High-level Synthesis and Optimization Strategies in Hercules and Hebe

David Ku

Giovanni De Micheli

Center for Integrated Systems
Stanford University
Stanford, CA 94305

Abstract

In this paper, we present an approach to automated synthesis of digital
circuits from behavioral specifications. The system, called Hercules
and Hebe, offers many advantages to the designer. First, the system
supports constraint-driven synthesis where timing and resource con-
straints are applied to guide the synthesis decisions. Second, system-
atic design space exploration is possible, where the designer explores
the tradeoff between area and performance to meet the design objec-
tives. Third, logic synthesis techniques are uniformly incorporated
within the synthesis framework to provide estimates to guide high-
level decisions. Along with a synthesis oriented hardware description
language called HardwareC, Hercules/Hebe provides an environment
for the design of general synchronous digital circuits, with specific
attention to the requirements of ASIC designs. The system has been
applied to complex ASIC designs, including the the Digital Audio
1/0, MAMA, and Bi-Dimensional DCT chips.

1 Introduction

Computer-aided synthesis of digital circuits from behavioral specifi-
cation can greatly improve the complexity and quality of hardware
design. By providing a synthesis framework of tools, a circuit can
be specified by its functional description, timing requirements and
interface constraints. The description can then be optimized by the
high-level and logic synthesis systems to produce a logic level im-
plementation that satisfies the user constraints. The benefits of a
high-level synthesis-based design methodology include standardiza-
tion, self-documentation and ease of modification of the hardware
specifications, shortened design time, increased productivity of the
designers, and better quality of the synthesized design due to the use
of optimization techniques at the functional level.

While logic synthesis techniques have been established as standard
steps in the design methodology for digital circuits [1], high-level syn-
thesis techniques have been lagging behind for several reasons. First,
most proposed and used hardware description languages (HDLs) have
been conceived for hardware simulation and documentation. For a
circuit description to be effective for synthesis, it is necessary to
have a well-defined hardware synthesis semantic for the language. A
consensus on a behavioral HDL platform for synthesis has not been
reached yet. Second, given the diversity of the approaches to digital
circuit designs, it is difficult to encode all implementation decisions
in terms of algorithms or rules that can be universally applied. There-
fore, practical high-level synthesis techniques need to support auto-

TH0316-0/90/0000/0124/$01.00 © 1990 IEEE

matic and user-driven synthesis modes to leverage off the designer’s
knowledge and experience. Third, as designs increase in size and
complexity, system integration issues often dominate a design. Hard-
ware interfacing and design constraints on timing and area need to be
addressed at both the design specification and design synthesis levels.

Previous work on high-level synthesis system addressed primarily
microprocessor and digital signal processing designs [2], [3], [4], [5],
[6], [71, [8], [9], [10], and [14]. We believe that high-level synthesis
can be especially effective in the synthesis of Application Specific
Integrated Circuits (ASICs). For this reason, we have developed a
hardware description language and a high-level synthesis system for
the synthesis and simulation of general-purpose digital circuits, with
specific attention to the requirements of ASIC designs. The system
is divided into two parts, called Hercules and Hebe, and has the
following features:

o Uses synthesis-oriented HDL. HardwareC is a hardware descrip-
tion language designed for synthesis of digital circuits [12]. It
supports hardware descriptions with both procedural and declar-
ative semantics, as well as constraints on the hardware imple-
mentation. HardwareC also provides constructs to support the
description of libraries of generic hardware resources.

o Supports constraint-driven synthesis with partial binding. Tim-
ing and resource requirements that are specified in the high-level
description are used to guide the results of the synthesis opti-
mizations. The system supports the synthesis of partially bound
hardware descriptions, where certain operations are pre-bound
to specific hardware modules, and performs synthesis on the re-
maining operations. It provides a flexible framework for system-
atic exploration of the design space of tradeoffs between area and
performance, and guarantees optimal scheduling of each point in
the design space.

o Incorporates logic synthesis techniques. To meet the area re-
quirements, resource sharing is a necessary part of the synthesis
system. Since resources correspond to models that are described
and invoked in the high level description, the characterization
of resources to evaluate sharing feasibility is carried out using
logic synthesis techniques to provide estimates on timing and
area. This methodology is particularly suited for ASIC designs
that tend to rely on application-specific logic functions. The use
of logic synthesis for estimates improves the quality of the syn-
thesized designs, and avoids erroneous high-level decisions due
to insufficient data or inappropriate assumptions.

124

Hercules
Behavioral Synthesis

Arianne
Simulator
Hebe
Structural Synthesis
Resource
Binding
Scheduling

SLIF
Logic-level

Figure 1: Block diagram of the Hercules and Hebe system.

 Supports automatic and user-driven synthesis. The synthesis
fiow can be fully automated, transforming an input HardwareC
description directly to a logic-level implementation. The system
also supports user-driven synthesis, where a designer can inter-
vene and drive high-level decisions based on an evaluation of
the possible design tradeoffs.

We have implemented two programs for the high-level synthe-
sis of synchronous digital circuits, called Hercules [11] and Hebe.
The two programs transform a behavioral description of hardware in
HardwareC, through a series of translations and optimizations, to a
synchronous logic implementation that satisfies the timing and re-
source constraints that are imposed on the design. Hercules performs
the front-end parsing and behavioral optimizations. It generates an
implementation-independent description of the hardware behavior in a
graph-based representation, called the Sequencing Intermediate Form
(SIF). The SIF can be simulated by Arianne to provide feedback to
the designer on the functional correctness of the input description.
Hebe maps the SIF into a logic-level implementation, described in
the Structural/Logic Intermediate Form (SLIF). A block diagram of
the system is shown in Figure 1.

2 Hardware Modeling

HardwareC is a high-level hardware description language with a C-
like syntax. The language has its own hardware semantics, and it
differs from the C programming language in many respects. Hard-
wareC supports both declarative semantic (e.g. interconnection of
modules) and procedural semantic (e.g. set of operations ordered
in time) in the modeling of hardware. There are four fundamental
design abstractions, corresponding to block, process, procedure, and
function models. At the topmost level, a design is described in terms
of a block, which contains an interconnection of logic and instances
of other blocks and processes. A process consists of a hierarchy of
procedures and functions, and represents a functionality that executes

repeatedly, restarting itself upon completion. Since a process executes
concurrently and independently with respect to the other processes in
the system, it allows the modeling of coarse-grain parallelism at the
functional level. A procedure or function is an encapsulation of op-
erations, and may contain calls to other procedures and functions.

In contrast to micro-architectural synthesis systems that use a pre-
defined set of library elements as building blocks, Hercules and Hebe
treat cach model in the input description as a resource that can be al-
located and shared among the calls to the models (either procedures
or functions). For example, two calls to a model A can be imple-
mented either by a single resource corresponding to the hardware
implementation of A, where both calls share the use of the resource;
or by two resources, where each call is implemented by a different
resource. Operators such as + or — can either be converted into calls
to the appropriate library models, or by default be implemented in
terms of logic expressions.

HardwareC supports the usual iterative and branching constructs,
including both fixed-iteration and data-dependent looping constructs.
Data-dependent loops can be used to detect signal transitions, which
are important in describing external interfaces. For example, the con-
struct while (data==0); will wait until the rising transition of
the signal data. In addition, there are several features of HardwareC
that support hardware specification and synthesis:

e Interprocess communication — To support communication and
synchronization among the concurrent processes, HardwareC
supports both parameter passing and message passing. The for-
mer assumes the existence of a shared medium (e.g. shared
bus or memory) that interconnects the hardware modules im-
plementing processes. The handshaking protocols are described
in the HardwareC description. The latter uses a synchronous
send|receive mechanism that can be used for synchronization or
data transfer. The corresponding hardware for communication,
as well as its protocol, are automatically synthesized.

Explicit instantiation of models — Hierarchical designs are sup-
ported through the use of model calls. A call to a model can
be either generic or instantiated: a generic call invokes a model
without specifying the particular instance that is used to im-
plement the call, whereas an instantiated call identifies also a
specific instance of the model which will implement the call.
Through explicit instantiation of model calls, HardwareC sup-
ports resource constraints and partial bindings of operations to
resources. The designer can constrain the synthesis system to
explore a subset of the possible structures corresponding to a be-
havioral model to satisfy a particular architectural requirement.

Template models — Templates are models that take one or more
integer arguments, and support polymorphism in the language
by modeling several behaviors with a single description. As an
example, a single template can be used to describe a family of
adders of different size. Templates are therefore very useful in
describing libraries of hardware operators at a high level.

Degree of parallelism — For procedural semantic models, Hard-
wareC offers the designer the ability to adjust the degree of
parallelism in a given design through the use of sequential, data-
parallel, or parallel groupings of operations. In the first case,
operations are executed sequentially. In the second one, all oper-
ations are executed in parallel, unless data dependency requires
serialization. In the last case, all operations execute in parallel
unconditionally.

125

process ged (xin, yin, restart, result)
In port xin[8), yin(8], restart;
out port result[8];
[
boolean x[8], y[8];
taga, b;
constraint mintime froma to b = 3 cycles;

I* set output 1o zero during computation x|
write result = 0;

/= wait for restart to go low x|
a: while (restart)

H

Ix sample inputs x|
b: x = read(xin); y = read(yin);

I« Euclid’s algorithm »/
((x!= D&y!=0)){
repeat

<y=x;x=y; >
} wndll (y == 0);
} else
x=0;

= write result to output x|
write result = x;

Figure 2: Example of a HardwareC description to find the greatest
common divisor of two values.

o Constraint specification — Timing constraints are supported
through tagging of operations, where lower and upper bounds
are imposed on the time separation between the tags. Timing
constraint are useful in interface specification by constraining
the time separation between /O operations. Resource constraints
limit the number of and binding of operations to resources in the
final implementation.

An example of a HardwareC description that computes the greatest
common divisor of two numbers is given in Figure 2. The model
gcd waits until the restart signal is low, samples the inputs, then
performs Euclid’s algorithm iteratively. A minimum timing constraint
is specified from the start of the loop to the reading of the inputs.

3 Hercules — Behavioral Synthesis

The objective of behavioral Synthesis is to identify the maximal par-
allelism that exists in the input description. This gives an indication
of the fastest design that the system can produce, assuming that in the
design implementation each operation is implemented by a dedicated
hardware component. While this assumption may not be realistic
in some cases due to area and interconnection costs, it is important
to compute the related performance as a limiting bound for a given
behavior.

The input HardwareC description is parsed and translated first into
an abstract syntax tree representation, which provides the underly-
ing model for semantic analysis and behavioral transformations. The
transformations are categorized into user-driven and automatic trans-
formations. User-driven transformations are optional, and allow the
designer the capability of modifying the model calls and hierarchy of
the input description. They include the following:

o Selective in-line expansion of model calls, where a call to a

126

model is replaced by the functionality of the called model. Once
expanded, the optimization algorithms can be applied across the
call hierarchy.

Selective operator to library mapping, where operators, such as
“+” or “>=", in the input description are mapped into calls
to specific library template models. Although an operator can
be synthesized in a variety of different implementation styles,
the designer is often constrained to elements of a particular li-
brary. With such mapping, the designer has the flexibility to
select the specific implementation for the operators. If no map-
ping is given, then by default the operators are implemented as
combinational logic expressions.

Automatic transformations optimize the behavior by performing
transformations similar to those found in optimizing compilers. The
automatic transformations are carried out without human intervention,
and include the following:

For-loop unrolling, where fixed-iteration loops are unrolled to
increase the scope of the optimizations.

Constant and variable propagation, where the reference to a
variable is replaced by its last assigned value.

Reference stack resolution, where multiple and conditional as-
signments to variables are resolved by creating multiplexed val-
ues that can be referenced and assigned [11].

Common sub-expression elimination, where redundant opera-
tions that produce the same results are removed.

Dead-code elimination, where operations whose effects are not
visible outside the model are removed.,

Collapse conditional, where conditionals with branches contain-
ing only combinational logic are collapsed to increase the scope
in which logic synthesis can be applied.

¢ Data-flow analysis, where data and control dependencies among
the operations are identified.

Upon completion of the automatic transformations, the behavior is
optimized with respect to the data-dependencies that exist among the
operations. At this point, combinational coalescing is performed to
group together combinational logic operations into expression blocks.
The expression blocks define the largest scope (without crossing reg-
ister boundaries) in which logic synthesis can be applied, and identify
the critical combinational logic delays through the design. They are
directly passed to logic synthesis for minimization, the results of
which are fed-back as estimates on area and timing that are used to
refine the design. Combinational coalescing is important particularly
for ASIC designs because of their extensive use of logic expressions
in the hardware specification.)

Sequencing Graph Model. The optimized behavior resulting from
behavioral synthesis is translated into a graph abstraction called the
sequencing intermediate form (SIF). The sequencing graph is a con-
cise way of capturing the partial order among a set of operations,
and it is modeled as a polar, directed acyclic graph. The vertices
represent the operations to be performed, and the edges represent the
dependencies that are either explicit in the hardware specification,
or represent dependencies due to data-flow restrictions or hardware
resource-sharing considerations. A vertex is enabled when all its

i

Manual
Resource Binding
(optional)

Partially
bound
SIF

Create
Design Space

¥
!

Select Binding
Configuration

Ordering
Search

Scheduling

Logic-level
Implementation

Figure 3: Block diagram of the Hebe structural synthesis system.

predecessors have completed execution. Since a vertex may have
multiple predecessors and successors, the model supports multiple
threads of concurrent execution flow.

The vertices are categorized as either simple or complex vertices.
Simple vertices include primitive computations in the language, such
as arithmetic or logic expressions and message passing commands.
Complex vertices allow groups of operations to be performed, and
include model calls, conditionals, and loops. The complex vertices
induce a hierarchical relationship among the graphs. A call vertex
invokes the sequencing graph corresponding to the called model. A
conditional vertex selects among a number of branches, each of which
is modeled by a sequencing graph. A loop vertex iterates its body
until the exit condition is satisfied; the body of the loop is also a
sequencing graph. The sequencing graph is acyclic because only
structured control-flow constructs are assumed (no goto), and loops
are broken through the use of hierarchy.

The sequencing graph model can be simulated by Arianne. There-
fore, HardwareC descriptions can be simulated at the functional level
by transforming them first into the SIF representation. Since behav-
ioral synthesis in Hercules is very efficient and fast, validation of the
HardwareC models via simulation can be effectively supported. The
SIF is the underlying representation for structural synthesis.

127

2 Resources

@

2 Resources

©)

Figure 4: Examples of binding configurations, where operations
within a group are bound to the same resource instance.

4 Hebe — Structural Synthesis

The objective of the Hebe structural synthesis system is to explore
the design tradeoffs to obtain a suitable structure that satisfies the user
constraints on area and timing. The constraints can either be specified
in the input HardwareC description, or entered interactively by the
designer. Hebe provides a flexible underlying representation of the
design space that serves as the basis both for algorithmic exploration
as well as for user-driven synthesis. In particular, the designer can
either let Hebe explore the design tradeoffs automatically, or manually
guide the direction of synthesis by imposing constraints on the design.

Structural synthesis involves performing two tasks — resource
binding, where operations are assigned to hardware resources, and
scheduling, where operations are assigned to control states. An ef-
fective strategy is to perform resource binding before schedule to
provide scheduling with detailed interconnection delays, as in Caddy
[14] and BUD [15]. This basic approach is extended in Hebe to pro-
vide closer interaction and guidance to the designer, and is shown in
Figure 3. The flow of structural synthesis in Hebe is to first bind
operations to specific resources, then perform scheduling to find a
schedule that satisfy the timing constraints. The process repeats for
different possible binding alternatives.

A resource pool is a set of hardware resources (e.g. implemen-
tations of models) with an upper-bound on the number of instances
of each type of hardware resources that the user allows in the fi-
nal implementation. A binding configuration is a matching of the
operations (i.e. the vertices of the sequencing graph) with specific
resources in the resource pool. The design space is the entire set
of binding configurations. Examples of binding configurations for
a sequencing graph containing four calls to model A are shown in
Figure 4, All operations that are grouped together share the same
resource instance in the final implementation, e.g. the binding con-
figuration of Figure 4(a) utilizes one resource instance, the binding
configuration of Figure 4(b) utilizes four resource instances, etc.

An important aspect of the design space formulation is that it is a
complete characterization of the entire set of possible design trade-
offs for a given allocation of resources, and offers two important

advantages:

o Uniformly incorporates partial binding information. In some
circuits the designer may wish to bind certain operations to re-
sources in order to achieve high-level design goals. This infor-
mation can be used to limit the design space such that the syn-
thesis system focus on the remaining unbound operations. At
the extreme, if all operations are bound, then the design space
trivially reduces to a single point.

Optimal scheduling under timing constraints. Since Hebe decou-
ples resource binding from scheduling, the latter problem can be
solved exactly and efficiently, even under timing constraints, for
each binding configuration.

The size of the design space may be large, because it grows ex-
ponentially with the number of shareable resources. However, it is
often the case in ASIC designs that the number of shareable resources
is sufficiently small to make systematic exploration of all binding
configurations practical. Furthermore, bounding techniques based on
evaluation of various cost criteria can be used to prune the design
space, and speed the search for a suitable implementation,

Select Binding Configuration. Given a design space, Hebe sup-
ports both exact and heuristic search of the binding configurations.
The system supports a set of cost criteria that are used to evaluate
the design space. The cost criteria represent the effect of a particular
binding configuration on the area, interconnection, and delay of the
final implementation, and include:

¢ Area Cost: A binding configuration implies a certain degree of
resource utilization and sharing. The area cost corresponds to
the area costs of the resources in the resource pool.

Interconnection Cost: The interconnection structure is the steer-
ing logic that guides the appropriate values to their proper des-
tinations in the final implementation. Since a binding configu-
ration is a complete assignment of operations to resources, the
interconnection structure is completely specified. The intercon-
nection cost is proportional to the size and delay of the intercon-
nection structure.

Width Cost: The width of a binding configuration is the number
of threads of parallelism that need to be serialized in order to
avoid resource contentions. In particular, all operations bound
to the same resource instance should not execute simultaneously,
e.g. either there exists sequencing dependencies among the op-
erations, or the operations occur in mutually exclusive branches
of a conditional. The width cost is a heuristic measure of the
effect of the binding configuration on the performance of the
design.

The decision of whether one alternative is favorable with respect
to another depends on the relative importance of these criteria, which
is determined by the value of a weight associated with each crite-
rion. Hebe provides a flexible framework in which the designer can
experiment with different design goals by adjusting the values of the
weights. The design goals indicate the emphasis of the final imple-
mentation with respect to area and/or performance, and include:

e Find the minimum area configuration that satisfies the timing
constraints, or

128

EeDEbD

No resource
conflict

()

Resource conflict

®)

Figure 5: Example of (a) no resource conflict, and (b) resource con-
flict, among operations bound to the same resource.

¢ Find the maximum performance configuration that satisfies the
area constraints

The designer can focus the synthesis efforts on the binding config-
urations with acceptible costs. For example, if the goal is to minimize
the area, then the area and interconnection costs can be used to iden-
tify the binding configurations with minimal area. Likewise, if the
goal is to maximize performance under area constraints, then the area
and interconnection costs can bound the search to those configura-
tions that meet the area constraints, while the width cost can provide
further pruning of the design space.

Ordering Search. Once a resource binding is selected, the opera-
tions bound to the same resource component are ordered to resolve
any resource conflicts that may occur. For example, three calls to
model A executing in parallel but bound to the same resource must
be serialized to ensure that they cannot execute simultaneously, as
shown in Figure 5. The goal of the ordering search is to find a set
of dependencies among the operations that resolves the resource con-
flicts. A branch-and-bound approach is used (o explore the ordering
alternatives. Since resource sharing can occur across the sequencing
graph hierarchy, and dependencies may exist among the operations,
not all possible orderings are valid. Therefore, significant pruning of
the search space can be achieved. Once an ordering is found, the
sequencing graph is serialized accordingly and scheduling is applied.
If no schedule exists under timing constraints, then another ordering
is tried. If no schedule exists for any valid ordering, then the binding
configuration is discarded.

Relative Schedule. Given an ordering, the sequencing graph is free
from resource conflicts. However, scheduling is necessary to define
the detailed temporal relationships among the operations to satisfy
the imposed timing constraints. A complication arises in that some
of the operations may have unbounded execution delays, correspond-
ing to synchronization primitives and data-dependent loops. The un-
bounded delay operations invalidate the traditional scheduling formu-
lation where operations are statically assigned to specific time slots.
We use a novel technique called relative scheduling that uniformly
supports operations with fixed and unbounded delays [16].

The scheduling problem under timing constraints is modeled by
means of a constraint graph. The vertices of the polar directed graph
represent the operations, and the weights on the edges represent the
liming constraints between pairs of operations. We define a subset
of the vertices, called anchors, that serve as reference points for
specifying the start times of the operations. The anchors consist of the
source vertex and the set of unbounded delay vertices. Offsets are then

defined with respect to each anchor of the graph. In particular, the
anchor set of a vertex is the set of anchors that are predecessors to the
vertex, and represents the unknown factors that affect the activation
time of the vertex. The start time of a vertex is then generalized in
terms of fixed time offsets from the completion of each anchor in its
anchor set. Note that if there are no unbounded delay vertices in the
graph, then the start times of all operations will be specified in terms
of offsets from the source vertex, which reduces to the traditional
scheduling formulation.

An important consideration during scheduling is whether the tim-
ing constraints can be satisfied for any value of the unbounded delay
operations. We use the concept of well-posed verses ill-posed timing
constraints in the presence of unbounded delays [16]. Specifically,
a timing constraint is well-posed if its satisfiability does not depend
on any unbounded delays. Given an ordering of shareable operations
to resolve resource conflicts, additional serialization may be required
to make the constraints well-posed. If no consistent serialization can
be found, or if the constraints are not satisfiable, then the ordering is
rejected as unfeasible. Otherwise, a minimum relative schedule can
be computed by means of an iterative incremental scheduling algo-
rithm. The time complexity of making the constraints well-posed and
the scheduling algorithm are both polynomial. This allows relative
scheduling to be effectively integrated within the ordering search.

Once a satisfactory structure with respect to both resource and
timing constraints is obtained, a logic-level description is generated
for the data-path, the interconnection, and the control circuitry to
activate the data-path according to a given schedule. We use logic
synthesis to perform combined synthesis of both control and data-
path, the result of which can be mapped to a library, or implemented
as macro-cells.

5 Implementation and Design Experiences

Hercules and Hebe have been implemented in C, with approximately
100,000 lines of code. They have been tested on the benchmark
circuits for high-level synthesis. In addition, the system has been
used to design three ASIC circuits at Stanford University, namely
a Bi-dimensional Discrete Cosine Transform (BDCT) chip [17], a
Digital Audio Input Output (DAIO) chip [18], and a decoder chip
for the Multi-Anode Microchannel Array (MAMA) detector for the
space telescope [19].

The BDCT chip is used for video compression applications. An 8 x
8 BDCT architecture was synthesized by Hercules and implemented
in a compiled macro-cell design style [13] as a 9 x 9 mm? image
in 2u,, CMOS technology. The DAIO chip provides an interface,
following the Audio Engineering Standard (AES) protocol, between
a standard 16/32 microprocessor bus with audio devices, such as
compact disk or digital audio tape player. The DAIO specification
in HardwareC was compiled and mapped into a logic netlist suitable
for implementation in LSI Logic 9K-series sea-of-gates technology.
The logic specification had about 6000 equivalent gates. The MAMA
chip is designed to discriminate the information generated by a multi-
anode detector in a space telescope. Also described in HardwareC, it
was synthesized and fabricated with LSI Logic 9K-series sea-of-gates
technology.

6 Acknowledgments

Thomas Truong implemented the SIF simulator Arianne. The authors
would like to thank R. Gupta and T. Truong for helpful comments.

This research was sponsored by NSF, under grant No. MIP 8719546,
by AT&T and DEC jointly with NSF, under a PYI Award program,
and by a fellowship provided by Phillips/Signetics.

References

[1] A. de Geus, Logic synthesis Speeds ASIC Designs, IEEE Spectrum,
Vol 26, No. 8, August 1989, pp. 27-31.

[2] M. Crastes de Paulet, C. Duff, R. Leveugle, F. Poirot, G. Saucier, P.
Sicard, ASYL: A Logic and Architecture Design Automation System,
Proceedings of EuroAsic 89, Jan 1989.

[3] J. Rabaey, H. De Man, et. al., Cathedral II: A Synthesis System for
Multiprocessor DSP Systems, in Silicon Compilation, Ed. D. Gajski,
Addison Wesley 1988, p. 311-360.

J.Huisken, H.Janssen, P.Lippens, O.McArdle, R.Segers, P.Zegers,
A. Delaruelle and J. van Meerbergen, Efficient Design of Systems
on Silicon with PYRAMID, in Logic and Architecture Synthesis for
Silicon Compilers, North Holland, Amsterdam, 1989,

[5] R. Walker, D. Thomas, The Systems Architect Workbench, Kleuer
Academic Press, 1989.

[6] A. Parker, J. Pizarro, M. Mlinar, MAHA: A Program for Data Path
Synthesis, Proceedings 23'" Design Automation Conference, June
1986, p. 461-466.

[7] F. Brewer, D. Gajski, Knowledge Based Control in Micro Architec-
ture Design, Proceeding 24'" DAC, p. 203-209, June 1987.

[8] P. G. Paulin, J. P. Knight, E. F. Girczyc, HAL: A Multi-Paradigm
Approach to Automatic Data-path Synthesis, Proceedings 23 '" De-
sign Automation Conference, June 1986, p. 263-270.

R. Brayton, R. Camposano, G. De Micheli, R. Otten, J. van Eijnd-
hoven, The Yorktown Silicon Compiler System in Silicon Compila-
tion, Ed. D. Gajski, Addison Wesley 1988, p. 204-310.

[10] G.Zimmermann, The MIMOLA Design System: Detailed Descrip-
tion of the Software System, Proc 16th Des Autom. Conf, 1979, pp
56-63.

[11] G. De Micheli, D. Ku, HERCULES - A System for High-Level Syn-
thesis Proceedings 25'" Design Automation Conference, June 1988,
p. 483-488.

[12] D. Ku, G. De Micheli, HardwareC - A Language for Hardware
Design Stanford Technical Report, CSL-TR-88-362, August 1988,
and CSL-TR-90, April 1990 (Version 2.0).

[13] F. Mailhot, G. De Micheli, Automatic Layout and Optimization of
Static CMOS Cells Proceedings of ICCD, Rye, New York, pp. 180-
185, 1988.

[14] R. Camposano, W. Rosenstiel, Synthesizing Circuits from Behav-
ioral Descriptions, IEEE Trans. on CAD, p. 171-180, Feb 1989.

[15] M. J. McFarland, Using Bottom-Up Design Techniques in the Syn-
thesis of Digital Hardware from Abstract Behavioral Descriptions,
Proceedings 23"¢ Design Automation conference, pp. 474-480,
1986.

[16] D. Ku, G. De Micheli, Relative Scheduling Under Timing Con-
straints, Stanford Technical Report, CSL-TR-89-401, November
1989, and Proceedings of 27‘" Design Automation Conference, Or-
lando, Florida, June, 1990.

[17] V. Rampa, G. De Micheli, The Bi-dimensional DCT Chip, Proceed-
ings of ISCAS, 1988.

[18] M. Ligthart, A. Bechtolsheim, G. De Micheli, A. El Gamal, Design
of a Digital Audio Input Output Chip, Custom IC Conference, May
1989.

[19] D. B. Kasle, High resolution decoding techniques and single-
chip decoders for multi-anode microchannel arrays, Proceedings
of SPIE, Vol. 1158, 1989, pp. 311-318.

[4

[

o

—

129

