Relative Scheduling under Timing Constraints

David Ku

Giovanni De Micheli

Center for Integrated Systems
Stanford University

Abstract

Scheduling techniques are used in high-level synthesis of inte-
grated circuits. Traditional scheduling techniques assume fixed
execution delays for the operations. For the synthesis of ASIC
designs that interface with external signals and events, operations
with unbounded delays, i.e. delays unknown at compile time, must
also be considered. We present a relative scheduling technique that
supports operations with fixed and unbounded delays. The tech-
nique satisfies the timing constraints imposed by the user, which
places bounds between the activation of operations. We analyze
a novel property called well-posedness of timing constraints that
is used to identify consistency of constraints in the presence of
unbounded delay operations, and present an approach to relative
scheduling that yields a minimum schedule that satisfies the con-
straints, or detects if no schedule exists, in polynomial time.

1 Introduction

High-level synthesis of digital hardware from behavioral specifi-
cations has been shown to be a practical and efficient means of
design. Many tasks need to be performed in high-level synthesis
to transform an abstract hardware representation into an intercon-
nection of modules and a corresponding control unit. Scheduling
and module binding are among the most important tasks in order
to synthesize circuits that are efficient in terms of area and perfor-
mance. These two problems can be modeled as scheduling under
resource constraints, which unfortunately is an intractable prob-
lem [1]. For this reason, most high-level synthesis system either
separate the two tasks or use heuristic approaches. Some systems
perform module binding before scheduling, e.g. Caddy/DSL [2]
and BUD [3]; some systems perform scheduling before module
binding, e.g. Facet [4], DAA [5], YSC [6]. Combined heuristic
scheduling and binding are performed in other synthesis systems,
such as MAHA [7], EIf [8], Slicer/Splicer [10], Chippe [11], Hal
[12], and GENIE-S [9]. It is important to remark that most of these
approaches assume that each module is characterized a priori in
terms of area and execution time.

We consider in this paper the scheduling problem for the high-
level synthesis of digital Application-Specific Integrated Circuits
(ASICs). This class of circuits has two important characteristics.
First, ASICs often interface with, and synchronize on, external
signals. Therefore, ASIC modeling in terms of high-level specifi-
cations require synchronization primitives and data-dependent iter-
ations. These operations have execution delays that are not known
at compile time, or equivalently, their delays are unbounded. Sec-
ond, real-time ASIC applications require the specification of tim-
ing constraints in the hardware model and their enforcement in

the synthesis process [13] [14]. Timing constraints specify upper
and lower bounds on the time separation between two operations.
They can be applied, for example, to control the time gap between
a read and a write of an external bus, or to synchronize two write
operations.

We present in this paper a scheduling algorithm under timing
constraints that supports operations with unbounded delay. We as-
sume that scheduling follows module binding as in Caddy/DSL [2]
and BUD [3]. We extend the traditional formulation of scheduling
to support unbounded delay operations by introducing the relative
scheduling problem. We analyze the properties of timing con-
straints in the presence on unbounded delays by introducing the
notion of well-posedness of the constraints. We present an algo-
rithm called iterative incremental scheduling that finds a minimum
schedule which satisfies a set of timing constraints, or detects if
no schedule exists, both in polynomial time. We comment then
on the implementation of the algorithm in the framework of the
HERCULES high-level synthesis system [15].

2 Hardware Model

We model hardware behavior as a set of operations and a partial
order among the operations. Each operation is synchronous and
therefore it takes an integral number of cycles to execute, called
its execution delay. The execution delay may not be known a pri-
ori, as in the case of external synchronization and data-dependent
iteration. In this case, we say that the execution delay is un-
bounded. The partial order represents the sequencing dependen-
cies among operations that arise due to data-flow restrictions or
module-sharing limitations. An important assumption made in rel-
ative scheduling is that module binding has been performed prior
to scheduling. Furthermore, any conflicts due to the assignment of
multiple operations to a single module have already been resolved
by introducing sequencing dependencies between these operations.
This is in contrast to heuristic approaches that combines scheduling
with module binding [7, 10, 12].

Several high-level synthesis systems use variations of this gen-
eral hardware model [2, 6, 7, 18]. In particular, the Hercules high-
level synthesis system [15] represents the hardware model by a
polar hierarchical acyclic graph, where the vertices represent oper-
ations to perform and the edges represent the dependencies among
the operations. The hierarchy supports procedure call, conditional
branching, and iteration' constructs of the hardware description
language. We use this model as the basis for scheduling. In Her-
cules, scheduling is applied hierarchically in a bottom-up fashion.

1t is important to note that hardware descriptions with structured iter-
ative constructs may still be modeled by acyclic graphs through the use of
hierarchy, i.e. the body of a loop is a separate graph.

27th ACM/IEEE Design Automation Conference®

© 1990 IEEE 0738-100X/90/0006/0059 $1.00

Paper 5.1
59

For the sake of simplicity, we consider only a non-hierarchical
model in this paper. The extension to hierarchical scheduling is
straight-forward.

3 Problem Formulation

We model the scheduling problem under timing constraints by
means of a polar constraint graph G(V, E). The vertices of the
constraint graph represent the operations. There are Vi=n+1
vertices in the graph, where vo and v, denote the source and sink
vertices, respectively. The edge set represents the dependencies,
where a weight w;; is associated with each edge (v, v;) that
is equal to the execution delay of the operation vi, denoted by
delay(v:). Let us assume first that the weights are known; this
assumption will be removed in the next section. In the case where
no timing constraints are specified, the graph is acyclic, and the
scheduling problem may be defined as follows:

Definition 3.1 A schedule of a constraint graph G(V, E) is an
integer labeling o : V — Z%, such that o(v;) > o(vi) + wij
if there is an edge from vi to v; with weight wi;. A minimum
schedule is a schedule such that (o(v:) — o(vo)) is minimum for
allvieV.

The integer label o(v;) associated with a vertex v; represents
the time (or equivalently the cycle) with respect to the beginning
of the schedule (o(vo)) in which the operation modeled by v; may
begin execution, i.e. o(v;) is the start time of vi. The start time of
an operation is used by the control to determine when the operation
can begin execution. The acyclic nature of the constraint graph
guarantees the existence of a minimum schedule.

‘We introduce now timing constraints to define upper and lower
bounds between the start times of two operations:

e A minimwn timing constraint l;; > 0 requires that:
o(v;) 2 o(v:) +1ij

¢ A maximum timing constraint u;; > 0 requires that:
o(v;) < a(vi) +ui;

We incorporate timing constraints into the constraint graph as
follows. For every minimum timing constraint /;;, we add a for-
ward edge (vi,v;) in the constraint graph with weight equal to
the minimum value wi; = li; > 0. For every maximum tim-
ing constraint u;;j, we add a backward edge (v, v;) in the con-
straint graph with weight equal to the negative of the maximum
value wi; = —ui; < 0, because a(v;) < o(v;) + ui; implies
o(vi) > o(v;) — ui;. An example of a constraint graph is shown
in Figure 1. The double-circled vertices vo and a are vertices with
unbounded delays d(vo) and d(a). The execution delays for v,
vy, and v3 are fixed, are are equal to 2, 2, and 5, respectively.

In the resulting constraint graph G(V, E), the edge set £ =
Ej U Ey consists of forward Es and backward E,» edges. The
forward edges have positive weights and represent minimum tim-
ing constraints and operation dependencies; the backward edges
have negative weights and represent maximum timing constraint,
as shown in Figure 1. The subgraph G s = (V, Ey) containing only
the forward edges is called the forward constraint graph. Without
loss of generality we assume that Gy = (V, Ey) is acyclic, i.e.

Paper 5.1
60

delay(vy) = 2
delay(vy) = 2
delay(va) =5

Figure 1: Example of a constraint graph, with a maximum
timing constraint from v; to v and a minimum timing con-
straint from vg to v3. v and a are anchors in the graph.

we do not consider a minimum timing constraints {i; to be valid if
there is already a path of dependencies from v ; to vi. In particular,
if I;; > 0, then the constraint violates the dependencies among the
operations; otherwise, if li; = 0, then it can be modeled equiv-
alently by a maximum timing constraint uji = 0 from v; to v;.
Cycles in the forward constraint graph can be detected by using
Dijkstra’s algorithm. Note that the values of the execution delays
are irrelevant for this check. With this assumption, we say that a
vertex v; is a successor of vertex v; (vi € succ(v;)) if there is a
directed path from v; to v; in G¢(V, Ey).

This scheduling problem bears similarity to the constrained lay-
out compaction problem [19] [20]. Both problems involve finding
the spacing relationships for a set of elements to meet a set of
upper and lower bound constraints. In the case of compaction, the
elements are objects to be placed on a layout, whereas for schedul-
ing, the elements are operations to be ordered in time. A common
goal in both problems is to minimize the total spacing among the
elements.

3.1 Relative Scheduling

Scheduling problems are defined and solved on graphs with fixed
delay operations. We extend this notion to graphs with unbounded
delay vertices. For an unbounded delay vertex v, the execution
delay delay(v;) is not known statically, and can assume any in-
teger value from O to co. For this reason, we define a subset
of the vertices, called anchors, that serve as reference points for
specifying the start times of operations.

Definition 3.2 The anchors A C V of a constraint graph
G(V, E) are the source vertex vo and all vertices with unbounded
delay.

The source vertex vo is treated as an anchor since the activation of
a sequencing graph is analogous to the completion of the source
vertex, which is not known a priori. Therefore, all outgoing edges
from vo has weight equal to delay(vo), which is unbounded.

We extend the scheduling problem in the presence of unbounded
delay vertices by introducing the concept of offsets with respect to

the anchors of the graph. Let Vo C V be the subset of the vertices
including a and all its successors. Let G o(Va, Eq) be the subgraph
induced by V,, where the execution delays of all unbounded delay
vertices assume the minimum value of zero.

Definition 3.3 The offset of a vertex v; € V, with respect to an
anchor a is an integer value o o(v;) suchthat 04(v;) 2 oa(vi) +
w;j if there is an edge of weight wi; from vi to vj in Ga(Va, Ea),
and o4(a) is normalized to zero. If a(vs) is the minimum value,
then it is the minimum offset of v; w.rt. a, and it is denoted by
o7 ().

Finding the set of offsets is identical to scheduling G a(Va, Ea),
where the constraint graph models both operation dependencies
and timing constraints. If no such set exists, then the constraints
are said to be inconsistent. Since the execution delay of an un-
bounded delay vertex can be any integer greater than or equal
to zero, a minimum offset ¢4(v;) is the minimum time after the
completion of the anchor a before v; can begin execution.

We relate now the offsets to the start time of a vertex. Let us
consider first the anchors that affect the activation of a vertex v..

Definition 3.4 The anchor set of a vertex v is the subset of an-
chors A(vi) C A, such that a € A(v;) if there exists a path in
Gy(V, Ey) from a to v; containing at least one unbounded weight
edge with weight equal to delay(a).

In other words, an anchor a is in the anchor set of a vertex if
the vertex can begin execution only after the completion of a.
Note that since the graph is polar, the source vertex is contained
in the anchor set of every vertex. The anchor set represents the
unknown factors that affect the activation time of an operation. If
we generalize the definition of the start time of a vertex in terms
of fixed time offsets from the completion time of each anchor
in its anchor set, then it is possible to completely characterize
the temporal relationships among the operations. In particular, the
offsets of a vertex can be related to its start time when the execution
delays {delay(a)la € A} of the anchors are known. The start
time of a vertex v:, denoted by T'(v;), is defined recursively as
follows:

T(vi) = maxeea(v;){T(a)+ delay(a)+ oa(vi)}

Note that if there are no unbounded delay vertices in the graph,
then the start times of all operations are specified in terms of time
offsets from the source vertex, which reduces to the traditional
scheduling formulation. We define the relative scheduling problem
as follows.

Definition 3.5 A relative schedule 2 of a constraint graph
G(V, E) is the set of offsets of each vertex vi € V with respect
to each anchor in its anchor set A(v:), i.e. 2 = {oa(vi)|a €
A(vi),Yvi € V}. A minimum relative schedule 2™ is the set
of corresponding minimum offsets, ie. 2™" = {o7"(vi)|a €
A(vi),Vv; € V).

A minimum relative schedule for a constraint graph G(V, E)
guarantees that, for all profiles of execution delays {delay(a)},
the delay from the source vertex to the sink vertex is minimum.

Vertex {| Anchor Set Offsets
II v A(vi) vy | 9a
Vo [] - -
a {vo} 0 -
v {vo} 0 -
vz {vo} 2 -
vy {vo, a} 3 0
vy {vo, a} 8 5

Figure 2: Illustrating anchor sets and minimum offsets for
constraint graph in the previous example.

This can easily be shown from the expression for T'(v) above by
noting that if g4(vi) is minimum for all v;, then T'(vi) is also
minimum for all v;. Consider the constraint graph in Figure 1.
The anchor sets and minimum offsets of the vertices are given in
Figure 2. For example, vertex v4 has two anchors vo and a with
corresponding offsets 0., = 8 and ¢a = 5; the start time of vy is
given as:

T(vs) = max{T(vo) + delay(vo) + 8, T(a) + delay(a) + 5}

3.2 Well-Posedness of Timing Constraints

An important consideration during scheduling is whether a sched-
ule exists under the required timing constraints. An analysis of
the consistency of timing constraints was presented in [21]. How-
ever, the approach does not consider unbounded delay operations.
We extend the analysis by introducing the concept of well-posed
verses ill-posed timing constraints in the presence of unbounded
delay vertices.

Intuitively, the unbounded delay vertices create time gaps that
cannot be resolved statically. Depending on the execution profile
of these operations, a timing constraint may or may not be satisfied
by a given schedule. Consider the examples in Figure 3. Both
graphs contain an il-posed maximum timing constraint u; from
v; to vj, represented by a backward edge (v;, v;) with weight
—u;;. In Figure 3(a), an unbounded delay vertex exists on the
path from v; to v;. Depending on how long it takes to complete
execution, the constraint may or may not be satisfied. Similarly for
Figure 3(b), the activation of v; depends on the completion of a1,
and the activation of v; depends on the completion of a2, both of
which are unbounded. Therefore, the determination of whether the
constraint is satisfiable depends on unbounded execution delays,
and hence is ill-posed. More formally, we define the following.

Definition 3.6 A timing constraint is well-posed if its satisfiability
does not depend on the execution delay of any unbounded delay
vertex.

Conversely a timing constraint is said to be ill-posed if it cannot be
satisfied for some values of the unbounded delays. A constraint
graph G(V, E) is well-posed if every constraint implied by the
edges E is well-posed. Note that minimum timing constraints are
always well-posed, because the check for their validity does not
depend on the values of the execution delays, as explained in the
previous section.

Paper 5.1
61

®)

Figure 3: Examples of ill-posed timing constraints, where
the doubly-circled vertices represent unbounded delay ver-
tices.

On the other hand, a maximum timing constraint defines an
upper-bound between the activation of two operations. If its sat-
isfiability depends on the completion time of an unbounded delay
vertex, then the constraint cannot be met in general because it is
possible that an input data sequence exists such that the execu-
tion delay of the unbounded delay vertex exceeds the upper-bound
imposed by the constraint. We state without proof the following
theorem as a necessary and sufficient condition for checking if a
constraint graph is well-posed. The proof is given in [17].

Theorem 3.1 Assuming G(V, Ey) is acyclic, a constraint graph
G(V, E) is well-posed if and only if A(vi) C A(v;) for all edge
ei; € E.

3.3 Existence of Relative Schedule

For a constraint graph containing only fixed delay vertices, the
scheduling problem may or may not have a solution, depending on
the consistency of the imposed timing constraints. A well-known
theorem states that a schedule of a constraint graph exists if and
only if there are no positive cycles in the graph, where a positive
cycle is a cycle whose sum of the edge weights is a strictly positive
integer [19]. This condition can be checked by the Bellman-Ford
algorithm, or more efficiently, by specialized algorithms [19] [20].

We extend the analysis in order to consider graphs with un-
bounded delay vertices. A positive cycle in the presence of un-
bounded delay weights is a cycle whose length is strictly positive.
Since an unbounded delay weight can be any value from O to infin-
ity, a postive cycle can also be unbounded. We state the existence
condition of a relative schedule as follows.

Theorem 3.2 Given a well-posed constraint graph G(V, E), a
relative schedule for G(V, E) exists if and only if there are no
positive cycles in G(V, E).

For a well-posed constraint graph, there are no cycles with un-
bounded weight edges. Therefore, the computation of positive cy-
cle can be made, for well-posed graphs, by setting the unbounded
delay weights to zero.

Paper 5.1
62

ck for
Well-posedness

Make Exit
Well-posed o solutio
Minimize
Relevant Anchors
Iterative
e
Readjust Exit
Offsets o solutio:

Scheduled
G(V,E)

Relative Scheduling Block diagram

Figure 4: Block diagram of Relative Scheduling approach.

4 Relative Scheduling Approach

Given a sequencing graph and a set of minimum and maximum
timing constraints, we first generate a constraint graph G(V,E)
consisting of forward edges Ey and backward edges E,. We
approach the relative scheduling problem in four steps, as shown
in Figure 4.

1. Checking Well-posed — The constraint graph is checked for
well-posedness using the criterion of Theorem 3.1.

2. Making Well-posed — If the constraint graph is ill-posed, then
no schedule can satisfy the constraints for all input sequences.
We can however attempt to make it well-posed by adding
sequencing dependencies to selectively serialize the graph.
We describe an algorithm makeWellposed that is guaranteed
to yield a well-posed graph with minimum serialization, if
one exists. If the graph cannot be made well-posed, then
we regard the set of constraints as inconsistent and exit the
algorithm.

3. Minimize Relevant Anchor Sets — At this point, the constraint
graph is guaranteed to be well-posed. We take advantage of
the cascading effect of anchors on the start times to minimize
the size of the anchor sets. Consider a graph with a single
path of forward edges from an anchor a to a vertex v con-
taining an anchor b. Since anchor b can begin execution only
after a completes, and since v; can begin execution only af-
ter b completes, it is necessary to define the start time T(vs)
with respect to the completion of b only. We formalize the
observation by introducing the concept of relevant anchor
set that consists of the set of anchors that may directly affect
the start time. By using relevant anchor sets in the compu-
tation of the relative schedule, we improve the efficiency of
the scheduling algorithm and the complexity of the resulting

control because the start times depend on fewer offsets.

4. Iterative Incremental Scheduling — Finally, we use an algo-
rithm called iterative incremental scheduling that finds the
relative schedule by solving the constraint graph. The al-
gorithm is an extension of the technique used by Liao and
‘Wong [19] for layout compaction to support vector solutions,
and it is guaranteed to find the minimum relative schedule,
or detect the presence of inconsistent timing constraints, in
polynomial time.

4.1 Making Well-posed

An ill-posed constraint graph G(V, E) can in some cases be made
well-posed by adding sequencing dependencies to G. Consider
for example Figure 3(b). The ill-posed constraint can be made
well-posed if one adds a sequencing dependency from a; to v;.
Although this forces v; to be serialized with respect to a3, it is
necessary to make the constraint well-posed, i.e. if we are looking
for a solution valid under all input sequences. Note that it is not
always possible to make an ill-posed constraint well-posed. In
particular, if the added sequencing dependency induces a cycle
in the forward constraint graph Gy, as in Figure 3(a), then the
constraint cannot be transformed into a well-posed constraint.

We describe an algorithm called makeWellposed that minimally
serializes a constraint graph to make it well-posed. For every
backward edge e;; € Ep, the algorithm first checks if there is
an anchor @, such that ¢ € A(v;) but a ¢ A(v;). If no such a
exists, then the constraint is well-posed. Otherwise, it attempts to
make the constraint well-posed by adding a forward edge from a
to vi. Procedure addEdge adds a forward edge from anchor @ to
all vertices reachable by a path of backward edges from v.

makeWellposed G(V, E)) {
for each (e;; € Ep) do {
D={ala€ A(vi)anda ¢ A(v;)};
for each (a € D)
addEdge(a, v ;);

}

addEdge(a, v) {
It (a ¢ A(v)){
if (v is predecessor of 6)
stop with ill-posed constraints;
Add forward edge (a, v);
Set weight on (a, v) = delay(a);
A(v) = A(v) U {a};
for each (backward edge (v,b) € Ey)
addEdge(a, b),
}

The worst-case complexity of the makeWellposed algorithm is
O(|A]- | Es|?), where |A| is the number of anchors in G.

4.2 TIterative Incremental Scheduling

The scheduling algorithm is performed by iteratively applying two
tasks. The first is incrementally computing the offsets. The offsets
are initially set to zero, and increased incrementally until all the
minimum timing constraints implied by the forward edges are satis-
fied. This is followed by readjusting offsets to meet the maximum

timing constraints implied by the backward edges. The scheduling
algorithm is described below.

IncrementalScheduling(G(V,E)) {
for (c=1to|Es| + 1) do {
IncrementalOffsen(G ¢, vo);
Eviotate = {€ij € Ep|violatc constraint};
if(Eviotate = 9)
return minimum relative schedule;
ReadjustOffsets(G(V, E));

return no schedule
}
Since the forward constraint graph G ;(V, E¢) is acyclic, the set
of offsets satisfying the minimum timing constraints can be found
using the longest path calculation from the anchors to their suc-
cessors. The edge weights in the constraint graph corresponding
to the execution delays of unbounded delay vertices are set to 0.
The two steps are described below.

1. IncrementalOffset. The offsets are computed by successive
approximations. Initially, the offsets are set to 0. We then
incrementally find the longest path from the anchors to their
successors in the forward constraint graph G y. Specifically,
an offset 04(vi) is updated as:

oa(vi) < maxyevi{oa(v)+ LP(v,v)}

where V' C V is the subset of vertices on any path from a to
v in G¢(V, Ef), and LP(v,v;) is the length of the longest
path from v to v; in G¢. Note that LP(v;, v;) = 0.

2. ReadjustOffset. After applying IncrementalOffset, the result-
ing offsets satisfy all the minimum constraints implied by
the forward edges in G. If all the inequalities implied
by the backward edges (maximam timing constraints) are
satisfied, then the current offsets are the minimum relative
schedule, and the algorithm terminates. Otherwise, the al-
gorithm successively accesses each backward edge in E
to test if the maximum timing constraint implied by the
edge is violated. Let £2(vi) = {oa(vi)la € A(vi)} and
2(v;) = {oa(vi)|a € A(v:)} represent the offsets for two
vertices v; and v;, respectively. There is a constraint vi-
olation on a backward edge (v, v;) with weight wi; < 0
if, there exists an anchor a common to both anchor sets
a € A(vi) N A(v;) such that o4(vi) < oa(vs) + wij. If
the constraint is violated, then the offset &4(v;) is increased
by the minimum amount to satisfy the inequality constraint,

oa(vj) & 0a(vi) + wij

It is important to note that in the case of well-posed timing
constraints, A(vi) C A(v;). After the readjustments, Incre-
mentalOffset is reapplied, and the process repeats until all
maximum timing constraints due to the backward edges are
satisfied.

We prove in [17] that the algorithm has polynomial time com-
plexity by finding the minimum relative schedule, or detects incon-
sistent timing constraints by executing at most (| E'5|+ 1) iterations.
We illustrate the application of the algorithm on the graph of Fig-
ure 5. There are two anchors vo and a, the dashed-arcs represent
backward edges. The offsets for each step of the algorithm are
given.

Paper 5.1
63

Vertex lteration 1 Iteration 2 Final
(‘ p R, .l- {" p R, .l' {‘ p
Gug, 0a | Fugi0a || 0vp,0a | 0wy, || 9u5,0a
vo - - -
a 1- 2, 2, 2,
v 1,0 2,0 2,0
(7 2,1 43 43 53 53
vs 54 64 64
vy 42 42 42
vs 53 63 63 63
vg 8. 8.- 8, -
vy 12,5 12,6 12,6

Figure 5: Trace of offsets in the scheduling algorithm.

5 Implementation

The relative scheduling approach has been integrated in the Her-
cules and Hebe high-level synthesis system [15, 16]. Hercules
performs behavioral optimizations on a HardwareC hardware de-
scription, and generates a maximally parallel sequencing graph
that is the basis for Hebe's structural optimizations. The objec-
tive of Hebe is to explore design tradeoffs in meeting the required
timing and resource constraints. First, a binding of operations to
specific resource components is selected to meet the resource and
interconnect constraints. The selected binding may have resource
contentions, e.g. two parallel operations bound to the same re-
source may simultaneously access the shared resource. In this
case, all operations bound to the same resource component are
serialized by adding sequencing edges via a branch and bound
search to determine the best ordering. Finally, relative scheduling
is performed on the graph model. The computed offsets are used
to construct a control unit for the resulting hardware, which can be
implemented, for example, by a set of look-up tables scanned by
counters. More elaborate implementations are possible by using
logic synthesis techniques.

6 Summary

We have presented a generalization of the scheduling problem
that supports unbounded delay operations. The relative schedul-
ing problem under timing constraints is an important task in the
synthesis of ASIC designs that interface to external signals and
events. We introduced the property of well-posed timing con-

Paper 5.1
64

straints that is used to check the consistency of constraints in the
presence of unbounded delay operations. We presented a tech-
nique called iterative incremental scheduling that finds a provably
minimum telative schedule, or detect the presence of inconsistent
timing constraints, both in polynomial time. The techniques are
integrated in the framework of the Hercules synthesis system.

7 Acknowledgments

This research was sponsored by NSF, under grant No. MIP-
8719546, by AT&T and DEC jointly with NSF, under a PYI Award
program, and by a fellowship provided by Philips/Signetics.

References

[1] M. Garey, D. Johnson, Computers and Intractability, W. Freeman and Co,
1979.

[2) R. Camposano, W. Rosensticl, Synthesizing Circuits from Behavioral De-
iptions, IEEE T ions on CAD, Vol 8, No. 2, Feb 1989, p. 171-180.

{31 M. J. McFarland, Using Bottom-Up Design Techniques in the Synthesis of
Digital Hardware from Abstract Behavioral Descriptions, Proceedings 23 th
Design Automation Conference, June 1986, p. 474-480.

[4] C. Tseng, D. Siewiorek, A d Synthesis of Data Paths in Digital Sys-

tems, IEEE Transaction on CAD, Voll(y\D-S, pp. 379-395, July 1986.
[5] T. Kowalski, An Artificial Intelligence Approach to VLSI Design, Kluwer
Academic Publishers, Boston, 1985

[6] R. K. Brayton, R. Camposano, G. De Micheli, R. Otten, J. van Eijndhoven,
The Yorkgown Silicon Compiler System, in Silicon Compilers, D. Gajski (ed.),
Addison Wesley 1987, pp. 204-310.

[7] A.Parker,J. Pizarro, M. Mlinar, MAHA: A Programfor Data Path Synthesis,
Proceedings 23tk Design Automation Conference, June 1986, p. 461-466.

[8) E. Girczyc, J. Knight, An ADA to Standard Cell Hardware Compiler Based
on Graph Graa and Scheduling, P: dings of ICCD, Oct 1984, p.
726-731.

[9] S. Devadas, R. Newton, Algorithms for Hardware Allocation in Data-Path
Synthesis, Proceedings of ICCD, Oct, 1987, pp. 526-531.

[10) B. Pangrle, D. Gajski, Skicer: a State Synthesizer for Inielligent Compilation,
Proceedings of ICCD, pp. 42-45, 1987.

[11] F. Brewer, D. Gajski, Knowledge Based Control in MicroArchitectural De-
sign, Proceedings of 24** Design Automation Conference, pp. 203-209.

[12] P.G. Paulin, J. P. Knight, E. F. Girczyc, HAL: A Multi-Paradigm Approach
o A ic Data-path Synthesis, Proceedings 23 ** Design Automation
Conference, June 1986, p. 263-270.

13} J. Nestor, D. Thomas, Behavioral Synthesis with Interfaces, Proceedings
ICCAD 86, pp. 112-115.

(14] G. Bomiello, R. Katz, Synthesis and Optimi
Logic, Proceedings of ICCAD 87, pp. 56-60.

[15] G. De Micheli, D. Ku, HERCULES - A System for High-Level Synthesis,
Proceedings 25** Design Automation Conference, June 1988, p. 483-488.

{16] D. Ku, G. De Micheli, High-level Synthesis and Optimi: Strategies in
Hercules and Hebe, Proceedings of EuroASIC, Paris, France, May 1990.

[17] D. Ku, G. De Micheli, Relative Scheduling under Timing Constraints, Stan-
ford CSL Technical Report CSL-TR-402, 1989.

[18] M. J. McFarland, Value Trace, CMU Intcmal report, 1978

{19] Y. Liso, C. Wong, An Algorithm to Compact a VLSI Symbolic Layout with
Mixed Constraints, IEEE Transactions on CAD, Vol. CAD-2, No. 2, Apr
1983, pp. 62-69.

[20) A. R. Newton, Symbolic Layout and Procedural Design, in Design Systems
for VLS, G. De Micheli et. al. (ed.) pp. 65-112.

{21} R. Camp A K Considering Timing Constraints in Synthesis
from a Behavioral Description, Proceedings of ICCD, pp. 6-9, 1986.

g

of Interface Transducer

