Technology Mapping Using Boolean Matching
and Don’t Care Sets

Frédéric Mailhot

Giovanni De Micheli

Center for Integrated Systems
Stanford University
Stanford, CA 94305

Abstract

We describe a new approach to technology mapping where matchings are
recognized by means of Boolean operations. The matching algorithm uses
tautology checking based on Shannon decompositions. We show how to use
the symmetry and unateness properties to speed-up the Boolean matching
algorithm. We examine how don't care information can be used during
Boolean matching. The algorithms have been implemented in program Ceres
and tested on the 1989 MCNC benchmark circuits.

1 Introduction

Logxc synthesis has been shown to be an effective means of designing lOglC

, especially for semi- d The comp aided
of a logic circuit involves two major steps: the optimization of a technology
independent logic representation, using Boolean and/or algebraic techniques,
and technology mapping. Technology mapping is the task of transforming
an arbitrary multiple-level logic representation into an interconnection of
logic elements from a given library of elements. Technology mapping is
a very crucial step in the synthesis of semi-custom circuits for different
technologies, such as sea-of-gates, gate-arrays or standard cells. The quality
of the synthesized circuits, both in terms of area and performance, pends
heavily on this step. For this reason, 1 hes to tec gy
mapping have been pursued and implemented in xesearch and commercial
mapping tools. Unfortunately, the mapping problem is a difficult one from
a computational complexity stand-point. Therefore, rule-based technology
mappers (6, 12] and heuristic algorithms have been proposed [2, 8, 11, 13,
14, 17].

In this paper, we consider an algorithmic approach to logy mapping
problem that extends the pioneering work of Keutzer on Dagon [11] and of
Detjens [8] and Rudell [19] on MIS. To put our work in perspective, we
briefly summarize their approach.

Technology mapping consists of three major tasks. First Boolean net-
works are partitioned into an interconnection of single-output sub-networks,
with the property that each internal vertex has unit outdegree (i.c. fanout).
Then each sub-network is decomposed into an interconnection of two-input
functions (e.g. AND,OR,NAND or NOR). Each sub-network is modeled by
a directed acyclic graph (DAG), called subject graph. Finally each subject
graph is d by an i ion of library cells.

Finding a cover of a subject graph that optimizes area or timing is a
difficult problem. Keutzer proposed to represent library functions by trees
and to use a dynamic programming technique for optimal covering, based on
fast tree matching algorithms. A similar approach was used by Rudell and
Detjens (8, 19]. Note that the overall area (and timing) of a mapped network
depends on the partitioning, decomposition and covering tasks. However,
good results were achieved by this approach and extensions based on DAG
matching presented by Detjens (8] did not show substantial improvements.

2024/90/0000/0212$01.00©1990 IEEE

212

We consider in this paper an approach to the technology mapping that
uses network partitioning and d position techniques similar to those
used in [11], with an improved covering algorithm. The covering algorithm
descrlbed in this paper does not use the tree-based representation. Instead,
it uses Book i based on Shannon decomposition [4]
for recognizing whelher a logic fi can be impl d by a library
cell. The rationale for this choice is that the representation of single-output
networks by trees makes cumbersome (and in some cases impossible) the
efficient mapping of logic functions that have multiple occurrences of some
variables into networks of gates that have also multiple occurrences of some
variables (e.g. exclusive ORs or majority functions). Boolean techniques
support uniformly the description and the matching of any single-output
library cell, ind dently of its functionality. In addition, Boolean matching
techniques can take advantage of don’t care information.

The importance of the use of don’t care conditions in multiple-level logic
synthesis is well recognized [1]. In this paper we consider don’t care con-
ditions that are specified at the network boundary and that arise from the
network interconnection itself [16). Don’t care conditions are usually ex-
ploited to minimize the number of literals (or terms) of each expression
in a Boolean network. While such a . leads to a ller (and
faster) implementation in the case of pluri-cell design style [5} (or PLA-
based design), it may not improve the local area and timing performance in
a cell-based design. For example, cell libraries exploiting pass-transistors
might be faster and/or smaller than other gates having less literals. A pass-
transistor based multiplexer is such a gate: assuming a function is defined
by its on set F and its don't care set D(C:

F = (a+bc
DC o= e
then («+h)c is the rep ion that requires the least ber of literals
(3), and the corresponding logic gate is impl d by 6 tr On the

other hand, aJ + bc requires one more literal (4), but is implemented by only
4 pass-transistors, and is likely to be faster. Since Boolean minimization
may lead to sub-optimal results, we propose to use directly the don't care
conditions during Boolean matching in the search for the best implementation
in terms of area (or timing).

This paper is organized as follows. We first show how to determine
Boolean matchings and we show techniques for speeding-up the matching
operation. We then examine how don’t care conditions can be used in con-
junction with Boolean matching. Eventually we present a covering algorithm
based on Boolean matching and we conclude by showing the effectiveness
of this technique on benchmark circuits.

2 Boolean Matching

Matching is the key operation of the technology mapping process. It iden-
tifies whether an element of the library can be used to implement a part
of a given Boolean function. Matching can be formulated as checking the
tautology between a given Boolean function, called the farget function, and
the set of functions representing a library element, for any permutation of
its variables. We also ider the phase-assignment problem in connection
with the matching problem, because they are closely interrelated in affecting
the cost of an implementation. Finally, we include the don’t care set of the
target function during the matching operation.

We denote the target function by: F(z4,...,x,). It has n inputs and one
output. We denote the phase of variable «; by: ¢; € {0, 1}, where »$' = «;
for ¢; = 1, »¥' = F; for ¢; = 0. We denote the don’t care set of the target
function by: DC(z1,...,2,). We denote the library by: C : {Gy.....Gn}.
Its elements ¢ are multiple-input single-output functions. We define the
matching problem as follows:

Given a target function F(xy,...,z,), its don’t care set DC(xy, ..., x,),
and a library element G(y1,...,y,), find an ordering {i,...,j} and a phase
assignment {¢1,..., ¢, }, of the input variables of F, such that either equa-
tion (1) or (2) is true:

f(a:?',...,wf’)=Q(y|,....y,,) [¢))
Flad oo e?) = 6., 1) (¥))
for each value of (y1.....yn) and each care value of (+{",...,2") ¢ DC,

i.e. equation (1) or (2) is a tautology for all minterms not in the don’t care
set.

If no such ordering and phase assignment exist, then the element ¢ does
not match the target function ¥. Furthermore, if no element in the library
L:{G..... Gy} matches F, then F cannot be covered by the library £.

In other words, if we define the NPN-equivalent set of a function F as the
set of all the functions obtained by input variable Negation, input variable
Permutation and function Negation [18], we say that a function ¥ matches
a library element G when there exist a NPN-equivalent function which is
tautological to G modulo the don’t care set.

For example, any function F(y1, 1) in the set: {y1 + v2.77 + 2. 01 +
U+ T2 e Gt T2, Gidz) can be covered by the library element:
G(xy,r2) = &y + 2. Note that in this example G(zy,22) has n = 2 inputs,
and can match n! 2" = 8 functions [10, 17).

2.1 A Simple Boolean Matching Algorithm

A Boolean match can be determined by verifying that there exists a match-
ing of the input variables such that the target function ¥ and the library
function G are a tautology. Tautology can be checked by recursive Shannon
decomposition [4]. The two Boolean expressions are recursively cofactored
generating two decomposition trees. The two expressions are a tautology if
they have the same logic value for all the leaves of the recursion that are
not in the don’t care set. This process is repeated for all possible orderings
of the variables of ¥, or until a match is found.

The matching algorithm is described by the recursive procedure sim-
ple_boolean_match shown in figure 1, which retums TRUE when the ar-
guments are a tautology for some ordering. At level n of the recursion,
procedure simple_boolean.match is invoked repeatedly with arguments the
cofactors of the nth variable of G and the cofactors of ali the variables of
F until a match is found, in which case the procedure retums TRUE. If
no match is found, the procedure returns FALSE. The recursion stops when
the arguments are constants, i.e. when all vasiables have been cofactored,
in which case the procedure returns TRUE when the corresponding values
match (modulo the don’t care condition). Note that when a match is found,
the sequence of variables used to cofactor F in the recursion levels 1 to N
represents the order in which they are to appear in the comresponding library
element. The algorithm is shown in figure 1.

Note that in the worst-case all permutations and phase assignments of the
input variables are considered. Therefore, up to n! 2" different Shannon
decompositions may be required for each match. The worst-case computa-
tional complexity of the algorithm make it practical only for small values of
n,

213

simple_boolean_match(f,g,dc, var list_f,var_list_g,which_var_g) {

if (de == 1) return(TRUE)
if (f and g are constant 0 or 1) retum (f =g)
which_varf = 1
gvar = pick_a_variable(var_list_g.which_var_g)
remaining_var_g = get_remaining(var Jist_g,which_var_g)
while (which_var f < size_of(var_list_f)) {

fvar = pick_a_variable(var_list.f,which_var.f)

ining_var_f = get_remaining(var Jist f,which_var_f)

0 = shanmon.decomposition(f, fvar,0)

1 = shannon decomposition(f,fvar, 1)

g0 = shannon_decomposition(g,gvar,0)

g1 = shannon.decomposition(g,gvar,1)

do0 = shannon decomposition(dc,fvar,0)

del = shannon decomposition(dc, fvar, 1)

if (simple_boolean match(f0,g0,dc0,
remaining_var f remaining_var_g,which_var_g+1)
and simple_boolean_match(f1,g1.dcl,
remaining var f,remaining_var_g,which_var_g+1)) {
retur(TRUE) }

clsc if (simple_boolean_match(f1,g0,dc0,
remaining_ var fremaining_var_g,which_var_g+1)
and simple_boolean.match(f0,gl.dc1,
remaining_var f,remaining var.g,which_var_g+1)) {
return(TRUE) }

which_var.f = which_.varf + 1 }

retum(FALSE) }

Figure 1: Simple Algorithm for Boolean Matching

2.2 Speeding Up Boolean Matching

We p in this some techniques to speed-up the matching of
completely specified functions. Uncompletely specified functions are dealt
with in the following sections.

To increase the efficiency of the Boolean matching p , it is imp
to remark that the phase information of the unate variables is irrelevant to
d ine the 2. Therefore we define a transformation 7" that com-
plements the input variables that are negative unate. Note that the phase
information cannot be taken away from binate variables, where both the
positive and negative phases are required to express . By using this trans-
formation, we reduce the information required for the matching and therefore
reduce also its computational cost. For example, any function F| (¥1.y2) in
the set: {11 + 1. 57 + va.y1 + 7. 77 + T2 Yiv2. Viva. i¥a. Tz} can be
represented by the set: {11 + 2. iy} -

As a result, we redefine the matching problem as follows:

Given a target function F (2, ..

P

-, 2y,) and a library element G(y;....,y,),
find an ordering {/,.... j} and a phase assignment {6;..... , ¢t} of the binate
variables {k,...,1} of F, such that either (3) or (4) is true:

T (F(xy,... ,;l'fk,.,..l'f',...,il'j)’ =T(G(n.....m)) 3)
T(F (i)= TG,) “@

The following considerations are also important in reducing the computa-
tional complexity:

o Any input permutation must associate each unate (binate) variable in
the target function to a unate (binate) variable in the function of the
library element.

o Variables or groups of variables that are interchangeable in the target
Junction must be interchangeable in the function of the library element.

The first point implies that if the target function has i binate variables, then
only 1! - (» — wn)! permutations of the input variables are needed.

The second point implies that symmetry classes can be used to simplify
the search. A symmetry class is a set of variables that are interchangeable
without affecting the logic fi ality [15]. Techniques based on symme-
try considerations to speed-up algebraic matching were also presented by
Morrison in [17].

For a given function F(xy,...
the same symmetry class if

F(e1yeea iy,

CEiceeo e, X)), i and x; belong to

P R e

The symmetry property is an equivalence relation (it is reflexive, symmetric
and transitive), hence if {x;,z;} and {z;, z,} are two symmetry sets, then
{xj,xz} is also a symmetry set.

Symmetry classes are used in two different ways to reduce the search
space. First, they are used as a filter to quickly find good candidates for
matching. A necessary condition for matching a target function F by library
element G is that both have exactly the same symmetry classes. Hence only
a small fraction of the library el need be checked by the comp
ally intensive Boolean comparison to see if they match the logic equation.
The symmetry classes for each library element are calculated once before
invoking the mapping algorithm.

Second, symmetry classes are used during the Boolean comparison itself.
Once a library element G that satisfies the previous requirement is found,
the symmetry sets of F are compared to those of (. Then only variables
belonging to symmetry sets of the same size can possibly produce a match.
Since all variables from a given sy y set are equi , the ordering of
the variables within the set is irrelevant. This implies that the permutations
need only be done over symmetry sets of the same size. Thas the number
of permutations required to detect a match is: []/_,(S:!), where S; is the
number of sets of cardinality 7, and g is the size of the largest symmetry
set. Although i in the worst case logic equauons might have no symmetry
at all, our exp with t cells and programmable
logic devices libraries (such as CMOS3, LSI Logic or Actel) is that the
elements are highly symmetrical, the average S; being less than 2, as shown
in Table 1. For example, the gate MX (aFg + b7y + c++ dry) in the Actel
library has 4 sets of single unate variables ({a},{b},{c}.{d}), and 2 sets

Aard

of single binate variables ({+}, {y}).
Library | Average S; | Maximum S;
Actel 1.29 4
CMOS3 1.27 4
LSI Logic 1.32 4

Table 1: Average number of symmetry sets for different libraries

infc

U and sy try cl are used
reduce the search space. Unate and binate sy y sets are disting
since both unateness and symmetry properties have to be the same for two
variables to be interchangeable. Thus S; = S} +S?, where S is the number
of sets of cardinality / made of unate variables, S? is the number of sets
of cardinality / made of binate variables. This further reduces the number
of permutations to []{_, Sit - SPt =]I, SF1- (S — S < [Ti, Sit-
Hence, when considering the phase assignment of the binate variables, at
most []/_, S5¥1-(S; — S¢)-27(5—-57) trials have to be made in order to find
a match. In the Actel library, the worst case occurs for the library element
MXT = docicy + diTTes + dacaTs + datzc3, where S) = 7, and 5} = 4. In
that case, 41 -3!.23 = 1152 « 71- 2" = 645 120, where 7! -27 repmsems
the ber of trials needed if no sy y infi ion is used.

Procedure boolean_match, a variation on procedure simple_boolean_match
is shown in figure 2. It incorporates the symmetry information to reduce the
search space: permutations are done only over symmetry sets of the same
size.

gether to further

s had

2.3 Use of the Don’t Care Sets

‘When don’t care conditions are considered, the target function / cannot be
uniquely characterized by a symmetry set. Therefore the techniques based
on symmetry sets presented in the previous section no longer apply.

A straight-forward approach is to consider all the functions / that can
be derived from F and its don't care set DC. Unfortunately, there are 2V
possible combinations, where N is the number of minterms in D(. Therefore
this approach can be used only for small don’t care sets. For large don’t
care sets, a pruning mechanism has to be used to limit the search space.

We introduce now a representation of n-variable functions that exploits
the notion of symmetry sets and NPN-equivalence and that can be used to
determine matchings while exploiting the notion of don’t care conditions.
For a given number of input variables n, let G(V, /') be a graph whose vertex

214

boolean_match(f,g,f_symmetry_scts,g symmetry sets) {

if (fand g are constant 0 or 1) {
reum (f=g) }

if (fsymmetry sets is empty) {
f_symmetry_sets = getnextf_symmetry set()
symmetry_size = size_of (f_symmetry scts)
while (symmetry sets of g with

size symmetry_size have still to be tried) {

g-symmetry_scts = get_nextavailable_set(gsymmetry size)
boolcan_matchf,g.f_symmetry sets,g_symmetry sets)
if (it is & match) {
return(TRUE) } } }
fvar = pick_a_variable(f_symmetry sets)
gvar = pick_a_variable(g symmetry_scts)

0 = shannon_decomposition(f,fvar,0)
f1 = shannon_decomposition(f,fvar, 1)
80 = shannon_decomposition(g,gvar,0)
g! = shennon decomposition(g,gvar,1)

if ((boolean_match(f0,g0,f symmetry scts,g_symmetry_scts)
and (boolean.match(f1,g1,f.symmetry_sets,g symmetry sets) {

retur(TRUE) }
else retum(FALSE) {

Figure 2: Algorithm for Fast Boolean Matching

set is in one-to-one correspond with the ble of all different NPN
equivalent functions, and £ = {(v;.v;)} such that the function represented
by v; and v; differ in one minterm. Such a graph (G(\") for » = 3 is
shown in figure 3.

Figure 3: Matching compatibility graph for 3-variable Boolean space

Each vertex 1" in the graph is annotated with the library elements that

hes the cor ing function, when a match exists. Then, for a given

target function ¥ the corresponding vertex v can be determined. There

exists a matching to the cell G if there is a path in the graph (;(1', £) from

vr to vg (possibly of zero length) whose edges corresponds to minterms in
the don’t care set of F.

The graph (7(1', E) is called matching compatibility graph, because it
shows which matching are compatible with the given function. Note that the
size of the compatibility graph is small for functions of 3 or 4 variable, where
there are 14 and 222 different NPN-equivalent functions respectively (18],
representing the 256 and 65536 possible functions of 3 and 4 variables.

The compatibility graph is constructed automatically once, for a given
value of n, and annotated with the library elements. The algorithm for
graph traversal is shown in figure 4, and it is invoked with the vertex found
by boolean_matching as parameter. The algorithm retumns the list of all the
matching library elements, among which the minimum-cost one is chosen
to cover F. The algorithm has shown to be practical for values of n < 4,
because of the size of the compatibility graph.

3 A Covering Algorithm

The logic circuit to be mapped is partitioned into subject graphs
{I1.....I'x}, that are decomposed into an interconnection of two-input

traverse_graph(node,f.dc) (
mark_visited(node)
for (all minterms /1, in dc) {
remaining dc = subtract(dc, ;)
new.f = add(node->equation,; ;)
compatible_node = node_compatible(node, ;. ;)
if (compatible_node is not visited) {
traverse_graph(compatiblc_node,new f,remaining dc) } }
if (node is a library clement) {
if (node-> library represents the best cost) {
update_best_cover(node-> library) } } }

Figure 4: Algorithm for Reachability Graph traversal using Don't Cares

gates. We consider here the covering of a subjet graph I that optimizes
some cost criteria (e.g. area or timing). For this purpose we use the notions
of cluster and cluster function.

A cluster is a connected sub-graph of the subject graph /';, having only
one vertex with zero out-degree ;. It is characterized by its depth (longest
directed path from ~;) and its number of inputs. The associated cluster
functmn is the Boolean function obtained by collapsing [3] the Boolean ex-

d to the into a single Boolean function. We denote
nll possible clusters containing the vertex v; of /; by {sj1,...,5; n).

As an example, consider the Boolean network (after an AND/OR decom-

position):

;o= b

b = e+m
r; = ©c+4d
r = a+c

There are six possible cluster functions for the subject graph /'; containing
the sink vertex v; =

K11 = by

K12 = bla+c)

K13 = (e+ 12)n

K4 = (e+z2)(a+tc)
Kis = (e4T+d)ny

Kie = (e+T+d)a+c)

The algorithm attempts to match each cluster function «; ;. to a library
element. The area cost of a cover is computed by adding to the cost of
the matching of the cluster «; ; under consideration the cost of the clusters
corresponding to the variables in the Boolean function for « ; ;. For any
cluster, there is always a match, because the network was decomposed into
AND/ORs in the initial setup phase. When matchmgs exist for multiple
clusters, then the choice of the hing of imal area cost g
minimality of the total area cost of the matched sub-graph [11, 8] for the
particular AND/OR decomposition under consideration. The cost of the
required inverters is also taken into account at this stage.

The timing cost of a cover can be computed in a similar way. The
propagation delay through a cluster is added to the maximum of the arrival
times at its inputs, to compute the local time at the vertex »; [19]. When
matching exist for multiple clusters, then the choice of the matching of
minimal local time guarantees minimality of the total timing cost of the
matched sub-graph, again for the particular AND/OR decomposition under
consideration.

The covering algonthm 1s
shown in figure 5.

As the subject graph is being mapped, the don't care set changes accord-
ingly. For example, let us assume that the chosen matchings for b, », and
ry are b = OR3(7,d,¢), ¥y = OR2(a,c) and 2 = OR2(7,d). Then the
satisfiability don't care sets associated with these variables are:

mpk d by p get_bigger function

DCy =

bede + BT+ d +¢€)

215

DCy,
DC.y

rnae+7ile +c)

racd + 73T + d)

These don't care sets can be used for Boolean matching in the rest of the
circuit. For example, let’s assume the cluster «» of f is being processed.
Then, its associated cluster function is b(a + c). However, b7 is part of the
don’t care set DC;, and can be used during the matching. In this particular
case, the functions b(a + ¢) and ab + be are both valid matches. For some
technologies, the second option may be preferred, (i.e. a multiplexer may
be better than an AND-OR gate).

get_bigger_function(top,equation, list,depth) {
if (depth = max_depth) {
retum
}
if (equation is empty) {
if (top not yet mwd) {

lm = geuuppm_fmm(equmon)
getbigger_function(top,equation,list, 1)
set_node_mapped(top)

}
retem }
while list is not empty {

if (node(list) is not mapped) {
get.bigger_function(node(list), NULL,NULL depth) }

if (node(list) is a global input) skip this one

clse if (fanout(node(liat)) > 1) {

- (gdbiggwiumim(nnd!(lin),mmdeuh) }

el
new Jist = get_support_from{equation{node(list))

replace cmnl list clement by new fist

new. = nodelist))
get_bl;ger i P.CW. new list,depth+1)
put back list in original state)
list = next_element_from(list) }
check if_in_library(top,equation,list)

retum }

Figure 5: Algorithm for network covering

Function Don’t Care | Library element |
a(b+¢) ab AO32A MX2
a(b+c) ab OA32,MAJ3
a(b+ cd) b(cd + cd | OA32,A01C,A03
abe @be AND3 XAIA
ab(c + d) +bed bed OA2

Table 3: Compatible library elements (Actel)

4 Implementation and Results
The technology mapping algorithms have been implemented in a program
called Ceres. Ceres reads the logic description of the circuits and of the li-
brary in a description language called SLIF (Structure and Logic Interchange
Format) [7]. SLIF allows for the description of sequential networks, which
are also mapped by program Ceres. Search limiting heuristics, under the
control of the user, are also available to speed up the execution times. Ceres
has been tested on DECstations 3100 and 3200, as well as on SUN work-
stations. We used the benchmarks circuits provided for the 1989 MCNC
Logic Synthesis Workshop. Starting from the original description of the
benchmarks, we compared the results of our technology mapping algorithm
to the ones of the technology mapper built in MIS-II, release 2.1. We used
three different libraries: Actel, LSI Logic and CMOS3. Area was chosen as
the metric for the final implementation, counting inverters as well as other
logic gates in the total cost.

Proced simple_boolean_match, boolean.match, traverse_graph and
get_bigger function have been coded and tested in Ceres. However,

MISIT Ceres MiSI
cost | runtime | cost | runtime | cost | runtime

Circuit Actel LSI Logic CMOS3

Ceres MISIT Ceres
cost | run time cost run time cost run time

9sym 209 8544 204 847 421 515
misex | 44 575 4 84 89 239
miscx2 X/ 550 3 56.1 146 284

rd53 62 69.4 60 15.2 106 259

xor§ 35 46.6 34 13.6 63 224

clip 355 4938.7 358 108.5 670 81.7

bw 126 198.7 119 43 210 344

64 781 2784 748 1742 1552 198.1

vg2 320 2911 356 62.7 600 72.2

8202 197 125.3 191 55.6 339 470

o064 70 527 70 210 88 28.9 87 95 1752 19 1736 71
d73 303 2027.5 360 1231 598 725 630 370 11576 26.3 12072 65.1
conl 9 372 8 6.1 20 188 21 48 392 33 376 35
misex3c | 542 3238.7 | 588 116.1 1015 120.8 1080 106.4 19624 475 21040 443
cml63a 20 39.5 2t 18.0 42 20.1 34 15.7 728 40 600 135
decod 19 40.7 22 9.1 38 20.9 51 70 744 42 936 25
pele 30 408 3t 59 63 209 51 73 1136 46 936 49
cm82a 9 3638 8 6.0 22 18.7 19 6.8 368 33 328 23
cmb 26 408 u 24.7 47 21.0 50 78 912 4.2 968 3.6
majority 5 34.8 5 29.5 10 16.6 16 54 176 3.3 272 3.2

415 44.1 7656 17.5 7512 2038
105 83 1744 60 2024 6.2
147 15.0 2792 78 2800 122
122 211 2120 65 22712 18.6
68 10.5 1256 43 1280 15.9
726 758 12864 304 13624 69.8
237 17.8 4104 142 4624 475
1566 161.1 30136 60.0 31312 353
635 66.5 11760 256 12480 61.6
362 50.9 6816 14.8 7152 45.7

Table 2: Mapping Results (total cost of mapped circuit is shown)

only procedure boolean_match is currently mtegmted within prooedure
get_bigger function. Hence, results of technology ported in ta-
ble 2 do not reflect the use of don’t cares. Examples of mnnmg procedure
traverse_graph are reported separately in Table 3, and show how functions
can match multiple library elements.

The run times on a DECstation 3100 ranged from a few seconds for
majority to less than 3 minutes for e64. Table 2 summarizes our results.
It is worth noting that the run times from program Ceres were consistently
small, for the three libraries used. In particular, the run times using the Actel
library, which has a wealth of XORs, multiplexers and majority functions [9],
were comparable to the run times using the other two libraries, indicating
that the Boolean matching algorithm used in Ceres handles these types of
gates very efficiently.

5 Conclusions and Future Work

We have presented a different algorithmic approach to technology mapping.
Boolean operations are used during the matching step, making it possxble to
recognize quickly such functions as exclusive ORs and majority fu
Different filters and simplifications have been proposed to reduce the search
space that would otherwise be very large. Results have shown that this ap-
proach, in its present implementation, is competitive with other algorithmic
methods based on tree or DAG covering.

‘We have studied the use of don’t cares in connection with technology map-
ping. Our experiments have shown that the present techniques are limited
to library cells of at most four variables. However, most library elements
fit into this class. The experiments have aiso shown that the use of don’t
cares leads to a wider choice for hing library Future work
will include the full integration of this nechmque into Ceres.

Acknowledgements

The authors wish to thank David C. Ku for numerous and fruitful discus-
sions. This work is supported in part by the National Science Foundation
under grant MIP-8719546, by DEC, ATT and NSF under a PYI award, by a
Stanford CIS seed grant, by the Natural Sciences and Engineering Council
of Canada, and by the Quebec Fonds F.C.A.R.

References
[1] KA. Bartlett, RX. Brayton, G.D. Hachtel, R.M. Jacoby, C.R. Mosrison, R.L. Rudell, A.

Sangiovanni-Vincentelli and A.R. Wang, Multilevel Logic Minimization Using Implicit
Don't Cares, IEEE Transactions on CAD, Vol. 7, No.6, pp.723-740, Junc 1988.

216

(2] M.R.CM. Berkelaar and J.A.G. Jess, Technology Mapping for Standard-Cell G
Proceedings of the ICCAD, pp. 470-473, November 1988.

[3] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli and A.R. Wang, MIS: A Multiple-
Level Logic Optimization System, IEEE Transactions on CAD, Vol. CAD-6, Nu. 6,
pp-1062-1081, November 1987.

[4) R. K. Brayton, G. D. Hachtel, C. T. McMutlen, A. L. Sangiovanni-Vincentelli, Logic
Minimization Algorithms for VLSI Synthesis, Kluwer Academic Publishers, 193 p. 1984.

(51 R. K. Brayton, R. Camposano, G. De Micheli, R. H. J. M. Otten and J. T. J. van
Eijndhoven, The Yorktown Silicon Compiler System, in D.Gajski, Silicon Compilation,
Addison Weseley, 1988,

6] J. Darringer, D. Brand, J. Gerbi, W. Joyner and L. Trevillyan, LSS: a System for Pro-
duction Logic Synthesis, IBM J. Res. Develop., September 1984.

[7} G.De Micheli "Algorithms for Synch Logic Synthesis” /. ional Workshop on
Logic Synthesis North Carolina, May 1989.

(8] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli and A. Wang, Technology
Mapping in MIS, Proceedings of the ICCAD, pp.116-119, November 1987.

[9] A.El Gamal, J. Green, J. Reyneri, E. Rogoyski, K. A. El-Ayat and A. Mohsen, An archi-
tecture for Electrically Configurable Gate Arrays, IEEE Journal of Solid-State Circuits,
Vol. 24, No. 2, pp.394-398, Aprif 1989.

[10] G. Hachtel and M. Lightner, Tutorial: Multi-Level Logic Synthesis, ICCAD 1988,

(11] K. Keutzer, DAGON: Technology Binding and Local Optimization by DAG Matching,
Proceedings of the 24th ACM/IEEE Design Automation Conference, 1987.

{12) D. Gregory, K. Bnnlell, A. deGeus, and G. Hachtel, SOCRATES: A System for Auto-
ically Synthesizing and Optimizing Combinational Logic. Proceedings of the 23 rd
ACM/IEEE Design Automluon Confelence, Pp- 79-85, June 1986.

{13} M. C. Lega, Mapping Properties of Multi-Level Logic Synthesis Operations, P ding:
of the ICCD, pp.257-261, October 1988.

[14] R. Lisanke, F. Brglez, G. Kedem, McMAP: A Fast Technology Mapping Procedure for
Multi-Level Logic Synthesis, Proceedings of the ICCD, pp. 252-256, October 1988.

[15} E.J. McCluskey, Detection of Group Invariance or Total Symmetry of a Boolean Func-
tion, Bell Syst. tech. J., V.35, pp. 1445-1453, November 1956.

[16] P. McGeer lnd RJ(Bny‘nn, Consistency and Observability Invariance in Multi-Level
Logic Synth gs of the I ional Workshop on Logic Synthesis, North
Carolina, May 7J 26 1989

[17] C.R. Morrison R.M. Jacoby and G.D. Hachtel, TECHMAP: Technology Mapping with
Delay and Area Optimization, in Logic and Architecture Synthesis for Silicon Compilers,
G. Saucier and P.M. McLellan editors, North-Holland, pp.53-64, 1989.

{18] S. Muroga, Threshold Logic and its Applications, John Wiley, 1971, 478 p.

[19] R. Rudell, Logic Synthesis for VLSI Design, Ph.D. Disscrtation, U.C. Berkeley, Memo-
randum UCB/ERL M89/49, 26 April 1989, 223 p.

