Logic Transformations for Synchronous Logic Synthesis

Giovanni De Micheli and Roger Yip
Computer Systems Laboratory
Stanford University

Abstract

This paper presents a new approach to logic synthesis of digital synchronous
sequential circuits. We describe here algorithms for minimizing i) the area of
synchronous binational and/or seq | circuits under cycle time con-
straints and ii) the cycle time under area constraints. Previous approaches
attacked this problem by separating the ional logic from the regis-
ters and by applying circuit transf ions to the combinational component
only. We show in this paper instead how to optimize concurrently the cir-
cuit equations and the register position by a set of algorithms based on logic
transformations. A computer implementation of the algorithms in program
Minerva is described and experimental results are reported.

1 Introduction

Logic synthesis has shown to be of pivotal imp e in the c« ided
design of integrated circuits. Logic synthesxs systems have been the object
of extensive investigation and c« ions have shown to
be practical for product-level design of dlgltal circuits.

Most circuits of interest in digital design are synchronous logic circuits,
that are interconnections of logic gates and registers with synchronous clock-
ing. Feedback connections are restricted to be through synchronous registers,
to guarantee race-free design. Semi-custom circuit implementations, such as
standard-cells and sea-of-gates, have motivated the use of multiple-level (or
multiple-stage) logic synthesis techniques. In particular, such implementa-
tions have shown to be more flexible and faster than two-level implemen-
tations, such as Programmable Logic Arrays. As a result, several tech-
niques for multiple-level logic synthesis techniques have been investigated
and clever algorithms for combi 1 logic sy is have been reported
in the literature [1] [2] [3] [4] [5].

However, techniques for synthesizing synchronous logic circuits have been
lagging behind, due to the additional complexity of handling registers and
feedback connections. Most logic synthesis systems deal with such circuits
by partitioning them into an interconnection of a combinational logic com-
ponent and registers. The combinational portion of the circuit is optimized
by combinational logic algorithms. Then registers are added back to the cir-
cuit. Needless to say, such opti hniques are li d in their scope
by this partitioning strategy. Recently dynamic partitioning techniques have
been proposed [6], aiming at extracting the largest portion of a synchronous
circuit that can be dealt with by combinational logic techniques.

We attempt in this paper to solve the sy ous logic sy is prob-
lem by considering algorithms that operate on the entire sequential circuit,
i.e. that do not separate regi from the cc ional component. For
this reason, we introduce the concept of synchronous Boolean network and
we study transformations on this network that preserve 1/O equivalence and
that optimize i) the circuit area under cycle time constraints and ii) the cycle
time under area constraints. Some of these transformations are extensions of
those used in combinational logic synthesis and opente within and across the

boundaries. Th a logic sy package that exploits these
extended transformations in conjunction with those available in the com-

ion

0073-1129/90/0000/0407$01.00 © 1990 IEEE

407

binational logic synthesis programs [2] [4], may synthesize circuits whose
quality is at least as good as that obtained by the previous techniques.

The register position is determined as a by-product of these circuit trans-
formations. It is important to remember that a technique to position the
registers in a network, called retiming, was introduced by Leiserson and
Saxe [7] in a different context, where logic synthesis transformations were
not considered. This paper presents a model for synchronous logic synthesis
that combines retiming with combinational logic synthesis techniques. Then
algorithms that minimize the circuit area and cycle time are described. The
algorithms are impl d in comp program Minerva, that performs
combinational and sequential logic synthesis. Experimental results are then
reported.

2 Basic concepts and definitions

We consider synchronous circuits that are interconnections of combinational
logic gates and clocked registers. We assurne first that all the registers are
driven by one clock (i.e. single phase circuits) and that the latching is al-
ways positive (or always negative) edge-triggered. (Master-stave registers
consisting of a cascade interconnection of latches gated by the clock and its
complement fall in this class.) We assume that the clock has a period /'
(cycle time), and that the clock skew, the register setup, hold and propaga-
tion times are negligible. We will remove these simplifying assumptions in
Section 5.

We model synchronous circuits by synchronous Boolean networks. A
synchronous Boolean network is described in terms of Boolean variables and
Boolean functions. Each Boolean variable corresponds to either a primary
input/output of the circuit or to the output of a combinational logic gate.
A positive integer label on a variable (superscript) denotes the synchronous
register delay, if any, of the corresponding signal with respect to the primary
input or combinational logic gate that generates it. Zero-valued labels are
omitted for the sake of simplicity. Each Boolean function specifies the value
of a variable in terms of other variables, i.. it is a multiple-input single-
output combinational logic function. It is represented by an equation, whose
left term is a variable with zero-valued label and whose right term is an
expression, e.g. the equation at vertex «; is represented by / = I, where 7
is a Boolean expression in terms of other (labeled) variables.

The network is modeled by the synchronous network graph, that is a
directed weighted multi-graph (:(1° /7. 11"), whose vertex set 1" = 1"/ U
VUV = {r]) is in one-to-one correspondence with the variables
corresponding to the set of primary inputs, logic gates and primary outputs
respectively. The edge set /' and the edge weight set |1 are defined as
follows. There is an edge between r; and v, with weight /' when variable /
appears in the expression .7 for vertex «; with label /. Zero-valued weights
are not indicated by convention. There is a (weighted) edge to each output
vertex in | " from the vertex in | "' corresponding to the gate generating that
output signal. For each pair of vertices joined by a path in /(1" /.. 11"}, the
path weight is the sum of the weights along the path. We assume that each
cycle (i.e. closed path) has strictly positive weight, to model the restriction
of breaking combinational logic cycles by at least one register. An example

ouTPuT
VERTICES

INPUT

aate
VERTICES vERTICES

<x<XITMO
MEERER]

Figure 1: Synchronous Boolean Network and its representation.

of a synchronous Boolean network and its representation is shown in Fig.
1

1

The area taken by a network implementation depends on the total number
of literals and reg quired. For each variable i, let 1n; be the maximum
of the labels that the variable takes in the network representation. Then 1;

P the ber of sy g that are connected in cascade
at the output of the corresponding gate. An arca can be computed
as: A=aY, crali+AY, e i, where o and 7 are coefficients taking
into account the relative area cost of a literal and a register. Given an area
bound A ,»ar, a NEtwork is an area-feasible impl ion if .14 > .1,
and it is a feasible implementation if it is both area-feasible and timing-
feasible.

3 Logic transformations in synchronous logic syn-
thesis

The problem of minimizing the area (cycle time) of a synchronous Boolean
network implementation, possibly under cycle time (area) constraints, is dif-
ficult and no efficient exact solution method is known. Most techniques for
multipie-level logic optimization are based on network transformations, that
preserve the 1/O equivalence of the network, and achieve area/time optimal
solutions with respect to some local criterion. Transformations are classified
as Jocal and global. Transformations are said to be local when they modify
the representation of a Boolean function at a network vertex at a time (e.g.
factoring or Boolean simplifi). Such formations have been pre-
sented in [1] [2] for combinational logic synthesis and can be used (without
significant extensions) in synchronous logic synthesis, because they do not

In general, a synchronous Boolean network may have cyclic dep
ie. its comesponding graph be cyclic. A network is called unidirectional
when the graph G(V', E, W) is acyclic. It models a pipelined combinational
circuit. Note that the combinational Boolean network (without synchronous

d on the k model. Giobal transformations target more than one
vertex at a time and attempt to improve the network by restructuring the
global interconnections (¢.g. elimination, resubstitution and extraction). We
consider here global transformations ded to synch logic sy

registers) introduced by Brayton [1] is just special case of the synct
Boolean network that is acyclic and whose labels are all zeroes.

The (direct) fanin set of a vertex v; is the subset of vertices that are tail
of an edge (with zero weight) incident to v; and it is denoted by FI{v;)
(DFI(r;)). Similarly the (direct) fanout set of a vertex v; is the subset
of vertices that are head of an edge (with zero weight) incident to v; and
it is denoted by FO(v;) (DFO(v;)). Bach vertex of the graph v; € Ve
(i.e. corresponding to a gate) has as attributes an area estimate l; in terms
of literal count 1] and a positive propagation gate delay d;. Each input and
each output vertex has zero delay.

The propagation delay model captures the difference in speed of gates
implementing various Boolean expressions. Therefore it is a function of the
structure of the Boolean expression. For example, in the case of CMOS,
such a structure is characterized by the maximum number of N-type and
P-type devices in series. The delay function is assumed to be always a
monotonically increasing function of [;. It is important to remark that an
accurate gate propagation delay model should include loading factors and
device sizes. We assume that the choice of device sizes for a gate is done
in a successive stage of logic design, the technology mapping, so that it
compensates for loading factors. Therefore this propagation delay model
includes an average loading factor. !

Each vertex v; has a data ready time {;, that is the time at which the signal
genmtedbymeconespondinggmismdywimxespecuoﬂleclockedge
[8]. We assume the primary inputs to be synchronized to the clock positive
edge and therefore their data ready time is zero. For any other vertex v;, the
data ready time is the sum of its propagation delay d; to the largest data ready
time of its inputs that are not registers, i.e. t; = d; + mazxy epFr0) (t;)-
Since the subgraph representing the direct fanin relation is acyclic, the data
ready time can be computed by topological sort.

Given a cycle time 7', a synchronous network is a timing-feasible imple-
mentation if all the data ready times are bounded from above by the cycle
time, ie. I' > max,ev (1;). Bach vertex v; has a slack s; representing
the additional delay that the vertex can tolerate while preserving timing-
feasibility of the network for a given 7' [8]. In a timing-feasible network a
vertex is critical if its slack is null.

10ur model has shown 10 be accurste enough when the losding factors is between one and
four gates. The cases in which the loading factor is higher are rarc, and need to be addressed
by using ing schx for high perfi design. Theref deling delay in the case
of large loading factors becomes irrclevant.

408

in relation with network retiming.

Retiming [7] is a technique that determines a register assignment in a
network (i.e. a set of weights in (;(1", £ 117)) so that it is a feasible imple-
mentation for a given cycle time 7', if such an assignment exists. 2 In our
context, the retiming of variable i by an integer » corresponds to adding »
to its label, and the retimed variable is denoted by i-*"), where the dot in
the superscript represents the label of variable i before retiming (e.g. for
variable i with label 2, fully denoted by /%', a retiming by r = 3 yields
#243) = {15)), Similarly, the retiming of an expression 7 by an integer
corresponds to adding r to the labels of all its op ds and it is rep
by I' +"\. The positive (negative) retiming of a gate vertex r; by 1, is the
shift of r; register delays from its outputs (inputs) to its inputs (outputs). It
cotresponds to retiming by r; the exp T of v; and to retiming by —r;
the variable i in the expressions of the vertices of /'O(v;). The retiming of
an input vertex is just the retiming by —r; of the variable / in the expres-
sions of the vertices of "O(v;). The retiming of an output vertex is just the
retiming by »; of the expression 7 of v;. An example is shown in Fig. 2.

1t was shown in [7] that retiming preserves the 1/O behavior of the net-
work, provided that the original network and the retimed one can be set in
a corresponding initial state. This requirement can be satisfied by assuming
that the registers of interests are controllable by an appropriate primary input
signal, i.e. that the networks are designed to have a resct condition. Note
that since labels cannot be negative by definition, the. retiming of a vertex is
valid only for some restricted values of »;. A retiming of the vertices of a
Boolean network is feasible for 2 cycle time 7', if the retimed network is a
timing-feasible implementation with non-negative labels and 1/0 equivalent
to the original network.

Leiserson and Saxe proposed an algorithm in [7] that searches for the min-
imum 7" for which such an assignment exists. The corresponding networks
are said to be optimal with respect to retiming. If this technique were the
only available to optimize the cycle time, then its result would represent a
global optimum solution. H iming does not change the structure
of the network (i.e. the vertex and edge sets in (/(1". /. 11")), and therefore
better results may be achieved by combining it with other transformations

r
q

2There are different variations of Leiscrson and Saxe’s retiming algorithm. A retiming
dgwihnmthhwdwﬁdﬂnmwwmminhnﬂ:mcuo{h
network, when this is measured in torms of registers only. We refer to retiming in this paper
according to its original notion of a that & & register assign in a network
so that it is a feasible implementation for a given cycle time 7', if such an assignment exists.

CeAB
o
XeD+C

[T
cen'e™

X=DsC

Figure 2: Retiming vertex v. by +1.

xea'"n
¢

"
vea¥c.s'c

o) A
X=A o8 X

v=x'c

Figure 3: Elimination of vertex v .

that modify the network structure. For this reason we consider here the
following transformations.

The elimination of a variable with label k is the replacement of the
variable by its corresponding expression retimed by k. Given two gate
vertices ; and v; € F'I(v;), the elimination of v; into v, is the elimination
of variable j in all its occurrences in the expression 7 for v; (Fig. 3). The
elimination of vertex ¢; is its elimination into all the vertices in 7"O(v).
Note that the elimination of a variable with. label zero is equivalent to the
elimination used in combinational logic synthesis (1] [2]. The elimination
of a variable with non-zero label corresponds to merging two logic gates
that are separated by a register, by shifting the register to the inputs of the
gate corresponding to the variable being eliminated.

Let Z7..7.Q and R be Boolean expressions. Then ./ is a synchronous
divisor of 7 if 3r > O such that 7= 7'*"'Q + R and 7' +"'Q # 0.
Note that the product [/ ¢ +"'¢) may have the algebraic or Boolean flavor, as
defined in [1]. Given two gate vertices v; and v; such that the expression
.7 is a synchronous divisor of 7, the resubstitution of «; into v; is the
factoring of 7 as j' +"'Q + 'R. Note again that the divisors defined in [1]
are a subset of the synchronous divisors and therefore resubstitution with
null retiming (i.e. » = 0) is equivalent to 1
logic. The resubstitution of a variable with non-zero retiming corresponds

ibstitution in combi

Cuan

1
XeDsC

Figure 4. Resubstitution of ¢, into v,,.

xa (A" 8 M) (ceD) A
[

Y (As8) E

xaz (" {cep)
Y=2E
ZaAsB

Figure 5: Extraction of ..

to adding one (or more) register between two gates to simplify the latter
(Fig 4).

The extraction of a common sub-expression of expressions I and .7
corresponding to two vertices v, and v; is the addition to the network of a
vertex r; (with the related edges) corresponding to a common synchronous
divisor of 7 and .7 and to the factoring of 7 and .7 in terms of the new
variable / (Fig 5).

There are different ways of decomposing a Boolean expression. In this
paper we define di ition of an expression I its replacement by the
expression: j+"'Q + R, where j is a new variable, its corresponding
expression .7 is a synchronous divisor of 7 and j' ¥"'Q # (). The decom-
position of a vertex v; implies the addition to the network of vertex +; (Fig
6). Decomposition can be applied recussively to v; and ;.

®
c
0 X G Y 4
1) A
xe (o' 8™") (con) e » ®)
©
®
xa2"(ceo) & R N B x G
ZuAeB L] T 1
©,

ONONONORO.

Figure 6: Decomposition of v;.

4 Algorithms for synchronous logic synthesis

We consider here algorithms for optimizing digital networl ding to

Figure 7: Transformation in a critical path.

does. Indeed, a transformation followed by retiming may preserve timing-
feasibility and therefore a retiming of a network is attempted before rejecting

four major strategies: area minimization without/with cycle time constnmls
and cycle time minimization without/with area constraints. We concentrate
here on logic transformations that operate across register boundaries, because
transformations on combinational networks have been extensively described
[1] [2] [4] [3) [8]. Nevertheless the techniques described here apply to
combinational networks and to registers-less portions of synchronous logic
networks as well.

‘While the details of the logic transformations are presented in the follow-
ing subsections, we would like to comment here on the general strategy in
applying the transformations to achieve a given goal. We conjecture that the
problems of optimal synchronous logic synthesis is at least as difficuit as the
problem of finding optimal combinational logic networks. Therefore heuris-
tic optimization is done as in combinational logic synthesis by iterating an
operator on a network (i.e. a set of transformations) until local opﬁmallty
with respect to this operator is found. Then a different operator is app

a

Example: Consider the circuit of Fig. 7.

Assume that the cycle time is set equal to the propagation delay through
the fongest path, say the path (r;.v,.r,). Suppose, for example, that we
want so0 reduce the circuit area, by ehmmaung vy into r,,,. It may be the case
that the i d propagation delay ti duces a longer critical
path (v.. v, 1), or equivalently that the slack at r, becomes negative.
If the position of the register storing + is fixed, then the elimination has
to be rejected. Otherwise it may be possible to find a feasible retiming
(for example by trying to retime v, by +1) so that the elimination can be
accepted o

The problem of minimizing the cycle time 7', is approached by generating
a sequence of networks that are timing feasible for decreasing values of 7’
[8]. For each network in this sequence the critical vertices are identified,
and transformations are applied to such vertices. It is important to detect

PR
g""

For area minimization, the general frame of the algorithm is as follows.
Vertices of the synchronous logic networks are examined in pairs and a
transformation is applied if suitable.

transform {
\While (some candidate pair is found) {
(v, v;) = select-candidates;
If (constraints are satisfied) transform(vi, v;);
k
}

The selected candidates are such that the chosen transformation can be
applied to them with a decrease of the figure of merit of interest. Consider
for example the problem of unconstrgined area minimization. Then, the
candidate selection is driven by the variation of the estimate of the area cost

64 = aéy + 36,,, where & is the variation in the number of literals and &
is the variation in the number of registers. The computation of §; and é,,, is
specific to a transformation, and therefore it will be detailed in the sequel.

The problem of minimizing area under timing constraints is approached
under the assumption that a timing-feasible network is given, whose area
estimate we want to minimize. We constrain the transformations to pre-
serve timing-feasibility and therefore we reject candidates whose transfor-
mation would lead to a non timing-feasible configuration. In the case of
combinational networks, a necessary and sufficient condition for preserving
timing-feasibility was shown to be that any increase of the data ready time
of any vertex be bounded by its slack {8]. While the sufficiency of this
condition still holds in synchronous logic synthesis, its necessity no longer

410

hether the f affect the optimality with respect to retiming.
If this is not the case, then the netwotk cycle time can be further reduced
by retiming.

In addition, when area constraints are enforced, transformations are subject
to the additional check that the area bound .1,,,, is not violated. There-
fore, an area cost for each transformation (4., = oé + i34,) is computed
and added to the current value of .1. If the result is larger that .1,,,,. the
candidates are rejected.

In the following sections we describe the network transformations in de-
tail. Becanse of their interrelations with retiming, we describe first an im-
plementation of the retiming algorithm that suits the synchronous network
model and supports incremental changes in a network.

4.1 Retiming

The following algorithm can be used to check whether a synchronous net-
work implementation is feasible for a given cycle time T'. It is derived from
an algorithm described in [9] for networks without multiple 1/O vertices,
and it differs by having the subroutine scf-oufputs, that is not present in
the original algorithm. In this paper we are concemned with networks with
multiple 1/Os, under the assumptions that all inputs are synchronous to the
system clock. Such model better conforms to synchronous digital circuits
that need to be interconnected among each other. It is important to note
that a retiming of an output vertex increases all the path weights from the
inputs to that vertex. In this case, if the graph G\ £, 11" is connected, a
necessary condition to preserve equivalence is to delay all the other outputs
(to keep them in phase with the retimed output) and to recover the delay by

subtracting a register delay from ail the inputs.

retiime {
For(k=Lk=|Vik++){
Compute /; for each vertex v; € 17}
M= {m]l,,, >Th

1f(AM =1)
rcturn (TRUE);
else {

If(cxil)rclurn (FALSE);
Retime by 1 all vertices in A/
set-oulpul s,
1
}
}

Set-outputs {
If (3m € M|ey, is a primary output) {
Retime by 1 all primary output vertices not in 1/,
S = {v € V|3 a zero weight path from an input vertex to v};
Retime by 1 all vertices in S;
)
}

Assume that procedure c.ril returns true when & = [17]. It is obvious that
procedure sci-oul puts returns immediately in the case that the network has
no primary output explicitly defined, as in [7] (9]. The following theorem
applies to such networks.

Theorem 1: [9] Given a cycle time 7', algorithm rctiine returns TRUE
iff a feasible retiming existse

Let us consider now sy Boolean networks with multiple 1/Os.
Assume again that procedure il retumns true when k& = |V’|. It can be
easily noted that when the algorithm retums TRUE, a feasible retiming is
constructed by the algorithm such that all the data ready times are bounded
by the cycle time. Since every time that a primary output vertex is retimed,
all the other outputs and all the inputs vertices are retimed, then the length
of all the /O path is preserved. In addition, since /,, > 7' implies /; >
T Yei € DFO(v,,), then the retiming of a vertex implies the retiming of all
the vertices on zero-weighted paths originating from it as well. Therefore no
negative weights (labels) can be introduced. Furthermore it can be shown
that no feasible retiming exists if the algorithm retums FALSE.

Theorem 2: For any synchronous Boolean network described by
(V. E.1V) and a given cycle time T, algorithm refime retumns TRUE
iff a feasible retiming existse

Proof: To prove the theorem, it is sufficient to note that running algorithm
rctime on any maultiple I/O network (7(V, £, 1V") is equivalent to running
the same algorithm on a modified network without I/0s. Consider a modified
network obtained by merging the input and output vertices into a dummy
vertex r;,, with d;, = 7', and by adding one to the weights of all edges
incident to . For any feasible retiming of both networks, the data ready
time is the same for each pair of corresponding gate vertices. Indeed a
retiming of the modified network cannot remove the synchronous register
delays from the dummy vertex v, to any vertex depending on a primary
input and therefore the data ready time of these vertices is preserved. In
addition, since any retiming of the modified network does not change the
cycle weights in the corresponding graph [7], then all the I/O path weights
are preserved in the original network. Therefore a feasible retiming of the

dified network co-implies a feasible retiming of the original network.
Consider now algorithm re{ime. The retiming of a primary output vertex in
the original network corresponds to retiming v, in the modified network and
therefore to retiming all other primary output vertices. In turn, the retiming
of v, causes the retiming of all the vertices in the set S. Therefore running
algorithm refime on any multiple I/O network is equivalent to running the
same algorithm on the corresponding modified network and the claim follows
from Theorem le

The theorem shows that the existence of a feasible retiming can be com-
puted in O(|V]|A])) time for general synchronous Boolean networks, be-
cause each of the |1’| iterations involves the computation of the data ready

411

times, which can be done by topological sort (()(.1)). In some cases, the
algorithm can terminate earlier.

Theorem 3: If at any iteration of the algorithm, 3¢, € M/ N~ and v,
is a primary output, then no feasible retiming existse

Proof: In this case, there is a zero weighted path from some input vertex
tor,, and /,, > T". Since the path weight must be preserved, then /,, cannot
be reducede

This theorem provides an early exit condition which is incorporated into
procedure « rif of algorithm refime.

erif |
1/ (k=|V])return (TRUE)
S = {v € 1|3 a zero weight path from an input vertex to +};
1) (3 € M N S|r,, is a primary output) rc/urn (TRUE);
return (FALSE);

}

Algorithm rc//1m¢ has several advantages over the original retiming algo-
rithm [7). First, the description of a synchronous Boolean network structure
in terms of a (sparse) graph suffices to implement the algorithm. This con-
trast the requirements for the algorithm in [7), that needs two full square
matrices of dimension |1’|. Second, rc{imc is an incremental algorithm, and
so it can be applied in connection with network transformations that make
small modifications to the network to check feasibility. Circuit transforma-
tions affecting the structure of the graph may require local rippling of the
registers around the modified area, and in many cases it is likely that the
algorithm completes in a number of iterations much smaller than |1|.

The algorithm requires the update of the data ready times at each iteration.
Note that not all the data ready times need to be recomputed at each iteration.
Therefore, the algorithm can be made more computationatly efficient by
scheduling the set of vertices that are target of the transformation (i.e. \/
and 5). Then the following steps are iterated until the schedule is empty:
i) selecting the subset of the scheduled nodes whose direct fanin set is not
scheduled; ii) updating their data ready time; iii) scheduling their direct
fanout set if the data ready time has changed; iv) deleting them from the list
of scheduled vertices.

A network can be made optimal with respect to retiming by running
algorithm »ct/inc for decreasing values of /'. In particular, Leiserson and
Saxe suggested to compute the propagation delays between all vertex pairs,
and to binary search among these values for the minimum value for which
retime retarns TRUE [9). While the computation of all-pair delays may be
computationally expensive, a convenient heuristic to solve the problem is to
decrease 7' by fixed increments, so that its value can be a practical choice
for the cycle time.

4.2 Elimination

The «liminalion algorithm follows the outline of that presented in [1] and
fits the frame of algorithm /rans form described above. Candidate vertices
are selected according to some criterion and the elimination takes place if
some constraints are satisfied. Elimination terminates when no candidate
vertices can be found.

We concentrate here on the selection and acceptance criteria for syn-
chronous networks. Let us consider first the area cost (or value) of an elimi-
nation, say of +; into v;. Aneli ion ch the total ber of literals
in a network by &;. This number can be computed as & = n;;(/; - 1) - 1},
where 1, is the multiplicity of variable j in expression 7 [1] [2]. When
elimination is performed across a register boundary, then it is important to
compare the saving in terms of literals with the possible increase of regis-
ters. This can be computed as follows. Recall that ;. was defined to be
the maximum label of variable & in all expressions. Then, for each ver-
tex vy € FI(r;), let m;(7) be the maximum label of variable 4 in the
expression I after the elimination. Then additional registers are needed
to delay variable 4 if '), (7) > ;. Fewer registers may be needed at
the output of ¢;. In particular, let 1 (7) be the maximum label of vari-
able j in the expressions corresponding to /'O{r;) different from 7. Then
the register saving is: m; — m;(T). The total variation in registers is:

g g 3]
S| ng' D
Bl - = Bl

Critical Path

B - . B
- D_—%D- e
g - X - Bl

Figure 8: Elimination at the head of a critical path.

b = (Lurerite,) Max(0.m4(Z) = my)) — (m; — n0}(T)). The area cost
of an elimination is then 6 4 = od; + j36,,.

Example: Consider the circuit of Fig. 3. The variation in the number
of literals is: & = ne(l. — 1) -1 = 1(2-1)~-2 = -1, ie. one
literal is saved. Assume that variable ¢ is not used in any other expression
and that m, = my = 0, i.e. no register is present at the output of v,
and r,. After the elimination one reg is needed to delay a and b, i.e.
m! () = mj(.I') = 1 and no register is needed at the output of v, that is
deleted from the network. Then 6, = (1 -0)+(1—-0)— (1 —-0) =1 and
g = —a+ Je

Then, for unconstrained area minimization, candidates are selected to ei-
ther to minimize é 4, or to be such that 6 4 is less than a threshold usually set
to zero. When timing constraints are enforced, the new slack s; is computed.
If this value is positive, the elimination is accepted. Else, its acceptance is
conditional to finding a retimed feasible network of non superior area cost.

Let us consider now the problem of minimizing the cycle time 7". Let us
assume that the network is optimal with respect to retiming (by using the
relime algorithm for decreasing values of 7°) and with respect to elimination
within register boundaries (as described in [8] and in [2]). We assume that T’
is the minimum cycle time achieved by these techniques and we address the
problem of reducing it by attempting elimination across register boundaries.

In particular, we consider as candidates for elimination the critical vertices
whose gate is connected to a register, i.e. at the head of a critical path (
Fig. 8). Let us assume, for the sake of simplicity that there is only one such
candidate, say v; and that it is critical (i.e. its slack s; = O or equivalently
its data ready time {; = T). The elimination of such a vertex shortens the
critical path and it is beneficial if no other longer critical path is introduced
in the circuit. Therefore, to verify the feasibility of the elimination of a
candidate vertex r;, we must consider the increase of data ready time of
each vertex v; € FO(r;). If such increases are all strictly bound by the
corresponding slack, then the elimination is pted b there is a cycle
time 7" < 1' for which the network is a feasible implementation after the
elimination. If the increase of the data ready time at some vertex is not
bound by its slack, then the elimination is accepted under the condition that
a feasible retiming is found.

Since we would like to speed up the computation time of the elimination
algorithm as much as possible, we seek conditions to avoid to retime a
network to check feasibility. Consider first the case that the inputs of the
gate corresponding to v; are registers (i.e. DI I(v;)isempty). Since t; = d;,
its variation is much easier to compute. If, in addition,] > d; + d;, then
the elimination can be rejected outright. Indeed no feasible retiming can
be found for T < T because, if it were so, vertex v; could be retimed by
-1, and then the network would not be optimal with respect to retiming, as
assumed before.

412

Consider now the case when an elimination is accepted in this context.
Then the circuit cycle time can be reduced to the new maximum data ready
time ‘/”. It is important to know if the network is still optimal with respect
to retiming for this new cycle time.

Theorem 4: Given a synchronous network that is optimal with respect
to retiming for a cycle time 7', assume that a vertex ; with (; = 7' is
eliminated. If after the elimination 3r; € I'/(r;} such that the maximum
data ready time is {;, = 7" < T', then the network is optimal with respect to
retiming for cycle time 7"e

Proof: Before the elimination, the network is optimal with respect to
retiming for a cycle time 7" implies that no feasibl iming exists for a
smaller cycle time and that the cycle time is bounded from below by the
data ready time of a vertex which is the head of a critical path. Such node
was necessarily ¢;, because (; = 1" and the vertex was unique because after
its elimination the maximum data ready time decreases. Since v € I'/(r;),
then v, was on the critical path before the elimination and it becomes the
head of the critical path thereafter. Then the critical path does not change,
but for v;. After the eliminati uppose that a feasible retiming exists for
a cycle time /" < 1”. This would correspond to shortening the path whose
head is r;. But then, such a retiming could have been applied before the
elimination, contradicting the assumption of optimalitye

Example: Consider the circuit of Fig. 8. Assume that after the elimina-
tion, the maximum data ready time is {;. Then, the network after elimination
preserves optimality with respect to retiming, because the elimination has
not introduced another critical path.

4.3 Resubstitution

The resubstitution algorithm follows the outline of that presented in [1]
and [2] and fits the frame of algorithm (rans form described above. Can-
didate vertices are selected in pairs, say r;. r;, so that the expression 7 is
a synchronous divisor of Z. The resubstitution of v; into v; is performed
if the constraints, if any, are satisfied. The algorithm terminates when no
candidate pair can be found.

We consider here only algebraic division [1]. The condition that one
expression is a synchronous divisor of another one is checked by routine
synchronous-divisors, that iterates algebraic divisions. Algebraic division
of two expression is performed by procedure «ly-div, which is described in
[11[2).

synchronous-divisors(I, J) {

QR =W

I = expand(I);

For(r =00+ +) {
TT = crpand(JH+;
Hf(exit (T, T ¥ yreturn
QR = QR Ualy-dic(IT. TT);

}

}

Candidate pairs are searched among all possible pairs of gate vertices.
Note that an expression ,7-*"! may divide an expression .7 for more than
one value of ». Therefore, the algorithm stores all non-trivial quotients Q
and remainders R. in QR. If multiple choices are possible, a greedy strat-
egy is used to select the most convenient resubstitution. To allow multiple
resubstitutions, the algorithm will add to the candidate list the pairs ¢. j and
r.j. If QR is empty, the candidate pair is rejected.

Algorithm synchronous-divisors operates as follows. Procedure
crpand replaces every variable with non zero label by a new variable.
Therefore expressions 77 and 7.7 are polynomials that can be divided by
algorithm alg-div [1] [2). Procedure ¢.rit returns true if any variable in
JU+7) has a label larger than the maximum of the labels that the corre-
sponding variable takes in 7. In this case, no non-trivial divisor can be
found, because expression 7.7 contains a literal not in 77 and therefore
JJ cannot divide 71 [1] {2). Clearly this condition is true for any value of
» larger than the current index of the loop of the algorithm. Note that when
both expressions 7 and ./ have no labels, then 77 = 7 and 77 = [/, the

algorithm performs just the algebraic division as in [1] [2] and retumns after
one iteration.

To choose among candidate pairs, it is important to evaluate the local
change in area due to resubstitution. When resubstituting «; into v;, the
variation in literals can be computed as & = —n;;({; — 1), where nj; is the
multiplicity of variable j in expression 7 [1] [2). The number of registers
in the network is affected only by resubstitutions across register boundaries
(ie. when » > 0). In this case, resubstitution may increase or decrease
the number of registers according to the circumstances. For example, when
resubstituting ¢; into v; as i = jL+7Q + R, we require » register delays
for variable j and r fewer register delays on some inputs to v;. The total
variation in register count é,,,, can be computed from the local variation as
follows. First note that additional registers may be needed at the output of
vj, namely max(0, m;(I] — mj;). Registers may be spared on the inputs
FI(v;), where the fanin set is computed before the resubstitution. For
each vertex ;. € I'I(v;), the register saving is m; —). Then &, =
(mar(0,m3;(I) —mj;)) — (ZL,GF,([,')(mk —mp)). "

Example: Consider the circuit of Fig. 4. The variation in the number
of literals is: & = —ney(l, — 1) = —1(2 - 1) = —1, ie. one literal
is saved. (Note that the original expression for y could be factored as
c(a'? 4 51')). Assume that m,. = O and that no additional delayed values
of a and i are needed to gates other than those shown in Fig.4. Then
b =1-((2-1D+(1-0)=-1and 4 = —a — e

For unconstrained area minimization, the did are selected so that
either 6,4 = a& + 34, is minimized or it is less than a given threshold. Note
that resubstifution reduces the number of literals (i.e. & < 0), whenever
the expression for v; is non trivial, i.c. whenever /; > 1. Therefore resub-
stitutions on non-trivial expressions that are within register boundaries (i.e.
ém = 0) are always selected.

Consider now area under cycle time constraints. Note that
a resubstitution of vertex v; into vertex v; decreases the literal count /; and
it is likely to decrease its propagation delay ;. However, the data ready
time f; may depend now on {;, if v; € DFI(r;) after the resubstitution.
In this case (v; € DFI(v;)), the transformation can be accepted if the
increase in /; is bounded by the slack s;. Otherwise, a feasible retiming
must be searched for. On the other hand, when a register delay is inserted
between v; and v; (v; € DFI(v;)), then {; cannot increase and it is likely
to d Then the £ ion can be accepted without further checks.

The problem of minimizing the cycle time 7' is analyzed under the previ-
ous assumptions: i.e. the network is optimal with respect to retiming and to
resubstitution within register boundaries. We also that 7’ is the min-
imum cycle time and we address the problem of reducing it by attempting
resubstitution of two vertices, say v; into v; across register boundaries. In
this case, the data ready time ¢; cannot but decrease and {; remains constant.
Then candidates for resubstitution are a critical vertex v;, which is the tail
of a critical path and v; € F'I(v;). Candidates are selected to minimize
locally the cycle time 7". Since an upper bound on the decrease of 7’ is the
variation in propagation delay d, this is used as a quick way of choosing a
candidate.

Example: Consider for example the circuit of Fig. 9. The critical path
has as a tail vertex v;. The resubstitution of vertex v; into v; decreases the
propagation delay ;, and therefore reduces the data ready time of the vertex
at the head of the critical path. If the maximum value of the data ready time
is attained at that vertex only, then the cycle time T can be reduced.

4.4 Extraction

The ¢ r{raction algorithm consists of detecting common sub-expressions and
implementing them as additional gates, possibly under timing constraints.
Candidate sub-expressions can be found by means of a global search as
in [2], where all the kernel i tions are ¢ d and ranked. Alter-
natively, candidate sub-expressions can be detected by examining pairs of
expressions, one pair at a time. Such a search is justified when synthesis is
driven by timing considerations, b critical candid may be easily
di d. We have impl ted the latter strategy, that can still be described
by the frame of the {ransforn algorithms described above. Selected can-
didate vertices are such that they share a common sub-expression. Common
sub-expressions, including common cubes, are detected by solving a modi-
fied rectangular covering problem [10]. The algorithm terminates when no

413

B : - B
& > R
= =
l—_[:)i[]
Criticai Path
0 .8
0 -8]
) B3
Figure 9: Resubstitution at the tail of a critical path.
candidate pair can be found.
The local change in area due to extraction is: & = —n(/; — 1) +/;, where
usually » = 2 because vertex 1, is extracted from n = 2 other vertices.

Then the variation &, is negative (i.e. favorable) every time that /; > 2.
The number of registers in the network is affected only by extraction across
register boundaries, and can be computed as follows. When extracting
from +; and ¢;, then i, additional registers are needed, where /1 is the
maximum label of variable / in the exp 1s 7 and 7. Registers may be
spared on the inputs /*/(¢;) and /' /(v;), where the fanin sets are computed
before the extraction. For each vertex . € F'/(r;) U I"](r}), the register
saving is 11 —). Then &, = my; — (Zl.-el'lw,yul'm ’](m;- - mi)).

Example: Consider the circuit of Fig. 5. The variation in the number of
literalsis: &; = —2(I. —1)+/. = —2(2—1)+2 = 0, i.e. the number of literals
is constant. The variation in register is: ¢,, = 1 - ((1 —0)+ (1 - 0)) = —1
and therefore 6, = —Je.

For unconstrained area minimization, the candidates are selected so that
either ¢\ = ad + J6,, is minimized or it is less than a given threshold.

In the case of area minimization under cycle time constraints, we must
verify the data ready times /;, /] and /} after the transformation. Assume
first that the extraction is within register boundaries. Then, /] is bounded
from above by the previous data ready times ¢, and /;. Therefore we must
check the values /; and {/ only. Note that an extraction of vertex r; from
vertices ¢; and «; decreases the literal counts /;. /; and it is likely to decrease
the propagation delays ;. ;. However an extra stage of delay through «,
is added, which affects the data ready times /; and ;. In this case the
transformation can be accepted if any increase in /; and /} is bounded by
their slacks. Otherwise, a feasible retiming must be searched for. On the
other hand, when a register delay is inserted between r; and both +; and
vj then /; and /% cannot increase and they are likely to decrease. Then the
transformation can be accepted under the condition that {; < 1",

The problem of minimizing the cycle time /' is analyzed under the pre-
vious assumptions. We also assume that 7' is the minimum cycle time and
we address the problem of reducing it by attempting extraction of a vertex,
say i; from r; and r; across register boundaries. Then candidates vertices
are pairs of vertices ¢;. v, at least one of which being critical and the tail
of a critical path.

4.5 Decomposition

The general frame of the Jrcomposition algorithm is similar to the
{rans form algorithm described before, with the exception that single ver-
tices are target of the transformation. /)«composition of a vertex can be
seen as the extraction of a single cube or sub-expression. Therefore it may
be applied repeatedly to the same vertex. Note that decomposition increases

the number of literals 6;. For this reason, decomposition is used in combi-
national logic synthesis only to break large expression that have no efficient
implementation or to satisfy timing goals. However, decomposition in syn-
dnmmlogicsynﬂmiscmleadwuedlwﬁonofmenmnbaofmgmem
and therefore be beneficial for area reduction as well.
Iatusconsidﬁthcloulchngehmtduetoldeoompodﬁonstep
in detsil. The variation in literals is §; = 1. The number of registers in
the network is affected only by decomposition across register boundaries,
and can be computed as follows. First r = m; registers are nceded at the
output of gate v;. Registers may be spared on some of the vertices FI(v;)
that become nputs to v;, where the fanin sets are ted before the
decomposition. For each vertex vy € FI(v;) N FI(v;), the register saving
is m; — mj,. Therefore 6, = m; — (Zben(u.)nn(v,)("‘f —my)).
Example: Consider the circuit of Fig. 6. The variation in the number of
literals is +1. The variation in register is: §,, = 1—((1-0)+(1-0)) = 1
and therefore 64 = a — Je
For area minimization the vertex is selected so that either §,, =
ady + f36,,, is minimized or it is less than a given threshoid. In the case of
area minimization under cycle time constraints, note that the literal count
l; decreases and therefore the propagation delay d;- is likely to decrease.
However, the data ready time ¢; is affected by the additional stage through
v;. When decomposition does not introduce a register at the output of v,
(i.e. m; = 0), then we must verify the slack s afier the transformation, and
attempt a retiming in case it becomes negative. Instead, when decomposition
lsncmsne;isterbounduy,medmm-dyﬂmtgmminaeuemduﬂy
s; must be checked.
Thepmblemofminimlzingﬂnecycleﬁanismulyudundermeptevi-
ous assumptions. We also assume that 7 is the minimum cycle time and we
address the problem of reducing it by attempting decomposition of a ver-
tex, say v;. Then candidates vertices are critical ones. Candidate divisors
are chosen so that F'I(v;) does not include critical vertices, because of the
additional stage of delay added. In the case that decomposition is across
a register boundary, the same criterion is used. The rationale is that when
such a decomposition is feasible, then FI(v;) is not likely to include critical
signals, because such signals were feeding v; through registers before the
decomposition. Therefore the purpose of the decomposition is still to reduce
d;. Candidate divisors are then chosen to include non critical vertices.

ey

5 Extensions to other synchronous delay models

We consider now synchronous Boolean networks that are interconnections
of combinational logic gates and positive (negative) edge-triggered registers
with worst-case setup time ¢,, hold time ¢, and clock-to-output register
propagation delay ¢,. We also assume that the worst case clock skew is
AT, i.e. the maximum delay of a rising (falling) clock edge with respect to
the nominal time.

The extension of the previous techniques to the case in which only the
setup and register propagation delay are non zero is trivial. Indeed, the input
to the registers must be available at least ¢, units of time before the clock
edge and the inputs to the combinational circuit will be available ¢, units of
time thereafter. Therefore it suffices to consider a reduced effective cycle
time T'—t, — 1,, which represents an upper bound to the propagation delay
through the combinational logic.

Conversely, non negligible hold times require the signal at a register in-
put to be stable after the clock edge for {, units of time. Therefore, the
propagation delay through the combinational logic must be bounded from
below as well. Therefore, a timing feasible implementation of a network
must be such that the data ready time ¢; of any vertex v; with non-zero label
(m: > 0), Le. at any register input, satisfy the following incqualities:

titta+t. < T-AT
i+t ~t, > AT

Since ¢y — 1, + AT is in general a small quantity, some simple solutions
can be applied to satisfy the second inequality. For example, if the second
equation is not satisfied at some vertex v;, then the vertices in FO(v;) can
be retimed by -1. when possible. Otherwise technology mapping solutions

414

with synchronous elements can be used, like inserting active delay elements
(i pairs or simple inverters feeding the inverted input).

Consider now the case in which each synchronous delay element is im-
plemented by a level sensitive gated latch (instead of an edge triggered one.)
Then the following inequalities must be satisfied for each data ready time ¢ ;
of any vertex v; with non-zero label:

t.‘+t},+t;
i+t — 1y

< T-AT
> T+ AT

where T} is the gating time (which tends to zero in the edge-triggered
case). Even though single-phase gated latch design is convenient in terms
of silicon area, because the latch implementation requires fewer devices, the
design space is limited by these inequalities. (Note that T + 7, — i+
AT may not be a small quantity.) The techniques for synchronous logic
synthesis p d in the previ ions still apply. However retiming
techniques must be extended to cope with upper and lower bounds on the
propagation delays between register pairs. The retiming problem can be
cast as a mixed integer-linear program that is an of that p d
in [7]. Unfortunately there is no solution to this extended problem, to our
knowledge, by means of an iterative algorithm, such as rc/ime of Section 4.
Therefore, other solution methods should be used, possibly requiring higher
computational cost.

Polyphase design can be scen as a further extension of these techniques.
The simplest case is the one in which registets are edge-triggered, the time
period between leading (trailing) edges of adjacent phases is 7' and inputs
are available on the first phase and outputs on the last. Then polyphase
networks can be derived from single phase ones by replacing each register
by as many as the number of phases. Retiming can be used to optimally
distribute the the registers, so that combinational path delays are shortened.

More complex clocking schemes, that do not need to satisfy these restric-
tions may be handled by expressing the timing constraints by an appropriate
set of inequalities. For example, design with two-phase non-overlapping
gated latches, can be handled in this perspective [11). In general, syn-
chronous logic synthesis techniques can be extended to generic synchronous
delay models and clocking schemes by providing a set of logic transforma-
tions in conjunction with methods for solving inequalities.

6 Implementation and Results

Logic synthesis of synchr digital circuits is supported by progr
Minerva, Janus and Ceres, which share the same data structure, /O for-
mats and user interface. Minerva is a workbench to develop and test the
algorithms on un-mapped logic networks described in the previous sections.
Janus provides fundamental transformations to handle synchronous logic
networks as well as an interface to the simulation enviroment and to the
netlist formats of some commercial uncommitted arrays. Ceres performs
technology mapping of synchronous networks.

Circuit specifications can be entered to the programs by specifying syn-
chronous Boolean networks in a hierarchical way in the Structure/Logic
Intermediate Format (SLIF) developed at Stanford University [12). Such a
specification can be generated automatically from circuit descriptions in the
Hardware Description Language HardwareC, that can be compiled into the
SLIF format by the Hercules and Hebe programs [13]. These programs are
a part of the Olympus synthesis system developed at Stanford University
(Fig 10), that has been used to synthesize three chips designs to date [14]
[15).

‘The logic synthesis tools, and in particular Minerva, are interfaced to the
MIS-1I program (2}, that provides an excellent set of routines for optimizing
and mapping combinational sub-components of the circuit being designed.
They can isolate these components and interface them with MIS-II in a
bidirectional way. Minerva supports hierarchical circuit input descriptions,
that may including specific circuit macros (such as bus drivers, tristate el-
emeats, or generic combinational black boxes). However the algorithms
for synchronous logic synthesis are applied, to date, to a flattened circuit
description. Minerva is programmed in C and ists of imativel
6000 lines of code.

PP vely

CERES J

[JANUS

I:ASTOMOLLUil |

Figure 10: The Olympus Synthesis System.

Minerva is an interactive program, that can operate also in batch mode.
The user interface of Minerva can be set to one of three levels, according
to the level of expertise of the user. In the first level, pertinent to the
novice user, only those commands that operate on the entire network are
visible and executable from the user, e.g. global retiming, elimination ,
etc . In the second level, additional commands can be invoked to perform
transformations selectively to some vertices of the network. The third level
supports the fundamental transformations and it is used for algorithm and
program development only. Minerva supports the different optimization
goals described in Section 4. A strategy variable can be set to the desired
goal.

The algorithms have been tested on benchmark circuits, derived from
standard benchmarks. In particular, the examples ex3-7 are derived from the
MCNC fsm examples ex3-7. The first examples is a pipelined ALU, derived
from Alu2 and the second is the phase decoder of the DAIO chip [14). It is
important to remark that standard multiple-level synchronous networks are
to date not available and therefore the starting points for our experiments
have been derived from two level representations by an arbitrary, but fixed
sequence of logic synthesis steps. Area and timing variations are computed
from these starting points.

Some experimental results are reported in Tables 1 and 2 to validate the
proposed procedures. Computing time is in the order of a fraction to a
few seconds on a DECstation 3100 computer. In Table 1 we compare the
area optimization achieved by Minerva versus MIS-II. The circuit area is a
linear combination of the literal and register cost. For a fair comparison,
Minerva does not apply transf i across regi The c« ive
quality of the results is reported in the A columns. Not surprisingly, global
operations performed by MIS-II do better than the pair-wise operations done
by Minerva. However, the difference in area is small.

In Table 2 we compare the results of using Minerva with fixed register
position versus Minerva with floating registers, i.e. performing operations
across boundaries. The parison shows the relative advantage that
can be achieved in reducing the cycle time when the registers are floating.
For this case, we report the cost in additional area to be paid for the decreased
cycle time and reported in the A columns. Note that the increased area cost
is mainly due to an increase in the number of registers. Note also that the
timing results are dependent on the delay model.

415

7 Concluding remarks and future directions

This paper has presented a new approach to the optimal logic synthesis of
digital synchronous circuits, based on the concurrent optimization of the
circuit equations and the register positions. This method, which combines
retiming techniques with network restructuring operations, can achieve re-
sults that are at least as good as those obtained by other logic synthesis
approaches that separate the combinational logic from the registers. Algo-
rithms for circuit transformations within and across register boundaries have
been studied and implemented in program Minerva.

This research as shown the feasibility of approaching sequential logic
design from a new perspective, based on a stepwise refinement of a logic
representation. We think that this approach can encompass the register al-
location problem for sequential logic and therefore classical problems, such
as the state assignment problem, can be cast in this setting. However sev-
eral problems are not yet solved and deserve further research. First a study
of the appropriate set of logic transformations for synchronous sequential
logic, with particular reference to the possibility of reaching all the possi-
ble circuit configurations with equivalent 1/0 behavior. Second the search
of efficient retiming techniques supporting an extended propagation delay
model with explicit fanout dependency as well as satisfying both upper and
lower bounds on propagation delays. Such an extension would support logic
synthesis techniques for circuit designs with gated latches and with non-
negligible clock skew. Third the study of technology mapping technigues
that take advantage of the information contained in the synchronous Boolean
network and the application of retiming techniques to mapped networks.

8 Acknowledgements

This research has been sponsored by NSF under contracts MIP-8710748 and
MIP-8719546. We would like to acknowledge the stimulating discussions
with Andrew Fox, Michiel Ligthart and Frederic Mailhot. Thierry Klein
developed some of the ideas of the retiming and elimination algorithms
and implemented them in Minerva. Frederic Mailhot developed the SLIF
format, the front and back ends of program Minerva and the Janus program
that provides the interfaces of SLIF to other formats.

References

[1] R.Brayton, "Algorithm for Multilevel Synthesis and Optimization” in
G.De Micheli, A.Sangiovanni-Vincentelli and P.Antognetti, Editors,
Design Systems for VLSI Circuits: Logic Synthesis and Silicon Com-
pilation, Martinus Nijhoff, 1987.

[2] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, A. Wang "MIS:
A Multiple-Level Logic Optimization System”, IEEE Transactions on
CADI/ICAS, Vol. CAD-6, No. 6, November 1987, pp. 1062-1081.

[3] J.Darringer, D.Brand, J.Gerbi, W.Joyner and L.Trevillyan, "LSS: A
System for Production Logic Synthesis”, IBM Journal of Res. and
Dev., Vol 28, No 5, pp. 537-545, Sep 1984.

[4] K.Bartlett, W.Cohen, A.De Geus and G.Hachtel, ”Synthesis and Opti-
mization of Multilevel Logic under Timing Constraints” IEEE Trans-
actions on CAD/ICAS, Vol CAD-5 No. 4, pp.582-596, Oct. 1986.

[5} S.Muroga, Y.Kambayashi, H.Lai and J.Culliney, “The Transduction
method - Design of Logic networks based on permissible functions”,
IEEE Transactions on Computers Vol 38, No. 10, pp 1404-1424, Oct.
1989,

[6] S.Malik, E.Sentovich, R.Brayton and A.Sangiovanni, "Retiming and
Resynthesis: Optimizing Sequential Networks with Combinational
Techniques”, Proceedings on the International Workshop on Logic Syn-
thesis, Research Triangle Park, May 1989.

[7] C.Leiserson, F.Rose and J.Saxe "Optimizing Synchronous Circuitry by
Retiming”, in R.Bryant, Editor Third Caltech Conference on VLSI,
Computer Science Press, 1983.

[8] G. De Micheli, "Perfor iented synthesis in the York sil-
icon Compiler’, IEEE Trans on CAD/ICAS, Vol CAD-6, NO 5, Sept
1987, pp.751-765.

[9] J.Saxe "Decomposable Searching Problems and Circuit Optimization
by Retiming: Two Studies in General Transformations of Computa-
tional Structures” Ph. D. Dissertation, Department of Computer Sci-
ence, Camegie Mellon University, 1985.

{10] R. Braylon, R.Rudell, A.Sangiovanni and A. Wang, "Multi-level logic
ion and the R gular Covering Problem”, ICCAD- Pro-

ceedmgs of the International Conference on CAD, Santa Clara, 1987,
Ppp. 66-69.

[11) MDagenm and N.Rumin, "On the Calculation of Optimal Clocking
in Synch: Circuits with level Sensitive Latches” IEEE
Trans on CAD/ICAS, Vol CAD-8, No. 3 , March 1989, pp 268-278.

[12] G.De Micheli, "Algorithms for Synchronous Logic Synthesis”, Pro-
ceedings of the Internatinal Workshop on Logic Synthesis, Research
Triangle Park, 1989.

[13) G.De Micheli and D.Ku, "THERCULES - A system for High- Level
Synthesis”, Proceedings of the 25th Design Automation Conference,
Anaheim, pp. 483-488, 1988,

[14] M.Ligthart, A Bechtolsheim, G.De Micheli and A.El Gamal "Design
of a Digital Audio Input Output chip”, Proceedings of the Custom
Integrated Circuit Conference, San Diego, 1989.

[15] V.Rampa and G.De Micheli, "Computer Aided Synthesis of a Discrete
Cosine Transform Chip”, Proceedings of the International Symposium
on Circuits and Systems, Portland, 1989.

Example Original Minerva MisIl
Lits | Regs | Area | Lits | Regs | Area | A [Lits | Regs | Area A
Ex1 615 6| 662] 615 6| 6621 O] 587 6| 635| -27
Ex2 651 5111059 || 649 51110571 -2 506 511 914 | -145
Ex3 168 12 | 264 | 138 12 | 244]-20 jf 137 12] 233 -31
Ex4 180 23| 364 { 159 23 | 343} -21 |} 129 23§ 313] -51
ExS 157 11] 245 | 130 111 218 -27 jf 127 11| 215 -30
Ex6 192 16 | 320 | 191 16| 319 -1]171 16 | 299 -21
Ex7 177 12} 273 | 151 12| 247]-26 || 149 12| 245| -28
Table 1: Comparative area variation.
Example Minerva Minerva A
fixed registers floating registers
Time | Lits | Regs | Area | Time || Lits | Regs | Area | Area | Time

Ex1 53.7 | 615 6| 662 27.0 615 60 | 1095 | +433 | -26.7
Ex2 42.1 | 649 5111057 | 354 | 651 73 11235 | +178 | -6.7
Ex3 16.3 | 138 12| 244 15.0 | 168 12 264 +20{ -13
Ex4 22.9 | 159 23| 343 | 20.0 Jj 159 25| 359 +16| -29
ExS 1371130 117 218 | 13.7 || 130 11| 218 0 0
Ex6 21.2 | 191 16| 319] 15.8 || 181 23] 365 +46 | -4.4
Ex7 15.7 | 151 12| 247 149 || 177 12| 273 | +26| -0.8

Table 2: Comparative timing and area variation.

416

