Partitioning of Functional Models of
Synchronous Digital Systems

Rajesh Gupta and Giovanni De Micheli
Center for Integrated Systems
Stanford University
Stanford, CA 94305

Abstract

We present a partitioning technique of functional models that is used in
conjunction with high-level synthesis of digital synchronous circuits. The
partitioning goal is to synthesize multi-chip systems from one behavioral
description, that satisfy both chip area constraints and an overall latency
timing constraint. There are three major advantages of using partitioning
techniques at the functional abstraction level. First, scheduling techniques
can be applied concurrently to partitioning. Therefore, partitioning under
timing constraints, and in particular under latency constraints, can be per-
formed. Second, the functional model captures large hardware systems with
fewer objects (than at the logic netlist abstraction level), making the par-
titioning algorithm more efficient. Third, hardware sharing trade-offs can
be considered. In this paper, hardware partitioning is formulated as a hy-
pergraph partitioning problem. Algorithms for hardware partitioning are
presented and experimental results are reported.

1 Introduction
We p a tech g at multiple-chip synthesis from a a single
high-level model in a Hmdwne Description Language (HDL). The partition-
ing of hardware functions in a chip set is crucial in achieving an efficient
implementation. While hardware partitioning is dictated by the chip area
limitations, it affects the performance of the overall system. The putpose
of this research is to investigate computer-aided partitioning techniques that
allow efficient implementation of hardware in multiple chips.

Unlike previous approaches [1] [2], we present a partitioning technique
performed at the functional abstraction level, where the digital hardware
being designed is represented by a sequencing abstraction model capturing
the operations to be performed and their dependencies. Such a functional
model is a common abstraction in high-level synthesis. Most high-level
synthesis system use a variation of this model as an intermediate form [3]
[4], because it can be obtained by compiling a hardware description in a
HDL and it forms a convenient data-structure for synthesis algorithms.

Our partitioning approach is motivated by the following reasons. We
assume that the hardware being designed is synthesized from a high-level
model in a HDL under a maximum timing constraint on the overall hard-
ware latency. By using high-level synthesis techniques, the designer may
try first to find a design configuration (i.e. binding and schedule) that sat-
isfies the chip area and Iatency constraints. When such a structure cannot
be found, then partitioning is used to overcome the area limitations while
meeting the timing requirements. It is important to note that partitioning
may introduce timing penalties, due to the inter-chip communication delays.
For this reason, the designer will choose a design configuration that satisfies
the latency constraint as a starting point for partitioning. Thus the search for
a binding (that defines the hardware sharing) is done prior to partitioning,
and it benefits the partitioning method in providing a starting point with an

CH2924-9/90/0000/0216$01.00 © 1990 IEEE

216

4 q vy

area lier than an unb iguration

This approach is i for hard P yp! ,usingprognmmuble
gate arrays, mathtveahnmedmpthy in terms of gate count. By using the
same functional model in a HDL, both a multi-chip prototype and the final
implementation can be synthesized automatically. Bounds on the latency of
the prototype are important to insure that accurate perfonnance measures
can be derived from it.

A major advantage of applying partitioning techniques at the functional
abstraction level is that scheduling techniques can be applied concurrently
to partitioning. Therefore the overall latency of a partitioned structure can
be readily evaluated, including the inter-chip communication delays. In this
way, area-performance trade-offs can be exploited. Secondly, the functional
model allows us to cap large hard y with fewer objects than
at the logic netlist abstraction level. As a result the partitioning algorithms
are more efficient for large scale designs. The major disadvantage is the
possible inaccuracy of the area and delay models, that are estimated directly
from the functional models and that do not include interconnect delays.

High-level partitioning techniques were pi d by Dirtkes and Thomas
{5). They considered a multistage clustering algorithm, that perfected the
clustering techniques presented in [6]. The algorithm operates on the Value
Trace (3] functional model, that is similar to our model. However, Dirkes’
approach was not formulated as a constrained optimization problem and
scheduling and latency computation was done separately in a later step [3].
Camposano and Brayton [7] studied high-level partitioning techniques by
means of clustering, with the goal of improving the efficiency of logic syn-
thesis. The major difference of our method over previous ones is that we
bound the Iatency of the partitioned implementation.

‘We present in this paper partitioning techniques based on the Kemighan-
Lin [9] and the Simulated Annealing [8) algorithms applied to sequencing
hardware models described by hypergraphs. The algorithm has been im-
plemented successfully in program Vulcan, that can be used in conjunction
with programs Hercules and Hebe [10] to transform a hardware model in the
HardwareC language into the logic netlists of the different partion blocks.
'We present then an example and some experimental results.

2 Problem modeling

We model hardware behavior as a hypergraph [11] having: i) vertices rep-
resenting operations; ii) edges: ordered vertex pairs, representing dependen-
cies; iii) hyperedges: vertex subsets, representing the sharing of hardware
among operations. The edges are directed and do not form cycles. Vertices
can model Boolean expression blocks that represent maximal sets of combi-
national logic equations, whose dependencies do not cross register bound-
aries. For these vertices, the area-cost is proportional to the corresponding
number of literals. The delay-cost is a positive integer, corresponding to the
(rounded-up) ratio of the maximum propagation delay in the block to the
cycle-time. We assume the cycle-time to be a constant defined as part of



the design specifications.

The overall area-cost of a hypergraph is the sum of the area-costs of its
vertices, where all but one vertex incident to any hyperedge are discounted.
The timing-cost of a hypergraph, also called latency, is the length of its
longest weighted directed path, or critical path, where the weights are the
delay-costs of the vertices.

The hardware model can be extended to include hierarchy, where vertices
can be other hypergraphs (representing, for example, functional units that
are characterized in terms or area and delay-costs in a bottom-up fashion),
or represent the “body” of conditional and iterative constructs [10]. Timing
constraints can be also considered as a part of the hardware specifications
and their satisfaction be required by the partitioned implementation. In
this paper, for the sake of conciseness, we consider only one maximum
timing constraint X on the overall latency. Therefore, we consider hardware
specifications that exclude operations with data-dependent delays.

We consider partitioning under the following assumptions:

o Each block of the partition has an upper bound A on the area-cost.

e Each block of the partition has an upper bound C on the pinout-cost.
The pinout-cost is the number of I/O pins excluding power/ground.

o The overall latency A has an upper bound ).
o Synchronous single clock hardware implementation.

o Synchronous inter-block communication.
An integer delay-cost is associated to each inter-block data transfer.
Without loss of generality, we assume it to be one clock cycle.

o Shared hardware resources cannot be split among blocks of the partition.

We denote the (hierarchical) hypergraph by H and we state the general
partitioning problem as follows:

Problem 1: Partition a hypergraph H into a minimal number n. of hyper-
graphs H;, i = 1,2, ...,n such that the area-cost of each block A; < A,
the pinout-cost of each block C; < T and the overall latency A < A

Generic network flow algorithms for hypergraph partitioning were inves-
tigated by Lawler [12]. Since in our problem we want to obtain constrained
partitions, we have focussed on algorithms that support constraints on the
sizes of the resulting partitions. We use a heuristic approach, to cope with
the computational complexity of the problem. We approach the multi-way
partitioning problem by performing successive bi- -partitions. Let (' be the
communication cost (i.e. the number of wires) between the two blocks of
the partition. The bi-partitioning problem can be stated as follows:

Problem 2: Partition a hypergraph ‘H into two hypergraphs H;, i = 1,2

such that the area-cost of each block A; < A, the pinout-cost of each block-

C; < T, the overall latency ) < X and the cost function [ = oC+ (A~ b))
is minimal.

A solution to Problem 2 is also a solution to Problem 1 for n = 2. If
no feasible solution to Problem 2 exists, then a solution to Problem 1 may
be found by relaxing the upper bound inequality on the size of the second
block. Then, partitioning is applied iteratively to the second block of the
partition until the area capacity constraint is met. The problem can be stated
as follows:

Problem 3: Partition a hypergraph H into two hypergraphs H;, i = 1,2
such that the area-cost Ay < A, the pinout-cost C'y < T, the overall latency
X < X and the cost function [ = oC + B(A — X) +7(A = Ay) is minimal.

The last term in the cost function is a heuristic to achieve full utilization
of the first block. In the sequel we describe a set of algorithms to solve
Problem 2 and 3. Due to the similarity of the two problems, we will address
the solution to Problem 2 in detail, and we will leave as comments the
modifications needed to solve Problem 3.

217

(1) vertextagged for
%4 partition

‘number Inslde Indicates
delay cost of the vertex

Figure 1: Tagging and Latency Computation of SIF Graphs

3 Partitioning Algorithms

The partitioning algorithms are based on two iterative improvement schemes.
The former uses the simulated annealing algorithm [8] while the latter is
related to the Kernighan-Lin algorithm [9]. We refer the reader to [9] [13]
and [9] for the details of the algorithms. Here we concentrate on the moves
and on the computation of the cost function.

We describe first partitioning of hardware models with no shared resources
(i.e. no hyperedges) and no hierarchy. Therefore the hardware model is a
directed graph. A partition is described by flagging each vertex with a tag
that can take either one of two values. An example is shown in Figure
1. Iterative improvement in both algorithms is achieved by two kinds of
moves: single-vertex displacement or swap of two vertices. In the former
case the tag of a vertex changes, denoting its displacement from one block
to the other of the partition. In the latter one, two vertices with different tag
swap their tags.

We call communication cost the size of the data transferred between two
blocks and its associated control. The pin-out ('; for the i'" block is the
sum of the cost of /O ports and communication cost. The variation in
communication cost is computed by following the procedure outlined in [9].
The variation in area can be computed by adding (subtracting) the vertex
area-cost for the block to (from) which the vertex has been displaced. In
the case of swaps, the variations of the cost function can be computed as a

e of two di plar t:

The latency computation is more complex. We define the latency of a
partitioned graph as the length of a modified critical path that includes edge
weights, being 1 the weight of the edges that join vertices in different blocks
and 0 otherwise. As an illustration, consider the example in Figure 1. The
latency of the partitioned graph is determined by the longest path (s, a, b, ¢,
d, e, f, t) to be 17 cycles of which 4 cycles are due to data transfer in the
partitioned structure. Unlike area and communication costs, it is not possible
to compute and update the latency incrementally for a generic move without
traversing the subgraph(s) induced by the vertices that are successors of the
moved vertex (vertices).

In the simulated annealing approach, we transform Problem 2 into an
unconstrained optimization problem with penalty functions [13]. The cost
function is a linear temperature-varying combination of the communication
cost (', excess latency (A —X), excess area (.4; — 1;7 = 1,2) and excess
pin-out ((, — (i = 1,2). For problem 3, the excess area and pin-out
are computed only for block = 1 and the term ( F — A;) is added to the
linear combination. For each move the algorithm computes the variation of
the cost function, The latency computation requires a partial rescheduling,
whose computational complexity is linear in the number of edges, whereas
area and communication cost updates can be done in constant time.




We have also developed a faster partitioning algorithm, based on the
Kernighan-Lin method. The original algorithm [9] applies to unconstrained
optimization problems with 7 = 0. To cope with the latency computation
and with the constraints we have considered the following two heuristics.

In the first one, the cost function is a linear combi of the cor i-
cation cost, excess area and excess pin-out (i.e. excluding latency). Moves
that would violate area and pinout constraints are discarded. The variation
of the cost function can be easily computed for each move in constant time
and it is recorded for each configuration. The configuration leading to the
largest decrease of the cost function is then selected, as in the case of the
original Kemighan-Lin algorithm[9]. If the decrease is non-positive, the al-
gorithm terminates. Otherwise, latency is evaluated for this configuration.
If latency does not satisfy the given bound, the configuration is discarded,
another configuration is selected (leading to the largest decrease of the cost
function), and the process is iterated.

A second heuristic strategy consists in computing an approximation of
the latency at each move and incorporating it in the cost function. Moves
such that the latency approximation violates its bound are discarded, as well
as those that violate area and pinout constraints. Latency is affected by
vertex displacement/swaps on the critical path, that may change after each
move. Latency is approximated by assuming that the critical path does not
change for the set of moves considered in the inner loop of the Kernighan-
Lin algorithm. The local variation of the latency estimate can be easily
computed for individual moves by checking the tags of the predecessor and
successor vertices of the vertex being moved. The critical path is updated
only when an exchange of vertices takes place, i.e. at the exit from the inner
loop of the Kemighan-Lin algorithm. Note that an exact latency computation
would require the computation of the changes to all paths in the graph. The
approximation provides a lower bound on actual latency because it cannot
be inferior than the delay of @ path in the graph. However, the actual latency
may be larger than the bound because of a change of the critical path. For
this reasons, feasibility of a configuration must be checked by computing
the exact latency before exchanging groups of vertices.

Let us comment now on the case in which hardware resource are shared.
‘We assume that appropriate serialization of the shared tasks is represented
by the graph edges [10]. Therefore the latency computation can still be done
by graph traversal. Since shared resources cannot be split across partitions,
the moves are now limited to vertices that are not incident to hyperedges
and/or only to hyperedges, i.e. vertex subsets. In other words, objects
of the moves are hardware resources that are either dedicated or shared.
The algorithms described before be still be used with minor modifications,
related to the move selection and cost function evaluation. In particular, the
evaluation of communication cost function gain presented in [9] is extended
to include movement of a group of vertices represented by the corresponding
hyperedges.

Let us now consider hierarchical hypergraphs. According to our functional
model [10], model call, looping and conditional constructs are represented
by complex vertices and by using hierarchy. These vertices are not par-
titioned if a solution is found in terms of partitioning the hypergraph at
the root of the hierarchy where complex vertices are considered indivisible.
Otherwise, at descending levels of hierarchy the partitioning algorithm iden-
tifies the complex vertex with the largest associated area-cost. This complex
vertex is considered for further partitioning as follows. The complex vertex
is duplicated, so that one instance belongs to each block of the partition.
The hypergraph called by the complex vertex is then considered for parti-
tioning. An initial partition, satisfying resource sharing constraints, is then
constructed and iteratively improved. This process is applied top-down in
the hierarchy until an optimal overall partition is found. It is important to
note that this formulation of hierarchical hypergraph partitioning preserves
the ability of incrementally updating the communication cost as originally
presented for flat graphs in [9]. An example related to a model call is shown
in Figure 2. The calling vertex, (', is duplicated into two calling vertices,
("1 and ("2 each of which calls the partitioned model. Note that dependency
edges (a.c).(c,b),(d,c),(c,e) are accordingly modified in order to preserve
the original sequencing dependencies. The same technique can be applied to
complex vertices corresponding to looping constructs (repeated model call)
and to those representing conditional constructs (selective model call), with
the only extension that more than one hypergraph may be called by one
conditional complex vertex.

218

[)  Complex vertex

/ /
& ’“"‘L"I

Figure 2: Partitioning of Complex Condition-less Vertices

C1subgraph  C2 subgraph

Example Size | N X[ Sizel [ Size2 [ X[ ASize [ CPU
FRISC | 16018 [24 [27 ]I 6148 [ 9990 [ 26 | +0.37% | 778
6502 211094 | 34 | 38 || 97155 | 113939 | 38 | +0.06% | 1546
Elliptic | 12542 [20 {21 || 6070 | 6532 |21 | +0.24% | 11

Table 1: Partitioning Results Under Latency Constraints

4 Implementation and Results

The algorithms have been implemented in program Vulcan, that is written in
the C programming language. The program reads a functional model gener-
ated by programs Hercules and Hebe from HardwareC description. Vulcan
generates a partitioned model that can be transformed by Hebe into a syn-
chronous logic circuit. In the present implementation, Vulcan solves Problem
2 and 3 with user supplied values for « ;7 and 7. Multi-way partitions can
be carried out under user control by solving Problem 3 repeatedly.

Program Vulcan was tested on a number of examples. Table 1 compares
partitioning results. For all examples the values of parameters  and /J
were chosen to be 1. FRISC refers to a hardware description of a simple
16-bit microprocessor with 20 opcodes. 6502 refers to a commercial micro-
controller design. All these designs where compiled from their respective
HardwareC descriptions. The size and latency (A) entries in columns 2 and
4 respectively refer to the original un-partitioned design. Column 4 refers
to latency constraint,\ on the partitioned design. Size of the resulting par-
titions and latency (') of the partitioned model are reported in subsequent
columns. These partitioning results are reported for Kemighan-Lin algo-
rithm using complete cost function. :ASiz¢ refers to area increase of the
partitioned size. CPU run times are reported in seconds while running on
DecStation 3100 with 16 MBytes of memory.

Table 2 shows the effect of resource sharing on hardware partitioning
using an example of fifth order digital wave filter[14]. The original filter de-
scription was translated into HardwareC from an ISP model [15]. The filter
description consists of 26 add operations and 8 muitiply (by 2) operations.
In addition, the design also contains 15 I/O operations. For the elliptic filter
description used in Table 2 the muitiply by a constant 2 operation in the
filter description is replaced by combinational shift logic during behavioral
synthesis phase by Hercules. As shown in the Table 2, the total size of the
elliptic filter without any resource sharing is 6458. This size is estimated
using the literal count of various blocks. Latency of the unpartitioned filter
is 20 cycles. On partitioning the overall size increases to 6488 while latency
increases to 17 cycles. Table 2 also compares running times and results
for four different heuristics: simulated annealing (SA), Kemighan-Lin with
cost function consisting of only area and pin-out costs (KL0), Kemighan-Lin
with the complete cost function (KL1), and finally Kemighan-Lin where the
latency is approximated as described in section 3 (KL2). For the case where
only one adder is available to do all the add operations, the total area cost is
508 and latency of the unpartitioned graph is 30 cycles. Grouping together
all ‘add’ vertices on a single hyperedges results in a partition in which all
‘add’ operations are performed in a single partition. Such a cut, however,
increases the overall latency significantly. This demonstrates the effect of re-
source sharing on optimality of resulting partitions. Greater resource sharing
leads to larger communication costs which increases the size of individuat



Example Size | A ]| Algo. | Sizel | Size2 | X | cPU
Elliptic Filter | 6458 | 16 |[ SA 3244 13254 | 18 | 732
with no 6458 | 16 || KLO | 3001 | 3487 | 17 3
resource sharing | 6458 | 16 || KL1 | 3001 | 3487 | 17 | 331
6458 | 16 [ KL2 | 3001 | 3487 | 17 10

Elliptic Filter | 1222 [ 17 |[ SA 738 706 [ 26| 778
with four 1222 | 17 || KLO 711 621 | 29 1
adders 1222 | 17 || KL1 688 | 656 | 27| 326
1222 | 17 || Ki2 688 | 656 | 27 10

Elliptic Filter 746 | 20 || SA 438 | 608 [ 28 | 901
with two 746 | 20 || KLO 453 | 423 |31 2
adders 746 | 20 || KL1 458 | 368 |35 | 112
746 | 20 || KL2 403 | 453 |31 2

Elliptic Filter 508 | 30 || SA 368 | 340 {35 805
with one 508 | 30 || KLO 448 | 480 | 37 3
adder 508 | 30 || KL1 343 | 263 |35 38
508 | 30 || KL2 343 | 263 |35 4

Table 2: Effect of Resource Sharing on Partitioning

P S T || Sizel | Size2 [ N | ASize
21 | none | none || 6516 | 6506 | 21 | +1.93%
22 | none | none || 6356 | 6346 | 22 | +0.60%
23 | none | none || 5629 | 7073 | 22 | +0.60%
22 [ 7000 | none |[ 6356 | 6346 | 22 | +0.60%
22 | 8000 | none || 6100 | 6562 | 22 | +0.48%
22 | 9000 | none || 6070 | 6532 | 22 | +0.24%
22 | none | 10 6100 | 6562 | 22 | +0.48%
22 | none | 11 5363 | 7279 | 22 | +0.39%
22 | none | 12 |l 5825 | 6797 | 22 | +0.31%
Table 3: Elliptic Filter Partitioning Results Under Ce

partitions. For the elliptic filter we see that the effect of partitioning without
any resource sharing is to increase area cost by about 0.5% and latency by
6%. However, the effect of partitioning the same filter with resource sharing
increases the area cost by 9.0% and latency by 59% in case of four adders.
Resource sharing with two adders increases area cost by 17.4% and latency
by 55%. Finally, resource sharing with one adder increases area cost by
82% and latency by 23%.

Table 3 illustrates the effect of latency, area and pin-out constraints on
partitioning results for the elliptic filter containing 26 add and 8 multiply
resources. In contrast to the filter considered in Table 2, the multiply oper-
ations are now not restricted to be by 2 only. The multiply operations are
instead modeled by calls to hardware blocks requiring two cycles per oper-
ation. Therefore, total size of the unpartitioned filter is 12542 considerably
bigger than the filter description used in Table 2. The latency of the unpar-
titioned filter in this case is 20 cycles. In order to compare these results to
results reported in [5], we have to impose the additional constraint of using
2 adders and 2 multipliers. In this case our algorithm yields a latency of 21
cycles, which is the same as in [5] when the I/O and inter-block communica-
tion delay is taken into account. No area comparison of the two approaches
is meaningful due to different assumptions. It is observed that relaxing the
latency Limit from 21 to 22 reduced the impact on overall area from 1.93%
to 0.60%. Relaxing the area limit from 7500 to 8000 reduced the increas on
overall area from +0.60% to +0.48% for the same overall latency. Overall
pin-out of the filter is 15. A pin-out constraint of 10 per block leads to a
partitioned design which is 0.48% bigger. However, relaxing this constraint
improves the overall size of the partitioned design as shown.

5 Summary

We have formulated the problem of partitioning hardware functional mod-
els under latency, area and pin-out constraints as a constrained hierarchical

219

hypergraph partitioning problem. We have explored algorithms for generat-
ing partitions based on the simulated annealing and on the Kemighan-Lin
algorithms. The latter algorithm is faster than the former and yields almost
comparable results. It exploits two different heuristics to deal with con-
strained partitioning. The algorithms have been implemented in program
Vulcan and tested successfully on benchmark examples. Vulcan can be used
in conjunction with other high-level synthesis tools [10] to explore multi-
chip implementations of a given functional model. Interesting trade-offs can
be achieved by considering partitioning concurrently to resource sharing.
The latter technique reduces area requirement at the cost of higher graph
latency due to extra serialization introduced. Similarly partitioning reduces
area requirement per partitioned block but adversely affects overall latency
due to inter-block delays. Clearly, when design constraints can be satis-
fied by resource sharing alone, then partitioning is not required. However,
partitioning techniques are required in the remaining cases, i.e. when chip
area limitations can not be satisfied by resource sharing without violating
latency constraints. Further research will be devoted to exploring further the
relations between resource sharing and partitioning as well as perfecting the
algorithms and considering more refined area/delay models.

6 Acknowledgments

David Ku implemented the programs Hercules and Hebe used for behavioral
and structural synthesis respectively. This research was sponsored by NSF-
ARPA, under grant No. MIP 8719546 and, by AT&T and DEC jointly
with NSF, under a PYI Award program. We acknowledge also support from
ARPA, under contract No. J-FBI-89-101.

References

[1] M. Beardslee, C. Kring, R. Murgai, H. Savoj, R. K. Brayton, A. R. Newton,
“SLIP: A Software Environment for System Level Interactive Partitioning”,Proc.
ICCAD’89 , Santa Clara, Nov 1989.

[2] W. E. Donath, “Logic Partitioning”, in B. Preas, M. Lorenzetti (ed), Physical
PR

Design Automation of VLSI Systems, Chapter 3, Benj; gs Publishi
Company, 1988.

{3} D. E. Thomas, E. D. Lagnese, R. A. Walker, J. A. Nestor, J. V. Rajan, R. L.
Blackburn, “The Systems Architect Workbench”, Kluwer Academic Press, 1989.

[4] M. C. McFarland, A. C. Parker, R. Camposano, “Tutorial on High-Level Syn-
thesis”, Proc. 25th DAC, 1988, pp. 330-336.

[5]1 E. Dirkes Lagnese, D. E. Thomas, “Architectural Partitioning for System Level
Design”, Proc. 26th DAC, pp. 62-67, June 1989.

[6] M. C. McFarland, S.J., “Computer-Aided Partitioning of Behavioral Hardware
Descriptions”, Proc. 20th DAC, pp. 472-478, 1983.

[7] R. Camposano, R. K. Brayton, “Partitioning Before Logic Synthesis”, Proc.
22nd DAC, pp. 324-326, November 1987.

[81 S. Kirkpatrick, D. Gelatt and M. Vecchi, “Optimi
Science, 220, N.4598, pp. 45-54, May 1983,

ion by Simulated A 1o

{91 B. W. Kemighan, S. Lin, “An Efficient Heuristic Procedure for Partitioning
Graphs”, The Bell System Technical Journal, 49(2) Feb 1970,

[10] G. De Micheli, D. Ku, F. Mailhot, T. Truong, “The Olympus Synthesis System”,
IEEE Design and Test of Computers, Oct 1990.

[11] C. Berge, “Graphs and Hypergraphs”, North-Holland, 1973.

[12] E. L. Lawler, “Cutsets and Partitions of Hypergraphs”, Networks, no. 3, pp.
275-285.

[13] P. J. M. van Laarhoven, E. H. L. Aarts, “Simulated Annealing: Theory and
Applications”, D. Reidel Publishing Company, 1987.

[14] P. DeWilde, E. Deprettere, R. Nouta, “Parallel and Pipelined VL.SI Implemen-
tation of Signal Processing Algorithms”, In S. Y. Kung, H. J. Whitehouse, and T.
Kailath (ed), VLSI and Modern Signal Processing, pp. 257-264. Prentice-Hall,
1985.

[15] E. Dirkes Lagnese, Private Communication.



