurrent logic optimization and technology
mapping

We consider in this section the possibility of combining logic optimization and
technology mapping in a single step. As we mentioned before, most approaches
to technology mapping presume a preventive technology independent logic op-
timization. The reason for separating these two steps lies in the fact that the

multiple-level optimization techniques do not impose constraints on the structure
of the expressions being manipulated, such as having to match some library ele-
ment. For example, the extraction of a sub-expression is done regardless whether
this sub-expression has a match. It is thought that by constraining the optimiza-
tion techniques to provide valid matches, the solution space would be reduced
and the results would be poor.

We concentrate here on a subset of the logic optimization algorithms that
arc based on the use of don’t care conditions. The importance of the use of
don't care conditions in multiple-level logic synthesis is well recognized [1]. We
consider here don't care conditions that are specified at the network boundary and
that arise from the network interconnection itself [1]. Since the topology of the
network changes during the covering stage, don’t care conditions are dynamically
computed.

Consider a partially mapped network, as shown in Figure 10. The intercon-
nection of the cells in the mapped portion of the network induce some relations
among the variables. For example, if vertex v, corresponding to variable [is
mapped to a cell specified by function ¢, the equation [= ¢ implies that the
relations among the variables given by f «+ G can never happen. The union of
these relations has been termed satisfiability don’t care (SDC) set {1]. Consider
again the partially mapped network. We are interested in the subset of the SDC
set that can affect a cluster function /. In this case, let M be the subset of
network variables that are not part of the support of 7. By taking the iterated
consensus of the SDC set with respect to A/ we obtain the set of impossible
patterns for F, that is termed controllability don’t care (CDC) set of F. The
consensus is computed by eliminating iteratively the variables in A/ from SDC;
the consensus of SDC with respect to m € M is SDC,=0 - SDCyy=1.

By using the controllability don't care set of F while trying to match F,
we combine Boolean simplification with technology mapping. An extension to
this operation can be achieved by using the controllability don’t care set of the
unmapped network, i.e. the set of patterns that the mapped network cannot
generate. In this case, a matching can exploit the use of a variable that is not in
the support of ', to reduce the cost of a cover. This approach is then analogous to
the use of Boolean division, which is now performed concurrently to technology

mapping.

Figure 10: Example of a partially mapped network.

4.1 Use of don’t care conditions

The simplest approach to using don’t care conditions in technology mapping is
to simplify the cluster functions before matching. This approach has a potential
pitfall. Don't care conditions are usually exploited to minimize the number
of literals (or terms) of each expression in a Boolean network. While such a
minimization leads to a smaller (and faster) implementation in the case of a design
style based on cell generators [2), it may not improve the local area and timing
performance in a cell-based design. For example, cell libraries exploiting pass-
transistors might be faster and/or smaller than other gates having fewer literals. A
pass-transistor based multiplexer is such a gate. For example, consider a cluster
function F = (. + y): and a don’t care set DC = J=. Then (& + y}: is the
representation that requires the least number of literals (3), and the corresponding
logic gate is implemented by 6 transistors. On the other hand, + 7 + y= requires
one more literal (4), but it is implemented by only 4 pass-transistors, and it is
likely to be faster.

This example shows that applying Boolean simplification before matching may
lcad to inferior results, as compared to merging the two steps in a single task. For
this reason, we consider directly the use of don’t care sets in Boolean matching
in the scarch for the best implementation in terms of area (or timing).

Boolean matching that incorporates the don’t care information can be done
using the algorithm presented in Section 3.2.1. Unfortunately, when don’t care
conditions are considered, the target function F cannot be uniquely characterized
by a symmetry set. Therefore the techniques based on symmetry sets presented

585

in the previous section no longer apply and the Boolean matching algorithm
would require in the worst case »! - 2" BDD comparisons.

Another straight-forward approach is to consider all the completely specified
functions M that can be derived from F and its don't care set DC, by adding to
F all subsets of DC. In this case, the symmetry sets can be used to speed-up
matching. Unfortunately, there are 2V possible subsets of D, where ' is the
number of minterms in DC. Therefore this approach can be used only for small
don’t care sets. For large don’t care sets, a pruning mechanism has to be used
to limit the search space.

4.2 Compatibility graph and Boolean matching

We consider in this section a formalism that allows us to use efficiently don’t
care sets in matching. First we introduce a representation of »-variable functions
that exploits the notion of symmetry sets and NPN-equivalence and that can be
used to determine matchings while exploiting the notion of don’t care conditions.
For a given number of input variables », let (;(1",) be a graph whose vertex
set | is in one-to-one correspondence with the ensemble of all different NPN
equivalent functions, and whose edge set £ = {(¢;. ¢;)} is such that the functions
represented by v; and v; differ by one minterm. Such a graph (/(1". /) forn =3
is shown in figure 11.

&
q &8 &
==

M
HH 07 5 o

) Figure 11: Matching compatibility graph for 3-variable Boolean space.

Consider the vertex vr corresponding to a cluster function 7. The cluster
function matches cell ¢ if there is a path in the graph (+(1" [7) from v x to vg
(possibly of zero length) whose edges correspond to minterms in the don’t care
set of . The graph (i(1, I') is called matching compatibility graph, because it
shows which matchings are compatible with the given function.

Mailhot proposed to use the compatibility graph for Boolean matching with
don't care information as follows. The graph is annotated, by adding the infor-
mation whether a vertex corresponds to a library cell and, if so, its cost. Then,
each vertex is annotated with the paths to the other vertices comesponding to
library elements. Since each edge of the compatibility graph corresponds to a
minterm, then each path is denoted by a set of minterms. For any a cluster func-
tion , the Boolean matching algorithm of Section 3.2.1 can find efficiently
the vertex v in the graph corresponding to it. This vertex may be annotated
by a library element or not. The library elements that can be matched to F
correspond to those that can be reached from «r by a path whose minterm set
is included in the don'’ care set for F. Therefore all the possible matches of
modulo the don’t care set can be found and the best one chosen.

To date, this approach has been successfully implemented for functions of 3
and 4 variables, where there are 14 and 222 different vertices in the compatibility
graph. All the paths can be computed once for any library and stored. Therefore
the matching algorithm is still very efficient. For functions of 5 variables or more,
the same approach can be used, even though it is riot convenient to store the
compatibility graph and the paths because of their size. (There are 616,126 and
~ 2 x 10 vertices in the compatibility graphs for 5 and 6 variables respectively.)

5 Technology mapping for functional libraries

We considered so far libraries that are arbitrary collections of combinational
gates. One of the difficulties of technology mapping stems from the lack of
completeness of the set of functions describing the gates. We comment now
on the technology mapping problem for libraries that can be specified with-
out resorting to a full enumeration. A simple example is the case of »n—input
NAND/NOR gates. A more relevant one is considering the family of gates that
can be implemented with a ceiling on the number of devices that can be placed
in series and/for in parallel. This example is relevant to the case of functional
cell generators, that can synthesize arbitrary gates subject to these bounds [2].
In this case, technology mapping consists of manipulating the equations of a
Boolean network, so that they satisfy given constraints. To be more specific,
if we represent an expression at a vertex of a Boolean network by a reducible

graph, whose series/parallel components are in one to one relation with the con-
junction/disjunctions of the expression, then the depth and the breadth of the
graph relate to the maximum number of devices in series and/or in parallel.
Therefore expression graphs can be labeled as feasible or unfeasible. A tech-
nique for constrained mapping was presented by Berkelaar and Jess [2). Their
algorithm processes the expression graphs one at a time. It uses expression sub-
stitutions, i.e. the replacement of an expression by a new variable, to decompose
the unfeasible graphs.

A similar technology mapping problem arises when considering RAM-based
field programmable gate arrays (FPGA). Some FPGA architectures can imple-
ment any combinational function with a bound on the number of inputs. Again,
this problem can be solved by decomposing iteratively the unfeasible expressions
of a Boolean network, until all functions satisfy the given bound. Some other
FPGA architectures, such as the one marketed by Xilinx Inc., can implement
multiple-output combinational functions, with a bound on the number of inputs.
To be more specific, let us consider the Xilinx 3000 family, that is an array
of programmable modules (cells) that can implement any 5-input single-output
or two-output function, where two-output functions cannot have more than 4
common inputs. To use efficiently the two-output cell feature, bounded-input
function pairs sharing common inputs have to be detected. A heuristic algorithm
was proposed [8], where the information of the overlap of the expression support
was used to drive pairwise decomposition algorithms. We refer the interested
reader to [8] for further details.

Specialized technology mapping algorithms have also been proposed for
fuse/antifuse electrically programmable gate arrays (EPGA). These are arrays
of uncommitted modules, where the personalization and wiring is achieved by
fuse/antifuse technology. For example, the modules of the EPGAs marketed by
Actel Inc. are programmed by stuck-at 0/1 of some inputs and/or by bridging
some input pairs. Therefore, also in this case, there is no need for an explicit
enumeration of the library cells, because their logic function can be derived from
that of the uncommitted module in a functional way.

An approach to technology mapping for EPGAs was proposed in {7]. It is also
based on the Boolean covering algorithm, described in Section 3.2.2. It differs
in the matching step. The entire library is represented only by the uncommit-
ted programmable module, by means of the family of BDDs corresponding to
all possible variable orderings. This family is a multiple-rooted two-terminal
directed acyclic graph, called global BDD or GBDD. The cluster function is
also represented by a BDD. Contrarily to the approach used in Section 3.2.1,
the BDDs are now reduced [4], for the sake of efficiency. Let us consider the
cells that comrespond to a personalization of the uncommitted module by stuck-at
1/0. The search for a match of the cluster function can be cast into checking
the isomorphism between the cluster BDD and a rooted subgraph of the GBDD.
‘When a match is found, the labeis on the path joining a root of the GBDD to the
root of the subgraph determine the personalization pattern. A similar, but more
involved, technique is used to determine a match corresponding to a personal-
ization requiring a bridging of input variables. We refer the interested reader to
[7] for further details.

6 Summary

Technology mapping is a very important task of logic synthesis for array-based
and cell-based digital circuits, where gate primitives are described by cell li-
braries. Technology mapping provides the link between the functional specifi-
cation of a circuit and its structural implementation, by taking into account the
technological parameters of the libraries. Technology mapping is a complex task,
even when considering only multiple-level combinational circuits. Therefore,
practical approaches are based on rule-based systems or on heuristic algorithms.

Rule based technology mappers perform step-wise transformations in a net-
work. Rules select a portion of the circuit to be replaced by an appropriate pat-
temn, that is stored in a database. Most commercial implementation of technology
mappers use rule-based systems. While this approach can be very versatile in
providing rules of different kinds and in supporting various technologies and
libraries (including multiple-output and sequential gates), the creation and man-
agement of the database (such as adding/deleting library elements) is a delicate
task. The completeness of the database can affect significantly the quality of the
results.

Algorithms for technology mapping have been the object of intensive inves-
tigation. They involve two major tasks: matching and covering. Two major
approaches have been pursued. The former uses a graph model of the networks
and graph matching algorithms, while the latter uses Boolean operations based
on BDD comparisons. The structural approach was used by Keutzer in program
dagon [13] and by Rudell and others in program mis [3]. The Boolean approach
was introduced by Mailhot in program ceres [16]. Experimental results have
shown that the Boolean approach is competitive with the structural approach
in both quality of the results and computing time. Both approaches are also
competitive with rule-based systems on standard libraries.

The Boolean approach to technology mapping has opened new frontiers. The

use of don’t care information allows to improve the quality of the solution by
merging logic optimization and technology mapping into a single step. In ad-
dition, the Boolean approach has shown to provide a promising framework for
developing specialized mapping algorithms into new technologies, such as elec-
trically programmable gate arrays. -

Acknowledgements

The author wish to thank Frédéric Mailhot for many discussions on the subject.
This work was supported in part by the National Science Foundation under grant
MIP-8719546, by DEC, ATT and NSF under a PYI award, and by ARPA under
grant J-FBI-88-101.

References

(1] K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, C. R. Morrison,
R. L. Rudell, A. Sangiovanni-Vincenteili, and A. R. Wang. Multilevel logic
minimization using implicit don't cares. IEEE Transactions on CAD/ICAS,
Vol 7, No. 6, pp. 723-740, June 1988.

[2] M. R. C. M. Berkelaar and J. A. G. Jess. Technology mapping for standar-
cell generators. International Conference on Computer-Aided Design, pp.

470473, November 1988.

[3] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli and A. R. Wang.
Mis: A multiple-level logic optimization system. [EEE Transactions on

CADIICAS, Vol. 6, No. 6, pp. 1062-1081, November 1987.

[4] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, Vol. 35, No. 8, pp. 677-691, August

1986.

[5] J. Darringer, D. Brand, W. Joyner, and L. Trevillyan. Lss: A system for
production logic synthesis. IBM Journal of Res. and Dev., Vol 28, No 5,

pp. 537-545, Sep 1984.

[6] E. Detjens, G. Gannot, R. L. Rudell, A. Sangiovanni-Vincentelli, and A. R.
Wang. Technology mapping in mis. /nternational Conference on Computer-
Aided Design, pp. 116-119, November 1987.

[7] S. Ercolani and G.De Micheli. Technology Mapping for Electrically Pro-
grammable Gate Arrays. Design Automation Conference, June 1991.

[8] D.Filo, J. Yang, F. Mailhot and G. De Micheli. Technology Mapping for
A Multiple-Output RAM-Based Field Programmable Gate Array. EDAC,
Proceedings of the European Design Automation Conference, Amsterdam,

pp. 534-538, February 1991.

[9] M. Garey and D.Johnson. Computers and Intractability W.Freeman and

Co., San Francisco, 1979.

[10] D. Gregory, K. Bartlett, A. de Geus, and G. Hachtel. Socrates: A system
for automatically synthesizing and optimizing combinational logic. Design

Automation Conference, pp. 79-85, June 1986.

[11] J.Ishikawa, H.Sato, M.Hiramine, K.Ishida, S.Oguri, Y.Kazuma and S.Murai.
A Rule-based reorganization system: Lores/ex. Proceedings International

Conference on Computer Design, pp.262-266, October 1988.

[12] C.Hoffman and M.O'Donnel. Pattern matching in trees. Journal of ACM

Vol 28, No. 1, pp.68-95, January 1982.

(13] K. Keutzer. Dagon: Technology binding and local optimization by dag
- matching. Design Automation Conference, pp. 341-347, June 1987.

[14] M. C. Lega. Mapping properties of multi-level logic synthesis operations.

International Conference on Computer Design, pp. 257261, October 1988.

{15} R. Lisanke, F. Brglez, and G. Kedem. Mcmap: A fast technology map-
ping procedure for multi-level logic synthesis. International Conference on

Computer Design, pp. 252-256, October 1988.

(16} F. Mailhotand G. De Micheli, Technology Mapping with Boolean Matching
European Design Automation Conference, Glasgow, Scotland, pp. 212-216,

March 1990.

[17] C. R. Morrison, R. M. Jacoby, and G. D. Hachtel. Techmap: Technology
mapping with delay and area optimization. In G. Saucier and P. M. McLel-
lan, editors, Logic and Architecture Synthesis for Silicon Compilers, pp.

53-64. North-Holland, 1989.

{18] R. Rudell. Logic Svnthesis for VLSI Design

M89/49. PhD thesis, U. C. Berkeley, April 1989.

Memorandum UCB/ERL

