Algorithms for Synchronous Logic Synthesis

Giovanni De Micleli

Thierry Klem

Computer Systems Laboratory
Stanford University

Abstract

This paper presents a new approach to logic synthesis of digital syn-
chronous sequential circuits. We describe here algorithms for minimiz-
ing i) the area of synchronous combinational and/or sequential circuits
under cycle time constraints and ii) the cycle time under area con-
straints. Previons approaches attacked this problem by separating the
combinational logic [rom the registers and by applying circuit transfor-
mations to the combinational component only. We show in this papet
instead how to optimize coucurrently the circuit equations and the reg-
ister position. This method is novel and cau achieve results that are
at least as good as those obtained by previous methods. A computer
imptementation of the algorithius in program Minerva is described.

1 Introduction

Logic syuthesis hias shown to he of pivotal importance in the computer-
aided design of integrated circuits. Logic synthesis systeins have been
the object of extensive investigation and commercial implementations
have shown to he practical for product-level design of digital circuits.
Most circuits of interest in digital design are synchronous logic cir-
cuits. that are interconnections of logic gates and registers_with syn-

chronous clocking. Feedhack connections are restricted to be through
synchronous regisiers, to guarantee race-free design. Semi-custom cir-
cuit implementations. such as standard-cells and sea-of-gates. have mo-
tivated the use of multiple-level (or multiple-siage) logic synthesis tech-
nignes, Tn particniar. such implementations hiave shown to be wore flex-
ible and [aster than two-level implementations, such as Programmable
Logic Arrays. As a result. several techniques for multiple-level logic
synthesis techniques have been investigated and clever algorithms for
combinatioual logic synthesis have been reported in the literature [1] 2]
(3] 11}

ltowever. techniques for synthesizing synchronous logic circuits have
heen lagging behind. due to the additional complexity of handling reg-
isters and feedback connections. Most logic synthesis systems deal with
such circuits by partitioning them into an interconuection of a combi-
national logic component and registers. The combinational portion of
the circuit is optimized hy combinational logic algorithms. Then regis-
ters are added back to the circuit. Needless to say. such optimization
techniques are limited in Lheir scope by this partitioning strategy

\We attempt in this paper to solve the synchronous logic synthesis
problem by considering algorithms thal operate on the entire sequen-
tial circuit. i.e. that do not separate registers from the combinational
component. For this reason, we introduce the concept of synchronous
Boolean network and we study transformations on this network that
preserve 1/0 equivalence and that optimize i) the circuit area under cy-
cle time constraints and ii) the cycle time under area constraints. Sone
of these transformatious are a superset of those used in combinational
logic synthesis and operate within and across the register boundaries
Therefore the potential yuality of the optimized circuits is at least as

ISCAS 89

goodl as that obtained by the previous techniques (hat were constrained
to operate on the combinational compounent only

The register position is determined as a by-product ol these cir-
cuit transformations. 1t is important to remember that a technigue
1o position the registers in a network. called retiming, was introduced
by Leiserson and Saxe [5] in a dilferent context. where logic synthesis
transforimations were not considered. This paper presents a model for
synchronous logic synth that combines retiming with combinational
logic synthesis techniques. Then algorithims that minimize the circut
area and cycle time are described. The algorithms are inplemented in
computer program Minerva, that perforiis combinational and sequen-
tial logic synthesis.

2 Basic concepts and definitions

We cousider synchronous circuits that are interconnections of combina-
tional logic gates and single-clock positive-edge-triggered registers with
negligible setup times. We model synchronous circuits by synchronous
Boolean networks. A syuchronous Boolean network is described n
terms of Boolean variables and Boolean functions. Each Boolean vari-
able corresponds to either a primary wput/output of the ciremt or 1o
the output of a combinational logic gate. A positive integer label on a
variable (superseript) denotes the synchronous register delay, if any. of
the corresponding signal with respect to the primary nput or combina-
tional logic gate that generates it. Zero-valued labels are omitted for the
sake of simplicity. Eacli Boolean function specifies the value of a vari-
able in terms of other variables. i.e. it is a multiple-input single-output
combmational logic function. It is represented by an equation. whose
left term is a variable with zero-valued iabel aud whose right teruyis
an expression. e.g. the equation at vertex r; is represented by 7 =T,
where 7 is a Boolean expression in terms of other (Iabeledy variables,

The network is modeled by the synchronous network graph. that
is a directed weighted multi-grapl G(1. E.11). whose vertex set 17 =
VIGUGurY = {1} is in one-to-one correspondence with the variables
corresponding to the set of primary inputs. logic gates and primary
outputs respectively. The edge sel E and the edge weight set {17 are
defined as follows. There is an edge between vy and v; with weight k
when variable i appears in the expression 7 for vertex rj with iabel
k. Zero-valued weights are not indicated by convention. ‘Thete is a
(weighted) edge to each output vertex in 1O from the vertex in 1Y
correspouding to Lhe gate generating that output signal. For each pair
of vertices joined by a path in G{17 £ AF). the path weight is the suim
of the weights along the path. We assume that each cycle (i.e. closed
path) has strictly positive weight. to model the restriction of breaking
combinational logic cycles by at least one register. An example of a
synchronous Boolean uetwork and its representation is shown in Iig.
1.

In general, a synchrouous Boolean network may have eyclic depen-
dencies. i.e. its corresponding graph be cyclic. A network is called
unidirectional when the graph G(V.E.1V) is acyclic. It models a

CH2692-2/89/0000-0756 $1.00 © 1989 IEEE

Y =HB
EsCOF
™ X0 = X
H=FG.Y
m Yo=Y
X2E +H

asve
veances

vaamicas

Figure 1: Synchronous Boolean Network aud its representation.

pipelined combinational circuit. Note that the combinational Boolean
network (without synchronous registers) introduced by Brayton [1] is
just a special case of the synchronous Boolean network that is acyclic
and whose labels are all zeroes.

The (direct) fanin set of a vertex v; is the subset of vertices that
are tail of an edge (with zero weight) incident to v; and it is denoted
by FI(v;) (DFI(v;)). Similacly the (direct) fanout set of a vertex v;
is the subset of vertices that are head of an edge (with zero weight)
incident to v; and it is denoted by FO(v;) (DFO(v;)). Each vertex of
the graph ¢; € V¢ (i.e. corresponding to a gate) has as attributes an
area estimate l; in terms of literal count 1] and a positive gate delay
d;. which depends on the logic expression and which is a monotonically
increasing function of I; 1. Each input and each output vertex has zero
delay. .

Each vertex v; has a data ready time ¢;, that is the time at which
the signai generated by the corresponding gate is ready with_respect to
the clock edge [6]. We assume the primary inputs to be synchronized to
the clock positive edge and therefore their data ready time is zero. For
any other vertex v;, the data ready time is the sum of its propagation
delay d; 1o the largest data ready time of its inputs that are not registers,
e t; = di + mar, epri,) (). Since the subgraph representing the
direct fanin relation is acyclic, the data ready time can be computed by
topological sort.

Given a cycle tine @, a synchronous network is a timing-feasible
implementation if all the data ready times are bounded [rom above by
the cycle time. ie. & > mar, v (#). Each vertex v; has a slack
s; representing the additional delay that the vertex can tolerate while
preserving timing-feasibility of the network for a given ® [6]. In a
timing-feasible network a vertex is eritical if its slack is null.

The area taken by a network implementation depends on the total
number of literals and registers required. For each variable i, let m;
be the maximum of the labels that the variable takes in the network
representation. Then m; represents the number of synclironous registers
that are connected in cascade at the output of the corresponding gate.
An area estimate can be computed as: 4 = o E”'e"g I; +BE"'GV my,
where a and ;3 are coellicients taking into acconnt the relative area cost
of a literal and a register. Given an area bound ¥, a network is an area-
feasible implementation if ¥ > .1, and it is a feasible implementation
if it is both atea-feasible and timing-feasible.

A better el of gate delay would include loading effects due to fanout [8]. We
neglect this dependence here for tie sake of simplicity.

(217) 333-4780

outruT
veaTices

757

CaAB
X=D+C

conM

X=D+C L

Figure 2: Retiniing vertex v, by +1.

3 Logic transformations in synchronous
logic synthesis

The problem of minimizing the area (cycle time) of a synchronouns
Boolean network tmplementation, possibly under cycle time (area) con-
straints, is difficult and no efficient exact solution method is known.
Most techniques for niultiple-level logic optimization are based on net-
work transformations, that preserve the /O equivalence of the network.
and achieve area/time optimal solutions with respect to some tocal cri-
terion. Transformations are classified as local and global. Traunsfor-
mations are said to be local when they modify the represeiitation ol
a Boolean function at a network vertex at a time (e.g. factoring or
Boolean simplification). Such transformations have been presented in
[1] [2] for combinational logic synthesis and can be used (without sig-
nificant extensions) in synchronous logic svutlesis, because they do not
depend on the network model. Global transformations target more
than one vertex at a time and attempt to improve the network by re-
structuring the global interconnections (e.g. elimination. resubstitution
and extraction). We consider here global transformations extended to
synchronous logic synthesis in relation with uetwork retiming.

Retiming [5] is a techuique that determines a register assignment in
a network (i.e. a set of weights in G(V, £,11')) so that it is a feasible
implementation for a given cycle time @, il such an assignment exisis.
In our context, the retinting of variable i by an integer r corresponds
to adding r to its label, and the retimed variable is denoted hy #4771,
Similarly, the retiming of an expression Z by an integer r corresponds to
adding r to the labels of all its operands and it is represented by IU+").
The positive (negative) retiming of a gate vertex v; by r; is the shilt
of r; register delays from its outputs (inputs) 1o its inputs (outputs).
[t corresponds to retiming by r; the expression I of v; and to retiming
by —r; the variable i in the expressions of the vertices of FO(t;). The
retiming of an input vertex is just the retiming by —r; of the variable i
in the expressions of the vertices of FO(r;). The retiming of an outpui
vertex is just the retiming by r; of the expression I of v;. Au example
is shown in Fig. 2.

Since labels cannot be negative by definition, the retiming of a vertex
is valid only lor sonte restricted valuesof r;. A retiming of the vertices of
a Boolean network is feasible for a cycle time ®. if the retimed network
is a timing-feasible implementation with non-negative labels and 1/O
equivalent to the original network.

Leiserson and Saxe proposed a search technique that finds the min-
imum @ for which such an assignment exists [5]. The corresponding
network is said to be optimal with respect to retiming. If this
technique were the only available to optiniize the cycle time. then its

TTUrUICT MIormadnon Can dpe onldinea Irom pr. vv. nennewn Jenkins.

xaag'"

B=C+D

)y (1
X=A\C +0

Figure 3: Elimination of vertex v,

result woukl he a global optiniin solution. However retiming does not
change the structure of the network (i.e. the vertex and edge sets in
(V. E V). and therefore better results may be achieved by combin-
ing it with other transformations that modify the network structure.
For this reasou we consider here the following transformations.

The elimination of a variable with label & is the replacenient of the
variable by its corresponding expression retimed by k. Given two gate
vertices v; and v; € FI{v;). the elimination of v; into v; is the elimina-
tion of variable j in all its occurrences in the expression I for v; (Fig.
3). The efimination of vertex v; is its elimination into all the vertices
in FO(r;). Note that the elimination of a variable with label zero is
equivalent 10 the elimination used in combinational logic synthesis 1]
[2). The elimination of a variable with non-zero label corresponds to
merging two logic gates that are separated by a register, by shilling the
register to the inputs of the gate correspouding to the variable being
eluninated. - -

Let 7..7.Q and R be Boolean expressions. Then [J is a syu-
chronons divisor of 7 if 3r > 0 such that 7 = J' Q4+ R and
JU*TIQ £ 0. Note that the product J' +7'Q may have the algebraic
or Boolean flavor. as defined in [1]. Given two gate vertices v; and v;
such that the expression .7 is a synchronous divisor of Z, the resubsti-
tution of v; into v; is the factoring of T as j* *7'Q+R. Note again that
the divisors defined in [1] are a subset of the synchronous divisors and
therefore resubstitution with null retiming (i.e. » = 0) is equivalent to
resubstitution in combinational logic. The resubstitution of a variable
with non-zero retiming corresponds to adding one (or more) register
hetween two gates to simplify the latter (Fig 4).

The extraction of a cotnmon sub-expression of expressions I and [/
corresponding to two vertices v; and ¢; is the addition to the network
of a vertex t; corresponding to a common synelironous divisor of I and
7 and to the factoring of 7 and J in terms of the new variable I.

4 Algorithms for synchronous logic syn-
thesis

4.1 Retiming

The following algorithm can be nsed to check whether a synchronous
network impleentation is feasible for a given ®. It is derived from
an algorithm described in [7] for networks without multiple 1/O ver-
tices, and it dilfers by having the subroutine set-outputs, that is not
present in the original algorithm. In this paper we are concerned with
networks with multiple 1/0s, under the assumptions that all inputs are

XuA +8B
vex'c

758

(1)

Figure 4: Resubstitution of vz into vy.

synchronous to the system clock. Such model better conforms to syu-
chronous digital circuits that need to be interconnected amoung rach
othier. It is important to note that a retiming ol an output vertes -
creases all the path weights from the inputs to that vertex. In this case,
il the graph G(V, E.1V) is connected. a necessary condition to preserve
equivalence is to delay all the other outpuls (to keep them in phase with
the retimed output) and to recover the delay by subtracting a register
delay from all the inputs.

retime {
For (k= Lik=|V[k++){
Compute t; for each vertex v; € 17
M = {mlt,, > b}

I1/(M =0)
return (TRUE):
else |

[[(exityreturn (FALSE):
Retime by | all vertices s M
set-outpuls:

}

Set-oulputs {
If (3 € Mlr,, is a primary output) {
Retime by 1 all primary output vertices not in \:
S = {v € V|3 a zero weight path from an input vertex to v}
Retime by 1 all vertices in 5:

It is obvious Lhat procedure sef-oufputs returns immediately in the
case that the network has no primary output explicitly defined. as in
[5] {7]. Assume that procedure frit returns true when k = [V} The
following theorem applies to such networks.

Theorem 1: (7] Given a cycle time &, algorithn refime returns
TRUE iff a feasible retiming existse

Let us counsider now synchironous Boolean networks with multiple
[/Os. Assumie that procedure exit returns true when & = JI7[. It
can be easily noted that when the algorithm returns TRUE. a feasible
retiming is constructed by the algorithm such that all the data ready
times are bounded by the cycle time. Since every time that a primary
output vertex is retimed, all the other outputs and all the inputs vertices
are retimed, then the length of all the 1/O path is preserved. Finally.

since &y > & implies 1; > ® Yo; € DFO(v,,), then the retiming of
a vertex implies the retiming of all the vertices on zero-weighted path
originating from it as well. 'Therefore no uegative weights (labels) can
be introduced. hermore it can be shown that no feasible retiming
exists il the algorithm returns FALSE.

Theorem 2: For any synchronous Boolean network described by
GV E) and a given cycle time €, algorithin retime returns TRUE
il a feasible retining existse

Proof: To prove the theorew. it is sullicient 1o note that running
algoritlun refime on any multiple 1/0 network G(V, £, 1) is equiv-
alent to running the same algorithm on a modified network without
1/0s. Consider a modified network obtained by merging the input and
output vertices into a dununy vertex va, with dy = @, and by adding
oue to the weights of all edges incident to v,. For any feasible retim-
ing of both networks, the data ready time is the same for each pair of
corresponding gate vertices. Indeed a retiming of the modified network
cannot remove the synchronous register delays {rom the dummy vertex
vy to any vertex depending on a primary input and therefore the data
ready time of these verlices is preserved. In addition. since any retine
ing of the modified network does not clhiange the cycie weights in the
correspouding graph [5], then all the I/O path weiglts are preserved
in the original network. Therefore a feasible retiming of the modified
network co-implies a feasible retiming of the original network. Con-
sider now aigorithm retime. The retiming of a primary output vertex
in the original network corresponds to retiming vy in the modified net-
work and therefore to retiming all other primary output vertices. In
turn, the retiming of ;4 causes the retiming of ail the vertices in the
set. . Therefore running algorithm retime on any wltiple 1/0 net-
work is equivalent to running the same algorithm on the corresponding
modified network and the claim follows from Theorem le

The theorem shows that a feasible retiming can be computed in
O(V|IA[)) time for general synchronous Boolean networks, because
each of the |V| iterations involves the computation of the data ready
times, which can be done by topological sort (O(A)). In some cases,
the algoritlin can terminate earlier.

Theovem 3: If at any iteration-of the algorithm. 3v,, € M N S and
tm is a primacy output, then no feasible retiming existse

Proof: L this case, there is a zero weighted path from some input
vertex Lo vy, and f,,, > ®. Since the path weight must be preserved,
then t,,, caunot be reduceds

This theorem provides an early exit condition which is incorporated
into procedure erit of algorithm retime.

Algorithm retime has several advantages over the original retiming
algorithm {5]. First. the description of a synchronous Boolean network
structure in terms of a (sparse) graph suffices to implement the algo-
rithm. This contrast the requirements for the algorithm in [5], that
needs two lull square matrices of dimension |V|. Second, retime is an
incremental algorithm, and so it can be applied in connection with net-
work transformations that make small modifications to the network to
check feasibility. Circuit transformations affecting the structure of the
graph may require local rippling of the registers around the modified
area. and in many cases it is likely that the algorithm completes in a
number of iterations much smaller than |V].

The algorithm requires the update of the data ready times at each
iteration. Note that not all the data ready times need to be recomputed
at each iteration. Therefore, the algorithm can be made more computa-
tionally efficient by scheduling the set of vertices that are target of the
transformation (e.g. M and 5). Then the following steps are iterated
until the schedule is empty: i) selecting the subset of the scheduled
nodes whose direct fanin set is uot scheduled; ii) updating their data
ready time: iii) scheduling their direct fanout set if the data ready time
has changed: iv) deleting them from the list of scheduled vertices.

(217) 3334789

759

4.2 Elimination

The elimination algorithm follows the outline of that presented in {1}
and [2]. Candidate vertices are selected according to some criterion and
the elimination takes place il sowe constraints are satislied. Elimination
terminates when no caundidate vertices can be found. We concentrate
liere on the selection and acceptance criteria for syuchronous networks.

Let us consider first the area cost (or value) of an elimination. An
elunination changes the total number of literals in a network, say by
8. This number can be computed by the fornnilae given in {1} [2].
When eliination is perforied across a register boundary. then it is
important to compare the saving in terms of literals with the possi-
ble increase of registers. This can be computed as follows. Assume
that we are eliminating vertex v; into vertex v;. Theu. for each vertex
vr € FI(vj), let 1 (T) be the maximum label of variable & in the ex-
pression I alter the elimination. Similarly. let m(Z) be the |Eximum
label of variable & in all other expressions. Note that my(Z) is not
affected by the elimination. Then additional registers are needed to
delay variable & if mi(Z) > mi(T). The total additional registers are:
& = Z“e”“]') mae(0, mi(I) = mi(T)). When vertex ¢; is eliminated
in all v; € FO(vy). then mj registers are saved and 1 must be sub-
tracted from é,. The area cost of an elimination is then & = né; + .38,
Then. for unconstrained area minimization, candidates are selected to
mininize 8, which is required to be less than a threshold usually set to
zero.

In the case of area minimization under cycle tine constraiuts. we as-
sume that the network is timing-feasible beflore the transformation and
that it is required to remain such thereafter. In previous work [6]. a
necessary and sullicient condition for preserving timing-feasibility was
shown to be that any increase of the data ready time of any vertex be
bounded by its slack. Iudeed an elimination of vertex rj into vertex r;
increases the literal count I; and it is likely to increase the propagation
delay d; and data ready time t;. While the sufliciency of the above
condition still holds in this setting, its necessity no longer does. be-
cause a feasible retiming of the network may exist afler the eltmination.
Therefore any elimination that does uot satisfy the above sulficient con-
dition is followed by retiming. If a feasible retiming is not found. then
the transformalion is rejected. The candidate selection is based on the
previous criterion.

Let us consider now the problem of minimizing the cvele tine &
Let us assume that the network is optimal with respect to retiniing (by
using the retime algorithm for decreasing values of ¢ as described in [3)
and in {7]) and with respect to elimination within register boundaries
(as described in [6] and in [2]). We assume that & is the minimum
cycle time achieved by these techniques and we address the problem of
reducing it by attempting elimination across register boundaries.

In particular, we consider as candidates for elimination the critical
vertices whose gate is connected to a register. i.e. at the head of a
critical path. Let us assume, for the sake of simplicity that there is
only oue such caudidate, say v; and that it is critical (i.e. its slack
si = 0 or equivalently its data ready time #; = ¢). The elimination of
such a vertex shortens the critical path and it is beneficial if no other
longer critical path is introduced in the circuit. Therefore, 1o verify
the feasibility of the elimination of a candidate vertex tj. we nwst
cousider the increase of data ready time of each vertex v; € FO(v;). I
such increases are all strictly bound by the corresponding slack. then
the elimination is accepted because there is a cycle time & < & for
which the network is a feasible implementation after the elimination.
If the increase of the data ready time at some vertex is not hound by
its slack. then the elimination is accepted under the condition that a
feasible retiming is found.

Since we would like to speed up the computation time of the elim-
ination algorithm as much as possible, we seek conditions to avoid to
retitne a network to check feasibility. Consider first the case that the
inputs of the gate corresponding to v; are registers (ie. DFI(v;) is
empty). Since t; = d;, its variation is much easier to compute. If. in
addition, t; > d; + d;, then the elimination can be rejected outright.
Indeed 1o feasible retiming can be found for &' < ® because. if it were
0, vertex vj could be retitmed hy -1, and then the network would not

TTUrUICT MIormadnon Can dpe onldinea Irom pr. vv. nennewn Jenkins.

be optimal with respect to retinmng. as assumed before.

Consider now the case when an elimination is accepted i this context.
Then the circuit eycle time can be reduced to the new maximum data
ready time @ [t is important to know il the network is still optimal
with respect Lo retiming for this new cycle time.

Theovem 4: Given a synchronous network that is optimal with
respect to retiming for a cycle time €. assume that a vertex v; with
t; = & is eliminated. If after the elimination Joi € Fl(v;) such that
the maximum data ready time is f; = $' < . then the neiwork is
optimial with respect to retiming for cycle tine d'e

Proof: Belore the climination, the network is optimal with respect
1o retiming for a cyele time @ implies that no feasible retiming exists
for a smaller cycle time and that the cycle time is bounded from below
by the data ready time of a vertex which is the head of a critical path.
Such node was necessarily v;, because {; = & and the vertex was unique
because alter its elimination the maximum data ready time decreases.
nce 1 € Fl(vj). then vy was on the critical path before the elimina-
tion and it becotes the head of the critical path therealter. Then the
critical path does not change, but for vj. After the elimination. suppose
that a feasible retiming exists for a cycie time ¢ < &'. This would

correspond to shortening the path whose head is v, But then, such a
retiming could have beeu applied before Lhe elimination. contradicting
the assumption of optimalitye

The probien of minimizing the cycle time by elimination under area
constraiuts can be approached in a similar way. Candidates for elin-
inations are selected on the hasis of a possible reduction of the cycle
time & and the acceptance of the transformation is based on the above
counsiderations. as [ar as timing is concerned. and on the check that the
area hound W is not violated. Therefore. an area cost for each elimina-
tion is computed and added to the current value of A. 1f the result is
larger that ¥ the candidate elimination is rejected. The area cost may
also be useful as a tie cule Lo chose among candidates yielding the same
cycle titme reduction.

4.3 Resubstitution

The resubstitulion algorithm follows the outline of that presented in
[1] and {2]. Candidate vertices are selected in pairs. say vi, ¢j. 0 that
the expression 7 is a synchronous divisor of Z. The resubstitution of
ey into s perforied if sotie constratnts are satisfied. The algorithm
terminates when no candidate pair can be found. \We concentrate here
on the selection of synclironous divisors and on the acceptance criteria.

We consider here ounly algebraic division [1]. Synchronous divisors
are searched by iterating algebraic divisions, performed by procedure
aig-div, described in [1] {2].

synchronous-divisors {
QR = o
II = eaxpand(I):
For(r=0:r++){
JT = expand(TV),
[f(exittZ, T Y)ecturn
QR = aly-die(IT.JJT):

The algorithim stores the quotient and the remainder of the division
in QR. which is initialized empty, when non trivial ones are found.
Procedure erpand replaces every variable with non zero label by a new
variable. Procedure erif returns true if any variable in 7% has a
label larger than the maximum of the labels that the correspouding
variable takes in Z. If both expressions Z and J have no labels. the
algorithm returns after one iteration and performs just the algebraic
division as i [i] [2].

\When QR is empty, the candidates are rejected, because no non-
trivial synchronous divisor is found. Otherwise the area cost is com-
puted. Note that the munber of registers in the network is aflected only
for resubstitution across register boundaries (i.e. when r > 0). In this

760

case, resubstitution may increase or decrease the nunber ol registers
according 1o the circumstances. For example. when resubstituting v,
into vy as i = j'FQ + R. we require roregister delays for variable j
L'he total variation
register conut &,. can be computed from the local variation as lollows
Let 191 ¢ 19 be the local subset of vertices allected by resubstitu-
tion. ie. VT = FI(r;) Ue;. where the fanin set is computed belore
the resubstitution. For each vertex ¢y € VI e iy ¢l I)) be
the maxitam label of variable & in the expression I after (hefore) the
resubstitution. Similacly. let nedZ) be the maximum labelof variable k
in the other expressions. Then 8, = Zke\ ,,(mu.r(nu.(T),m"(I)— ’”L‘T’-
For unconstrained area minimization. the candidates are selected 1o
mininiize & = ad; + Jé,., as for elimination.

lu the case of area minimization under cycle time coustraiuts. the
saime assumptions and considerations used for elimination apply. Nole
that a resubstitution of vertex vj into vertex v; decreases the literal
count I; and it is likely to decrease its propagation delay d;. However.
the data ready time {; may depend now ou f;. ifv; € DFI(v)) alter the
resubstitution. In this case (v; € DFI{¢i)), the transformation can
be accepted if the increase in ¢; is bounded by the slack s;. Otlierwise

and r lewer register delays on soine inputs 1o v

a feasible retiming must be searched for. Ou the other hand. when a
register delay is inserted between v, and ¢; { v; & DFI(i)) then ¢,
cannot increase and it is likely to decrease. 'Lhen the translormation
can be accepted without further checks.

The problem of minimizing the eycle time @ is analyzed under the
same assumptions used for eliminatiol
is optimal with respect to retiming and with respect to resubstitution

We asswue that the network

within register boundaries. We also assune that ¢ is the mmmum
cycle time and we address the problem of reducing it by attempting
resubstitution of two vertices, say v Into ¢; across register boundari
In this case. the data ready time t; cannot but decrease and {; remains
constant. Then a critical vertex r; (i.e. with slack s; = 0) and vertices
v; € FI(;) are candidates for resubstitution of v; into v,. Candidates
are selected to minimize locally the cycle time &. Since an upper bound
on the decrease of ¢ is the variation in propagation delay d;. this cau
e used as a quick way of choosing a candidate.

Eventually. the problem of minimizing the cycle time by resubstitu-
tion under area coustraints can be approached by the same candidate

S,

search strategy and by weeding out those candidates that would cause
a violation of the area hound W.

5 Minerva

Algorithws retime, elimination and resubstitution have been nple-
mented as a part of program Minerva. Minerva is a conmputer program
to support. logic design and optimization of large scale synchronous dig-
ital circuits. Clircuit specifications can be entered to the program by
specifying the circuit equations and interconnection in a hierarchical
way. An appropriate format, called SLIF. is nsed to support the circuit
description. Alternatively the circuit can be specified in a Hardware
Description Language, llardwareC, that can be cotpiled into the cir-
cuit equations by program Hercules [8]. The ontput of Miverva is an
optimized circuit description in the SLIF format. Minerva can also
generate an output compatible with the netlist format of the LSI Logic
tools and with the OC'T logic view. Minerva is interfaced 1o the MIS-1
program [2], that provides an excellent set of routines for optimizing and
mapping combinational sub-components of the circuit being designed.
Minerva can isolate these components and interface them with MIS-11
in a bidirectional way. Minerva is progranuuned in (" and consists of
approximatively 12000 lines of code. Minerva in a part of the Olynipus
synthesis system developed at Stanford University (Fig 5).

While Miuerva can handle & hierarchical circuit description. including
specific circuit macros (such as bus drivers, tristate elements. etc.). the
algorithms for synchronous logic syntliesis are applied. to date. on a flat
circuit description. Four different optimization goals, -constrained aud
unconstrained minimization of area and cyele time, correspound to four
different strategies of the eliminaiion and resubstitution algorithms.
In the program implenmentation. care has been taken in avoiding to

Figure 5: The Olympus synthesis system.

retile a circuit whenever not necessary, to reduce computation time.
However, when the desired goal is to minimize the cycle time, then a
frequent use of retiniing has shown to be beneficial. Algorithm retime
generally returns true, when it does, in few iterations. Computing time
is in the order of few seconds to few minutes on a 1-MIP workstation.

Experimental results on the MCNC benclimarks have shown that
these techniques are useful in avoiding sonie low-valued local optimal
solutions that are found by other logic synthesis algorithins applied to
the combinational component of the circuit (without registers). Results
are heavily dependent on the delay model, and therefore comparisons
are useless in the absence of a standardization of the delay parameters.
To date Minerva has been used successfully to support the synthesis of
three large scale digital designs at Stanford University [9] [10].

6 Concluding remarks and future v;rork

‘This paper has presented a new approach to the optimal logic synthe-
sis of digital synchronous sequential circuits. based on the concurrent
optimization of the circuit equations and the register positions. This
method, which combines retiming techniques with network restructur-
ing operations. can achieve results that are at least as good as those
obtained hy other logic synthesis approaches that separate the combi-
national logic from the registers. Three algorithms have heen studied
and impleented in program Minerva.

This research as shown the feasibility of approaching sequential logic
design {rom a global perspective that considers synchronous register
detays and gate propagation delays. The choice of realistic delay mod-
els for hoth registers and combinational gates is of pivotal importance.
Fanout considerations in the delay model complicate the algorithms
for retiming, elimination and resubstitution. An extension of the algo-
rithms to cope with fanout-dependent gate delay is under progress. We
are also currently researching the application of other logic synthesis
transformations in synchronous logic synthesis, the analysis of multiple
clocking phases and the use of different register types.

7 Acknowledgements

This research has been sponsored by NSF and ARPA. under contracts
MIP-8710748. MIP-8719546 and NUOUL4-87-K-0828. We would like to
acknowledge the stimulating discussions with Andrew Fox and Michiel

Ligthart. Frederic Maithot developed the front and back ends of pro-
gram Minerva,

761

(217) 3334789

References

[1] R.Brayton, "Algorithim for Multilevel Synthesis and Optimization
in G.De Micheli, A.Sangiovanni-Vincentelli and P.Antognetti. Ed-
itors, Design Systems for VLSI Circuits: Logic Synthesis and Sili-
con Compilation, Martinus Nijhofl. 1987,

[2] R. Braytou, R. Rudell, A. Sangiovanni-Vincentelli, A. Wang " MIS:
A Multiple-Level Logic Optimization System™. [EEE Transactions

on CAD/ICAS Vol CAD-6. No. 6, November 1987, pp. 1062-1081

[:

=

J.Darringer, D.Brand. J.Gerbi. W.Joyner and L. Trevillyan, "LSS:
A System for Production Logic Synthesis™. /BM Journal of Res.
and Dev.. Vol 28. No 5. pp. H37-545. Sep 19&4.

IX.Bartlett, W.Colien, A.De Geus and (.Hachtel. “Synthesis and
Optimization of Multilevel Logic under Timiug Coustraints™ /EEE
Transactions on CAD/ICAS, Vol CAD-5 No. . pp.582-596, Oct.
1986.

C.Leiserson, F.Rose and J.Saxe "Optimizing Synchronous C'ir-
cuitry by Retiming”. in R.Bryant. Editor Third Caltech Conference
on VLSI, Computer Science Press, 1983.

G. De Micheli. 'Performance-oriented synthesis in the Yorktown
Silicon Compiler’, IEEE Trans on CAD/ICAS. Vol CAD-6. NO 5.
Sept 1987, pp.751-765.

J.Saxe "Decomposable Searching Problems and Circuit Optimiza-
tion by Retiming: Two Studies in General Transformations of
Computational Structures™ Ph. D. Disserfation. Department ol
Computer Science, Carnegie Mellon University, 1985.

G. De Micheli. D. Ku "HERCULES - A systen for High- Level Syn-
thesis™, Proceedings of 25th Design Automation Conference, Ana-
heim, pp. 483-488, 1933.

9

M.Ligthart, A.Bechtelstein. G.De Micheli and A.El Gamal ™ Desigu
of a Digital Audio lnput Qutput chip”, Procredings of the Custom
Integrated Circuit Conference, San Diego. 1989,

. [10] V.Rampa and G.De Micheli, “Computer Aided Synthesis of a Dis-
crete Cosine Transform Chip™. Proccedings of the [nternational

Symposium on Circuits and Systems. Portland. 1989.

TTUrUICT MIormadnon Can dpe onldinea Irom pr. vv. nennewn Jenkins.

