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Abstract

A new algorithm is presented that computes exact or approximate observ-
ability don’t care (ODC) sets for multiple-level combinational network. The
proposed algorithms are efficient because they use only local information.
A method for deriving the equivalence cl of a Boolean relation from
the observability don’t care sets is then proposed. Experimental results on
computing ODC sets are reported.

1 Introduction.

Over the past few years, the problem of computing efficiently and correctly
observability don’t care (ODC) sets has emerged as a central one in the
synthesis of combinational networks (1], [2], [3]. The knowledge of the
ODC sets is important in several respects, namely: 1) local minimization of
functions in a Boolean network, 2) synthesis of 100% testable networks, 3)
test pattern generation [4].

Bartlett proposed in {1] a computation of the ODC sets requiring the
representation of the primary output expression in terms of the network
intermediate variables. Such a representation may be subject to the explosion
in size of the representation. Muroga proposed in [3] exhaustive simulations
of the circuit for determining the observability don't care sets of vertices with
reconvergent fanout. Other authors pointed out that it would be desirable
and computationally much more efficient to derive the ODC set of a vertex
of a Boolean network from the ODC sets of its direct fanout vertices [5],
[8]. They showed, however, that a straightforward application of this idea
could lead to erroneous results, because of the effect of reconvergent fanout.
Therefore only approximate solutions have been proposed to compute the
ODC sets [8], [9]. A critical review of previous work and its relation to the
method for ODC computation presented here is reported in [11].

In this paper we present a new expression for the observability don’t
care set of a gate with reconvergent fanout, and we show how an exact
computation of ODC sets is indeed possible by using only the ODC sets
of the immediate fanout variables. We propose an algorithm for such a
computation that traverses the network backward from the primary outputs
to the primary inputs processing each vertex only once.

Unfortunately this method, leading to an exact computation of the ODC
sets, involves implicitly Boolean compl ions and it is consequently
prone to the well-known ph of “combinational explosion”. We
therefore propose two other algorithms for the computation of subsets of
the actual ODC sets, still based on local information. The first algorithm
computes an ODC subset at each vertex of the Boolean network from the
ODC subsets of its direct fanout vertices. The second one computes both
subsets of the actual care and don’t care sets from those of its fanout. We
implemented both approaches in computer program SPY. Full ODC sets have
been computed for some difficult benchmark examples.

Eventually the relationship between observability don’t care sets and the
equivalence classes of Boolean Relations [10]) is explored. In particular, it
is shown how the output equivalence classes of a network can be computed
directly from the ODC sets of the individual network outputs, thus avoiding
the necessity of any flattening operation.

2 Definitions and Notations.

2.1 Combinational Boolean Networks.

In this paper we model mulﬁple—ouﬁ\l( combinational circuits by Boolean
networks [1]. A Boolean network NV with n_input vertices and 1 output
vertices realizes a function £ : B" — B'™ [1], where B is the Boolean set
{0,1}. Underlining is used for denoting vector quantities in this paper.
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Figure 1: A multiple-level combinational circuit and its associated Boolean
network representation,

The network is specified by an acyclic graph (7 = (1, £). The elements of
the vertex set 1" = VU V'Y UVO = {v} are in one-to-one correspondence
with primary inputs, logic gates, and primary outputs, respectively. There is
a directed edge ¢ from a vertex ;: to a vertex v if the output of the gate in
j¢ is connected to an input of the gate in . In contrast to [1], and similarly
to [3], we assaciate a network variable y; to each edge ¢; € . An example
of a circuit and of its associated Boolean network is shown in Fig, 1.

A network variable y; is said to be a fanout (fanin) variable of a vertex
v € V if e; is an edge whose tail (head) end-point is ». We associate to
each vertex » an expression f,(y1.y2. -, y,) of its fanin edge variables.
The expression f,, describing the functionality of the gate in v, specifies all
the fanout variables of v in terms of the fanin variables.

2.2 Observability don’t care sets.

By cutting an edge ¢; and by considering y; as a primary input variable,
the new network N° realizes a function £°(xr,y;) : B"+! — B, Given a
primary input assignment r,, the variable y; of V is not observable if the

vector equality [6]
F(29.0) = FE'{2.1). (1)

is satisfied. Recall that the cofactor f|,, of a function f with respect to y;
is the function obtained by assuming y; = 1. Similarly, f|7 is the function
obtained by setting y; = 0. The vector function:

ol = aF
Filg, & Fy, = (W)

I8

oDc, =

oDc, (2)
therefore describes the observability of y;. In particular, y; will be observable
at the k" network output (k = 1,---,m)if the & ** component of ODC, is
0. The quantity .F /dy; is usually termed Boolean difference [6) of F with
respect to the (possibly internal) variable y;. Its k*" component describes
the network configurations that make the variable y; observable at the &'/
output. Therefore it is called the observability care set of y; (OC',) and it
corresponds to ODC', .

Given a network, it is possible in principle to compute Q.DC', for any
internal variable y by flattening the network N ¢ and applying Eq. (2). We
show here that it is possible to avoid the flattening operation on the network
and compute exact and approximate versions of the functions Q) , with
a single traversal of the network.

If the don't care set of a vertex v is known, then it is easy to obtain an



expression of QDC',, for any fanin variable y of » from !:

. aJ
ove, = onc, + 1,17 (3). o)
The vector (1,1,.--,1)7 is used to add 8, /8y to all the components of
the vector ODC.,.

If the network has a tree structure, then it is possible to obtain all the ODC
sets by traversing backwards the network and applying iteratively Eq. (3).
If a vertex has reconvergent fanout, however, the observability conditions
of the vertex do not coincide with those of its fanout variables. We present
here methods to compute the observability don’t care of a vertex from those
of its fanout variables.

2.3 ODC sets in presence of reconvergent fanout.

Consider a vertex 1 with reconvergent fanout, and suppose that all the edges
1,2, -, €y, whose tail-end point is v, are cut. Let F°(z, y1,92,- - ¥n)
be the function realized by the new network N ¢, obtained by adding the
variables y;, - - . yn, corresponding to the cut edges, to the primary inputs.
Then, the observability don’t care set of v is described by the function

0DC, = F* (2,0, -, OBE (2,1,---,1) @
or, equivalently, by
0DC, = Fly, 3,7 B lyna - )

For the sake of simplicity, we describe first the case in which 1 = 2, so that
there are only two fanout variables, y; and y;. We will generalize the result
down below.

The observability don’t care set is described by the function

one, = £C‘?|Jz§£c l!ll,yz' (6)
By manipulating Eq. (6), ODC, can be rewritten as
08¢, = (El 5T lns )T (ElunTEum) )

where the term F°|,, - has been “added and subtract " in Eq. (6).
From Eq.(2), the first term within parentheses is ODC, |y,, while the
second par describe QDC. [,,. It then follows that

0DC, = 0DC,,|[7,;50DC,,ly.- (8)

Notice that in Eq. (5), 0DC,, can be also rewritten as

onc, = (£5TE b ) (£ 1nFE s ) = ODC,, TOLC,,

from which we obtain the identity ®
0DC, = ODC,[5FODC,, |y, = ODC,, [nFODC, ly,-  (100)

Similarly, for the care set we obtain
0C, = 0C, Iy, ® QCy, |y, = OC,, Iy, @ OC,, 5, (100)

ded to the general case of

These algebraic ipulations can be
J > 2 fanout variables as follows.

‘Theorem 2.1 The observability don’t care set at a vertex v is given by:

—=f
oDe, = @i=10DC' v ior Ty - (11)

where y,-- -,y are the fanout variables of v.
Proof.

It can be easily verified that for f > 2 the following identity can be
derived from Eq. (5):

one, = (ﬁc|F|.§l"“’§}§£6Iy.,if,.“"-?})$

INotice that Eq. (3) may contain internal network variables. These, however, may be
resolved by back-substitution to obtain an expression of primary input variables only, so that
there is no real contrast with the definition (2).

lyz
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t @(£c[yhy1,-»wy;—x.iffmifly‘.yz, vy/—n.y/>
(12)

(E\yn,n -7, B lyia, ,v,)@
This can be rewritten as:
=~ - —_
0DC, =D, _ Elnierdi 7, Pl Togr 7y
Eq. (11) then follows by observing that each term of the sum in Eq. (13) is

pmsely OUC%L/“. Wi-nTign ¥y o
For the care set we have:

(13)

!
oc, = @Q—Qi/.lyh‘ WimtFigr ¥y

i=1

(14)

Similarly to the case of 2 fanout variables, changing the order in which
the fanout variables are complemented results in different expressions of
QDC,. For [ fanout variables, there are ! possible orderings, hence f!
different possible expressions for O DC',,.

Corollary 2.1 Let (iy.ia,---,iy) denote a permutation of (1.2,---,[).
Then, the following equalities hold:
—=f
QDC, =P, 0DC,, Iy 1y 17,007, (15)
I
oc, = @——AJOC .,‘y..,~-»,yxj_,‘?.“‘,r-w?,,' (16)
j=1 )

3 ODC sets computation.

3.1 An exact algorithm for the ODC sets computation.

Given the ODC set of a vertex v, it is possible to compute the ODC set
of all its fanin edges by means of Eq. (3). In turn, Eq. (11) allows us to
compute a vertex ODC set, given those of its fanout variables. It is thus now
possible to visit the Boolean network backwards from the primary outputs
to its inputs and to determine the ODC sets of each vertex also in presence
of reconvergent fanout.

The following algorithm performs the computation of the ODC sets. It
uses the subset S of the vertices whose ODC set is known. Initially S is
the set of primary output vertices with empty fanout set.

OBSERVABILITY((7);
S = {primary output vertices with empty fanout sct};
while (5 #V){
select v € {V' — S} such that FO(v)C S;
foreach fanout variable y; of v {
= head verlex of edge ¢;
/* compute O DC’y by Eq. (3) */
0DC, =0DC, + (3], /)

}* compute ODC, by Eq. (11) %/

~ - ~
ODC, =di=t’ ODCy lys,yi-17, 407,
S:=S5U{r)h

We illustrate here its operation on the circuit shown in Fig. 1.
At the beginning, S = {u4, us}, and

(9) senc= ()

The first and second component of the vectors O DC' describe the observ-
ability with respect to =y and 3, respectively.
First the vertices w2, u3 are considered. By applying Eqs. (3) and (13)

onc,. =

]

uc, = 00 umoncin = (4)5(F) - (B)

0DC,, = 0DC, [5FODC, i = (%) T (!,13) = (j‘j;)

Then S = {ug, ua, ua, us) and uy is selected. Its fanout variables are yy, y2,
and according to Eq. (3):

ovc, = (B 21) = (

TaTa + 1 )
ys + 2y

Y2+ xa+ 2y



v _(Tatxa) _ ( ThiTi+xa
Qne,, = (ya + :"4) - (!Il + a1 +-m)
so that, using Eq. (13),

0DC,, = 0DC, [RTODC, ly = (BT )T () = (,14,)

which is the correct result.

Finally the algorithm computes the ODC sets of the primary inputs, that
may be used as external ODC sets for the minimization of the logic feeding
the circuit.

The product of all the components of QDC', gives the conditions for
which the gate output at vertex v is not observable at any output. In the
case of the gate in uy, the product of the components of ODC',,, yields xyv4.

3.2 Computation of approximate ODC sets.

It is of practical interest to consider the case in which the ODC sets are

approximated by subsets, because of their size. Note that excess approxi-

mations of the ODC sets are of no practical value for logic minimization.

Therefore it is useful to derive ODC subsets at a vertex from the ODC sets

of its fanout vertices. Unfortunately, Eq. (7) and Eq. (11) may not yield an

ODC subset from subsets of the actual ODC sets of each edge variable.
For example, in the circuit of Fig. 1, if we assume

("

- (-’1’1)

(actually a subset of the true Q.DC, ), we find for
oD, = (-1‘1l'4jlflf4>

which is no longer a subset of the true ODC', .

Two different approaches for the computation of ODC subsets are fully
reported in [11]. Their results are briefly summarized in this section. In
particular two formulae can replace Eq. (11) in the previous algorithm. The
first formula computes both sabsets of the actual care and don’t care sets
of a vertex from those of its fanout variables. The second one, simpler but
less accurate, computes ODC subsets only.

We give here the formulae for computing O D, in the case of two fanout
variables. A straightforward generalization to larger fanout can be achieved
by viewing a vertex with outdegree (fanout) / > 2 as the root of a binary
tree [11]. We refer the reader to [11] for the details.

Let y; and y, denote the fanout variables of a vertex v. Assume that only
subsets QDC, , QC, of ODC, ,0C, are available. Then, ODC, and

Sy ey =i Y

OC,, can be computed by:

onc,,
onc

Ly

the estimate:

0DC, = 0DC, 15,0DC,,ly, + ODC,,1,,0DC,, g, +
+0C,,15,0C by + 0T, 15,0C,, 7, (17a)
0C, = 0C,,|5,0DC, 1y, + 0C, 1, 0DC,, Iz, +

+%l|7}—0—£'1y2|yl + ODCm'yz.O_Cg“lE
They are subsets of the exact QDC, and OC,, respectively.
If only subset of don’t care conditions Opﬁtfy, are available, then O_DC,
can be computed from:
oDC, =0DC, |7,0DC,, |, + ODC, ,,0DC,, |7, (18)
Note that this formula allows us to drop elements from the ODC sets at

our convenience. In particular, if we choose a subset O DC' , of ODC
that does not depend on y3, then

(17h)

oDC, = 0DC,,0DC goﬁa,(oﬁc 17,+0L7(:",\y,) (19)

is a subset of QDC,.

In this case no cofactoring operations are needed, differently from Eq. (11)
or (18). A much faster computation is therefore expected if the independence
of 0DC, from y; can be guaranteed at each point of reconvergent fanout.
This can be accomplished by eliminating mutual dependencies at the point
of reconvergence, as shown with the following example referring to Fig. 2.

Gate (7 is the point of reconvergence for the output signals of (7 ; (through
the variables 1 and ;) and of (75 (through 21 and z3). Thus, OD('.| = 733,
To eliminate the dependencies of ODC,, ODC, from ODC,, ob 'y the
observability of z, is approximated by the portion independent from =, ,ie.
0DC., = 0DC.,)|.,,0DC,,|5, = T3. Similarly, 0DC', = T5. The observ-
ability of y; and ys 15 now made independent from y, and ys, respectively,
so that Eq. (19) can be used to compute ODC¢g, = ODCy ODCy, =
(@+73)(Ts + =1%) and ODCg, = ODCy,0DCy, = (T + 71)(Fz + T15)-
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Figure 3: Cascaded subnetworks

4 ODC sets and Boolean Relations.

Most techniques based on don't care sets aim at the simplification of Boolean
functions at single vertices (i.e. single-output functions) of a Boolean net-
work. However, more powerful techniques have been recently proposed,
that attempt a simultaneous minimization [5] of two or more vertices. The
problem can be approached by observing that when a Boolean network V'
feeds another network N, (see Fig. 2), simultaneous changes of several
outputs of Ny can occur without affecting the outputs of \';. Note that ob-
servability don’t care sets capture only the possible changes at single outputs
of Ny.

Two output pattemns of N are said to be equivalent if they yield the same
output at N,. Given a “reference” output pattern y = (y1r. .+ ¥nr)s its
equivalence class is the set of equivalent patterns that are possible outputs
of Ni. The examgle shown in Fig. 4 is borrowed from [5]. An algorithm
that minimizes a 2-level rep itation of V' using its outputs equivalence
classes is presented in [10].

A problem associated to this minimization procedure is determining the
output equivalence classes, i.e. finding the Boolean Relation that describes
the degrees of freedom for optimizing . Indeed, flattening 3 50 as to re-
express its outputs in terms of y,, - - -, y, is inefficient if we wish to change
dynamically the boundary between Ny and V3, and possibly unfeasible.

We show here a method for determining the equivalence classes of N
that requires only the knowledge of the individual ODC sets of the variables
y;. We present this result referring first to the example circuit of Fig. 4.
The observability of the variables yo. 1. y2 (as found, for example, by the
OBSERVABILITY algorithm) are given by

(Tt uy. ~ _ (Y2t o).
OD(W_(?H’.UZ)’ OA‘-“_(%‘F!&)’

The equivalence class of the input pattem yy, y2. y3 = 0.0, 0 is the set of
pattemns yo, yi, y2 that satisfies

onc, = ()

F(y2, 91, yo) = 2(0,0,0)
and is therefore described by the function
LEQV 00 =12 41 #)FF(0,0,0)

By "adding and subtracting” the terms F(y2. y1.0), F(y2.0,0) the function

QV, 0.0 Can be expressed by:

EQV

EQV 400 = (ﬂm-m-yo)?F_E(szyLO))ﬁ(ﬂyz,yn‘O)?F.f.(yz‘O.O))

@(ﬂyz.O,O)@i(OvO,OO -
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Figure 4: Cascaded adder - comparator: (a) schematic; (b) comparator truth
table; (c) adder output equivalence classes

(7o+ 00, )7+ 0G5 )T (7a+ 0DC, b ) =

Dtn+h)\g(hi+h)s(1
<s7°+m+yz)*~f'( 1) (5

where we used the identity [6]

—( B+ %%
72(71 + To)

— F
EeFE@0 = (15 ) =7+00C, (20)
Each component of Q") describes the equivalence class of the refence

attern 0, 0,0 with tespect'fo an output. We are interested in the equiva-
ence class with respect to all outputs, described by the product of all the
components of £QV . that in this example is: 7,7 + 7,7
For this example, we have thus been able to re-express the equivalence
class of the adder outputs in terms of the individual ODC sets of its output
variables.
This result can be generalized as follows. Consider a cutset of [ edges

of a Boolean network, as shown in Fig. 4. Let y = (y1,¥2,- -, yy) denote
the variables associated to the cutset and F° the function realized by Nj.

Theorem 4.1 The equivalence class of any given configuration ¥, =

(y1r y2ry -y y_fr) is:
_j _
EQV, o =D, uFir +ODCylyrs i (21)

The equivalence class of any given configuration y_
-1y ) is the set of configurations that satisfies

EQ"_, = (@BE(y,)-

The following identity holds:

Proof.
(2 v
22)

Qv

LN v (ﬁ(yl v Y BE (e v2, y/)> )

(f_(!/myz,-‘-vy/)@ﬂymmr.-~-,y1)> (23)

5. »«—»(ﬂy.m Vo Uyt g T E et r,y,r))

o~ _
= @’._l(ﬂymyz.w Yt Yin e U )OF (Y Yo o Yy Vit -,y.r))

(24)
By using the identity (20), it can be verified that the i*" term of the sum

@4y is - _
yiDyir + ODCYy, (25)

Yirs 3 Yietr
so that

P~ 5

EQVH,_MN . @izl.wféyn +O0DCylysr, i B (26)

With this theorem, we can express each equivalence class for the outputs
of Ny in terms of its individual output ODC sets.
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Circuit Exact Simplified
formula (13) formula (19)

CPU time | # literals || CPU time | # literals

CI7 [ 2 4 Z

C432 105 1990 39 890

[ C499 12 75 6 78
| C880 11 70 6 &0 |

| CI908 * * 123 202

C6288 * ¥ 3956 465

apex6 0 I8 78 a3

g)mgﬂ 26 9 18 11

0 2 0 2

Table 1: CPU time and average number of literals for the ODC sets of some
benchmark circuits. Symbol * means that SPY ran out of memory.

5 Implementation and Experimental Results.

The algorithm OBSERVABILITY, that uses both exact and approximate for-
mulae, has been implemented in program SPY. SPY is wrtten in C and
consists of about 3000 lines of code. We have successfully tested SPY on
several benchmark circuits, including some critical ones proposed by Brglez
and Fujiwara, as reported in Tabie 1. The number of literals refers to the
average size of unminimized expressions of the ODC sets, as generated by
the algorithm. Final literal counts are typically smaller, but we report here
on the size of the uncompacted ODC sets because they are the direct imple-
mentation of the forrnulae shown in the paper. The run times are in seconds
on a DEC 3100 workstation.

6 Summary.

New formulae and algorithms for the computation of exact and approximate
observability don’t care sets have been proposed. The algorithms are efficient
because they use local information, i.e. the computation of the ODC sets for
a vertex requires only the knowledge of the don’t care sets at the adjacent
vertices. The algorithms have been implemented in program SPY an tested
on a set of benchmark examples.

Expressions have also been then derived that link the observability don't
care sets of the individual vertices of a network to the equivalence classes of
a Boolean relation, thus filling a gap in the theory of uncompletely specified
functions. Eventually it has been shown how these equivalence classes can
be efficiently derived from the computed ODC sets.
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