Synchronous Logic Synthesis:
Circuit Specifications and Optimization Algorithms

Maurizio Damiani

Giovanni De Micheli

Center for Integrated Systems
Stanford University

Abstract

Synchronous logic networks, that model interconnections of combi-
national logic gates and synchronous registers, provide a useful ab-
straction model for digital design. We characterize synchronous logic
networks in terms of graphs, logic functions and synchronous don’t
care conditions induced by the external and internal interconnection
of the network. We present algorithms to compute the don’t care set
for each local logic function of the network from the synchronous
don’t care conditions that characterize the entire network. Such lo-
cal don’t care conditions can be used to optimize locally each logic
function to produce a smaller, faster and better testable network.

1 Introduction

Synthesis techniques for combinational multiple-level logic circuits
have been the object of extensive investigation [1,2,34] and com-
mercial implementations have shown to be practical for product-level
design of digital circuits.

Most circuits of interest in digital design are synchronous circuits,
i.c. interconnections of gates and registers with synchronous clocking.
Methods for synthesizing and/or optimizing synchronous circuits have
been lagging behind, due to the additional complexity of handling
registers and feedback connections. Most logic synthesis systems
deal with such circuits by partitioning them into an interconnection
of a combinational logic component and registers and by optimizing
the combinational portion of the circuit by means of combinational
logic algorithms.

Techniques directed to sequential logic synthesis traditionally use

behavioral descriptions of the circuits (in terms of state diagrams or -

equivalent representations) [5,6,7,8,9]. In this paper we attack the
problems of synchronous logic synthesis by considering a structural
approach, i.c. we consider circuit specifications as interconnection of
combinational gates and registers. Such a representation can support
iterative improvement of a design. For example, a designer provides
a synchronous circuit implementation in terms of a schematic and
a tool suite optimizes the circuit while preserving its I/O behavior.
In addition, such an approach is appropriate when structural circuit
specifications are derived automatically from high-level descriptions
via high-level synthesis techniques {10].

In this paper we analyze first thé concept of synchronous Boolean
network, and we show that it can be characterized by a set of syn-
chronous don’t care conditions derived from the structural model. We

then show that these conditions can be used to simplify the internal
Boolean functions describing the network, as well as identifying the
redundancies to provide better testable synchronous networks.

2 Basic concepts and definitions

We consider synchronous circuits that are interconnections of com-
binational logic gates and synchronous registers with no direct com-
binational feedback. We assume a single clocking scheme for the
sake of simplicity. We model synchronous circuits by synchronous
Boolean networks. A synchronous Boolean network is described by
its weighted network multigraph ¢ = (17, L.11"). The elements of
the vertex set V' = V/ U VS UV = {r} are in one-to-one cor-
respondence with primary inputs, logic gates, and primary outputs,
respectively. There is an edge ¢ from a vertex ;¢ to a vertex v with
weight w(c) if the output of the gate in y is connected to an input of
the gate in 1 through a cascade of (possibly zero) (¢) registers.

Example 1. A synchronous Boolean network and its graph are
shown in Fig. 1 and 2, respectively. It is a portion of the phase
decoder of the Digital Audio Input-Output Chip [11], that processes
an input data stream with a biphase encoding (as generated by a CD
player) and converts it to a stream of decoded Boolean samples or
detects biphase encoding violations O.

In our network model, each Boolean variable corresponds to an
edge, and is denoted by a string (e.g. 1) The edge associated to
a variable, say 1, is indicated by ¢,,. A variable is said to be a
fanout (fanin) variable of a vertex v if r, is an edge whose tail (head)
end-point is .

We assume an integer discretization of time into time-points
1.2,-.-,n. A synchronous literal is a logic variable or its com-
plement evaluated at a given time-point. The value that a literal .r
takes at time n is denoted by x(n). A synchronous cube or syn-
chronous product or shortly a cube is a product of synchronous
literals, c.g. @ g(n)ai{n —1).

A synchronous Boolean function specifies the value of a variable
at a time point in terms of synchronous literals; in particular it can
be cast as a sum of synchronous products. The value of a fanout
variable y(n) of a vertex i is given by an expression [, of the fanin
variables, specifying the functionality realized by the logic gate in 1.
For example, in the circuit of Fig. (1), ys(n) = va{n)Frs(n — 1)
hence f,, = xz4(n)Fas(n —1).

CH2868-8/90/0000-2566$1.00 © 1990 IEEE

The retiming of a synchronous literal x(n) by 7 (hereafter in-
dicated by R7(x(n))) is the literal x(n + 7). The retiming of an
expression by 7 is the retiming of all its synchronous literals by 7.

Figure 2: Network graph for the circuit in Fig. (1).

In general, a synchronous Boolean network may have cyclic depen-
dencies, i.c. its corresponding graph be cyclic. We assume that each
cycle has strictly positive weight, to model the restriction of break-
ing combinational logic cycles by at least one register. A network is
called unidirectional or definite [6] when the graph is acyclic.

The fanin set (fanout set) of a vertex v is the subset of vertices
that are tail (head) of an edge incident to ~# and it is denoted by F'I(1)
(FO()).

3 Synchronous don’t care conditions.

Don’t care conditions may be derived from circuit functional or
structural specifications. When the circuit functional specifications
are known, (e.g. state diagram), functional don’t care conditions can
be derived by considering the state of the network. For example,
the knowledge of an input that can be neglected in a given state falls
in this category. This type of conditions has been considered, for
example, in [5,6] and generalized in [12]. When structural speci-
fications are given, the don’t care conditions are derived from the
network topology. We consider in the sequel the structural don’t care
conditions because we assume as input datum the network structural
specifications only.

Typically, don’t care conditions arise when a synchronous Boolean
networks is connected to other ones, or when its inputs are some
form of encoded signals. Such don’t care conditions represent input
sequences that never occur at the network input, or unobserved out-
puls at some time points. As a consequence, the network functionality
is incompletely specified, and such external don’t care conditions can
be used to simplify the network structure. By the same token, the
functionality of a portion of a Boolean network is incompletely spec-
ified, due to its embedding in the entire network. This fact gives rise
to the internal don’t care conditions.

A don't care condition can be represented by a synchronous cube.
A set of don’t care conditions can therefore be represented by a sum

2567

of synchronous cubes. In particular, a synchronous cube can represent
an arbitrary sequence of values.

A synchronous cube is said to represent a time-invariant don’t
care condition if it represents a don’t care condition Vn > 0. Note
that there are don’t care conditions that depend on the initial values of
the registers that are not time-invariant and that represent the transient
part of the don’t cares.

Example 2. Consider the circuit of Fig.(3), representing the cascade
interconnection of two simple synchronous networks. Assume that
the registers of /1 are initially reset to 0. Then the sum z1(0) +
#2(0) + =3(0) cannot occur at the inputs of /2. However note
that z1{n) + :2(n) + F3(n) may occur for n > 0. Therefore this
condition represents a transient controllability don’t care and not a
time-invariant one.

The cube zy(n+1)2(n)T3(n); n > 1is a don’t care condition for
the network /2, i.c. this condition cannot occur when »n > 1. This
can be shown by looking at network /1 and noticing that when,
at some time n > 1, :3(n) = 0, then necessarily x((n)ra(n) +
Ti(n — 1) = 0. Similarly, z3(n) = 0, together with the just derived
condition ¥1(n — 1) = 0, implies +3(n — 1) = 0. Hence, z(n+1) =
Ti(n+1)aa(n — 1) = 0 and the cube zy(n + 1)T2(n)T3(n) cannot be
an input to the network /2, for n > 1.

It is easy to verify, however, that the cube z(1)T2(0)73(0) is, in
general, a care condition for 1/2 because the corresponding inputs
to /2 can occur, depending on the initial conditions of the registers
in M1. Therefore z;(n + 1)Z3(n)T3(n) cannot be strictly considered
as a time-invariant don’t care. We prefer therefore to rewrite the
condition as zq(n + 2)%(n + 1)T3(n + 1);0 > 0 O,

Definition 3.1 The external controllability don’t care set (ECDC)
of a synchronous Boolean network is the sum of all the cubes of input
literals representing input conditions that cannot occur.

With reference to Example 1, the cube zy(n 4 2)5(n + 1)T3(n + 1)
belongs to the external controllability don’t care set of 1/2.

We focus now on the external observability don't care conditions
that arise from the interconnection of two synchronous networks.

Example 3. With reference to Fig. (3), let us consider the situation
at the circuit outputs of A 1. The interconnection of the two networks
limits the observability of the primary outputs of A/1. In particular,
the variable x1(n) is not observable at the output of 1/2 when z3(n +
2)+32(n+1) =1, Vo > 0. The expression z3(n + 2) +Zan+1)
represents the don’t care conditions associated to = (n), meaning that
this output of /1 is not observed (sampled) at a given time n O.

x1

x2

Figure 3: Cascade of two synchronous networks. The network M2
limits the observability of M1, while M1 limits the controllability of
M2

Definition 3.2 The external observability don’t care set
(EODC(n)) of a primary output variable =(n) of a synchronous

Boolean network is the sum of all the cubes of output variables rep-
resenting output conditions that are not observed.

From Example 2, z3(n+2)+ z2(n-+ 1) then belongs to the external
observability don’t care set of A71. In general, an external don’t care
set condition involves a sequence of output variables.

Let us now consider the don’t care conditions induced by the in-
ternal network topology.

Definition 3.3 The internal controllability don’t care set (/C'D(")
of a synchronous Boolean network is the sum of all the conditions of
type: y(n) @ fy; n >0 for each internal variable y of the network.

This definition is an extension of the corresponding notion for the
combinational networks [2]. Notice that each vertex imposes a time-
invariant constraint. Hence, the internal controllability don’t care set
can be represented by the sum of a finite number of time-invariant
don’t cares.

Example 4. The condition z(n)ﬂ%(;z-l(n);rz(n —2)); n > 2 belongs
to the internal controllability don’t care set of A1 01,

The notion of internal observability in a synchronous network can
be described by saying that a value of an internal variable y at time
n is not observable if it can be perturbed (i.c. by changing y(n) into
F(n)) without affecting any primary output at time » or later.

Example 5. Consider the circuit in Fig. (4). It is easy to verify
that the variable y4 is not observable at time n. (i.c. that the value
ya(n) is not observable) if ys(n — 2) = 0. The condition for the non
observability of y4(n) can be then expressed by the function Fg(n —2)
a.

Definition 3.4 The internal observability don’t care set
10DC,(n) is the set of conditions for which y(n) is not observed at
any output at time n + 7, Y7 > 0.

Notice that the concept of observability in a synchronous network
is related to the value of a variable at a specific time-point rather than
to the variable itself. In general, it is not possible to derive a time-
invariant expression of any /0 D(',(n) in terms of arbitrary network
variables. This is shown by the following example.

Example 6. In Example 4, we derived 10D, (1) = Jgln —
2); n > 0, which is actually a time-invariant expression. On the
other hand, yg(n —2) depends on the initial conditions in the network
for n < 4. In particular, if the register are all initially set to zero,
we have that 1O DCy,(0) = TODC (1) = 1 10DC,(2) = 74(0),
10DC,,(3) = va(1) , and finally /O DCy,(n) = xa(n — 2)(73(n —
4) + T3(n — 4)) for n > 4. The above expression, in terms of the
network primary inputs, is obviously not time-invariant U.

Algorithms for the computation of expressions for the observability
don’t cares will be considered in the next section.

4 Optimization of synchronous Boolean networks
using DC conditions

This section deals with the problem of determining the don’t care
conditions that are actually useful in simplifying the combinational
Boolean function at the vertices of a synchronous Boolean network,
given the circuit specifications. For this reason we want to compute

the local don’t care set of each combinational Boolean function. In
particular, since the external don’t care conditions are a problem da-
tum for a given network and /('D(" can be easily computed, we
will focus first on the problem of determining the observability don't
cares for a vertex.

Let D(',(n) denote all the don’t care conditions at time n for a
vertex v:

DCL(n) = 1CDC (YU TODC,(n)U ECDCn)y U FODC(n)

It is obvious that a don’t care can be useful for simplifying the
vertex v only if it represents a don’t care condition for every 1. In
other words, it has to be a time-invariant don’t care condition.

The problem of extracting the time-invariant componentof)(",.(»)
for a vertex will be considered in particular in Section 4.3. Once ex-
tracted, this component can be used by any two-level logic minimizer
(c.g. ESPRESSO) for simplifying the Boolean function.

4.1 Computaiion of the observability don’t cares in unidi-
rectional networks

We present here an algorithm for the construction of an expres-
sion of /() D(',(n) for the internal variables of a synchronous net-
work. For multiple-output circuits, the algorithm maintains sepa-
rate expressions for the observability of a variable at each output.
For a variable y in a circuit with » output variables =; ; / =
1.---.k these expressions are maintdined in an array [ODC,(n) =
(1ODC (1. zy). 1ODC (. 23)- - 1ODC (n.z)). Since a vari-
able is said to be unobservable if it is unobservable at any output,

&
1ODC,(n) = [[10DC(n.2) (1)
=1

The algorithm is based on the following results. Given [Q (', {n)
of a vertex 1, it is possible to compute QD" (n) for all its fanin
variables y from the equation:

dfu{n+ wicy))

y(n))

10DC ,(n) = 1ODC (0 + wie,)) +

We use f,{n+ w(c,)) because y(n) has to traverse (¢,) registers
before affecting the gate inputs, and therefore could be observed only
at n + w(r,) at the gate output.)

The major problem of determining the observability of a vertex,
however, is that of dealing with the problem of reconvergent fanout.
We want to solve the problem (well known in the combinational case
[13]) of determining the observability of a vertex given that of its
fanout variables. We have shown in [14] that this is indeed possible
in the combinational case. We use here an extension of that result for
the synchronous case. Namely, given the don’t cares of two fanout
variables y; and y, of a vertex v, it is possible to obtain [0 D()
from

L0DC, (1) = 1ODC, (Mg TLODC il (3)

=

The above expression generalizes to

L0DC, () = D, LODC, (M) ypu)cmss ()7, y100)-T 1) (4)

for a vertex with outdegree m [14].
Based on this formula, it is possible to write an algorithm for the
computation of JQDC" (n) as follows:

2568

OBSERVABILITY((+);
S= {primary oulpul vcrtices with empty fanout sel};
while (5 #17){
select 7 3 5 such that FO(v) C S;
foreach fanout variable y of 1 {
/* 1 denotes the head-end vertex of the edge r, */

LODC,(n) = LODC, (n+ wley)) + (I Ju(n + w(cy))/dy(n))
/* compute [ODC', by Eq. (2) */
}

1ODC, (1) = Tzt LODC , yytnd s y(0) 5,y ()70 (1)
/* compute JQDC', by Eq. (4) */
Si=5Uu{r);

)
The algorithm is linear in the number of edges in the graph.

Example 7. We illustrate here the operation of the algorithm on the
circuit of Fig. 4.

Initially, 5 = {r4.05). The algorithm begins by selecting the
vertices r and 3, whose observability don’t cares, calculated by
Eqgs. (2) and (3), are

. _ (ysln =1}, . _ !}s("+l)>

1ODC,(n) = (,1/4(11 +2)) 10DC (n) = Yol — 2)
Then, 5 = {ry3.r3. 14, r5}. The algorithm selects 1{, whose fanout
variables have don’t cares described by

Ta(n+2) 4 ya(n + 1))
Ta(n +2) + ya(n + 4)

r(n+ 1)+ ys(n +2))
a(n+ 1)+ ys(n — 1)

10DC,, (n) = (

10DC, (n)= (
From Eq. (3), it follows
100C, (n)=

<(T4(n+2)+ yato + D), oo Bler(n + 1) + ys(n + 2))],,,,(11))
(Taln +2) + ga(n + &)z o0 @10 + 1) + ys(n = 1)y /-

By noticing that ys(» + 2)ya(n) = 0, and that ys(n + 1) oy = 0, it
follows that

10DC, (n) =
Ta(n + 2)Pay(n +1))
(mtu +2)+ yaln + ANlg00 10 + 1) + yoln — D)y /)
In particular, note that the algorithm handled correctly the fanout
reconverge at vertex vy and the dependence of IO D(C,,(n) on the
initial conditions y¢(~2), yg(—1) for n = 0,1.

Figure 4: Example unidirectional network

In the end, the algorithm computes the observability don’t care con-
ditions for the primary input vertices, by means of Eqgs. (2-3) again.
Such don’t cares represent external observability don’t cares for the
synchronous Boolean network driving the circuit under consideration,
and may be used for its optimization,

4.2 Cyclic networks.

The computation of the full don’s care conditions for cyclic networks
requires a more elaborate treatment. For the sake of conciseness, we
report here on an extension of the technique so far developed for
acyclic networks, even though the computed don’t care conditions
may be incomplete.

Any cyclic network can be reduced to an acyclic one by cutting
the feedback loops and adding the variables corresponding to the cut
edges to the primary inputs and outputs. Alternatively, a cyclic net-
work may be regarded as the feedback interconnection of two acyclic
networks, the latter containing only the feedback interconnections.

Fig. (5) shows the circuit of Fig. (1) redrawn as a feedback
connection of two acyclic networks A/1 and 1/2, the second one
constituted purely of wires.

viol

. D%g
=]

=

1

Figure 5: The DAIO circuit of Fig. (1) as a feedback connection of
two acyclic networks. /1 and /2 :

Consider in particular the problem of determining the observability
don’t care set of a vertex in a cyclic network. The OBSERVABILITY
algorithm can be used on the acyclic portion of the network, assuming
initially that the added primary outputs are completely observable.
The algorithm then computes an estimate of the don’t cares of the
network. Such an estimate represents actually a subset of the true
observability don’t care. In fact, it assumes that a variable is not
observable if it is not observable at any output in the acyclic network.
But a variable can be not observable even if it is observable at some
of the added outputs, provided that these latter are then not observable
at any time in the future through the feedback interconnections.

4.3 Computing local time-invariant DC conditions

The internal controllability and observability don’t care sets can be
computed for each vertex of the network as shown above. We denote
by DC',(n) such local DC set. Note that [)("»(1) may be not time-
invariant, and therefore not be useful as such for logic minimization,

x2 E
X0 vt
x3 2

x3 g£) v4

Figure 6: A redundant circuit.

We therefore need to extract the time-invariant component of
DC,(n), hereafter denoted by 7'1)¢ w(n).

In the case of acyclic networks (or in the case of cyclic ones, where
the observability don’t care are computed as described in Section 4.2),
then /)(",(n) has a finite transient component plus a time-invariant

one. The instance of 71 D, (n) for n = 0 can be then computed as
a finite product:

N
TI B pcu k)
k=0

Tripc, = (5)
where IV is an upper bound on the duration fo the transient. Then
TIDC,(n) = RTIDC,(0)). In particular for acyclic networks
with no fanout, N is the longest path in the network graph. When
external DC conditions are considered, the duration of their transient
component also must be taken into account.

Example 8. We illustrate here on the circuit of Fig. (6) how the
sequential don’t care conditions can be used to simplify a synchronous
Boolean network. Assume that:

o the inputs x;; ¢ = 0,---,3 represent the outputs of a 4-bit
counter, so that in particular 2C’DC(n) D wo(n) b ro(n +4) +
xp(n)day(n+4); n>0

o the internal registers are initially in the reset state.

The observability don’t care set for ys(n) is given by
10DC\,(n) 7a(n — 2). From the assumptions on the ini-
tial register conditions, /O D('y,(n) = 1 for n = 0,---.4, and
10DCy(n) = a(n — 5) + wa(n — 2) for n > 5.

From the input don't care conditions it can be easily verified that
ya(n —5) = ya(n — 1); n > 5, while the internal structure implies
ya(n) = yi(n); n > 1. Hence, the don’t care set of y3(n) can be
rewritten as D('y,(n) = 1 for n < 4 and DCy(n) = ra{n = 2) +
Tiln — 1) for n > 5.

It can be then verified that the time-invariant component is
TIDCyy(n) = x2(n —2) + Ji(n — 1) so that the function expressing
y3 can be simplified to y3(n) = T3(n) O.

It is worth remarking the importance of taking into account cor-
rectly the initial conditions: in the same example, if it is assumed
that all registers are preset to 1, no simplification is possible without
changing the network behavior.

5 Conclusions.

We proposed here an approach to the synchronous logic optimiza-
tion that starts from a structural description of a network. Each
synchronous circuit is modeled by a synchronous Boolean network,
and the interconnections are described by the external synchronous
don’t care conditions that circuits impose to each other. The network
structure induces internal don’t care conditions on the logic gates.
These don'’t care conditions, together with the external ones, can be
used to simplify the network itself, and to remove redundancies. In
particular, an algorithm has been proposed for determining the lo-
cal observability don’t care sets, which typically represents the most
difficult problem in the exploitation of such techniques.

6 Acknowledgments

This research was supported in part by a fellowship of the Rotary
Foundation and by AT & T and DEC, jointly with NSF, under a
PYI award program. We also acknowledge support from NSF under
contract # MIP 8719546.

The helpful discussions with Frederic Maithot and Michiel Ligthart
are here gratefully acknowledged.

2570

References

[1] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.
Wang. * MIS: A Multiple-level Logic Optimization System”.
IEEE Transaction on CAD, CAD-6, No. 6:pp. 1062-1081, 1987.

{2] K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby,
R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. ” Multi-
level Logic Minimization Using Implicit Don’t Cares”. IEEE

Transaction on CAD, CAD-7, No. 6:pp. 723-739, 1988.

[3] S.Muroga, Y.Kambayashi, H.Lai, and J.Culliney. ” The Trans-
duction method - Design of Logic Networks Based on Permissi-
ble Functions . IEEE Transaction on Computers, 38, N. 10:pp.

1404-1424, 1989.

[4] D. Bostick, G. D. Hachtel, R. M. Jacoby, M. R. Lightner, P.
Moceyunas, C. R. Morrison, and D. Ravenscroft. ” The Boul-
der Optimal Logic Design System”. In Proceedings of ICCAD,

pages 62-65, Nov 1987.

[5] J. Hartmanis and R. E. Stearns. Algebraic Structure Theory of
Sequential Machines. Prentice - Hall, Englewood Cliffs, N. J.,

1966.

[6] T. L. Booth. Sequential Machines and Automata Theory. J.

Wiley & Sons, New York, 1967.

[7] K.-T. Cheng and W. D. Agrawal. " Design of Sequential Ma-
chines for Efficient Test Generation ”. In Proceedings of IC-
CAD, pages pp. 358 — 361, Nov. 1989.

»

(8] S.Devadas, A. R. Newton, and A. Sangiovanni-Vincentelli.
Irredundant Sequential Machines via Optimal Logic Synthesis

». IEEE Transaction on CAD, 9, N. 1:pp. 8-18, Jan. 1990.

[9] S.Devadas and A. R. Newton. "Decomposition and Factoriza-
tion of Sequential Finite-State Machines ”. IEEE Transaction

on CAD, 8, N. 11:pp. 1206-1217, Nov. 1989.

[10] G. De Micheli and D. Ku. ” HERCULES - A system for High-
Level Synthesis. In Proc. 25 h Design Automation Conference,

pages 483488, 1988.

[11] M. Ligthart, A. Bechtolsheim, G. De Micheli, and A. El Gamal.
" design of a Digital Audio Input-Output chip”. In Custom IC

Conference, pages pp. 15.1.1 — 15.1.6, May 1989.

[12] S. Devadas. ” Redundancies and Don’t Cares in Sequential
Logic Synthesis™. In Proc. of IEEE Int. Test Conf., pages 491~

500, Aug 1989.

[13]) G. D. Hachtel, R. M. Jacoby, and P. H. Moceyunas. " On
Computing and Approximating the Observability Don’t Care
Set ”. In Proceedings on the International Workshop on Logic

Synthesis, Research Triangle Park, May 1989.

[14] M. Damiani and G. De Micheli. " Efficient Computation of
Exact and Simplified Observability Don’t Care Sets for Multiple-
level Logic Synthesis”. In Internal Report CSL-TR 90, Stanford

University, page , 1990.

