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Abstract

This paper describes the design of a Digital Audio Input Output
(DAIO) chip that interfaces a standard 16/32 bit microprocessor
bus with audio devices based on the AES protocol. This novel
design provides general-purpose microprocessor systems with the
ability to communicate with Compact Disk and Digital Audio
Tape players. The chip is designed using High Level and Logic
Synthesis tools from a functional description in a hardware de-
scription language.

1 Introduction

Since the widespread introduction of Compact Disk (CD) players in
the 1980s, more and more of these players are presently equipped
with a digital output. This output provides a means for the se-
rial digital transmission of the audio signal on a single twisted wire
pair. A protocol has been defined by the Audio Engineering Society
(AES) [1]. This protocol not only allows for digital transmission be-
tween digital audio devices (Compact Disk and Digital Audio Tape
players) but can also serve as an interface between those devices and
computers.

Unfortunately, digital outputs from CD players, or inputs from Digi-
tal Audio Tape players (DAT), cannot be connected directly to a PC
as they transmit data in a bit-serial way whereas PCs use parallel
interfaces. Existing interface chips are designed for consumer audio
and use bit-serial protocols specific to the respective manufacturer,
e.g. the two chip set from Sony [2]. These chips are not suitable for
general-purpose microprocessor systems. The DAIO (Digital Audio
Input Output) chip, as described in this paper, solves this problem by
converting the AES protocol to a standard 16/32-bit microprocessor
bus (see figure 1). The DAIO converts the bit-serial signal from the
CD or DAT player into a bit parallel signal for the microprocessor
bus and vice versa.

The DAIQ has been designed using the Olympus Synthesis System,
currently under development at Stanford. A netlist for a Sea of
Gates implementation is synthesized from a functional description
in a hardware description language. The advantages of such a de-
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Figure 1: Digital Audio Input Output (DAIO) device.

sign approach are many. Synthesis systems reduce the design cycle
since many laborious tasks are performed by programs rather than
humans. Synthesis systems also give the designer the opportunity to
search the design space, and to explore changes in the specifications
easily.

This paper is organized as follows. In the next section the AES
protocol is discussed. A global understanding of this protocol is re-
quired to understand the specifics of the chip. Section 3 describes
the architecture of the DAIO and its operation in detail. Finally, in
section 4.1 the Olympus Synthesis System is presented, and specific
attention is given to the high level description of the DAIO.

2 The AES protocol

The AES protocol {1] specifies a recommended format for the bit-
serial synchronous transmission of two channels of audio signals.
Data is transmitted in blocks, each consisting of 192 frames. Each
frame consists of two 32-bit subframes, one for each audio sample,
called subframe A and subframe B respectively. Audio samples for
the right and left channel alternate. The 32-bit subframe provides
space for a 4-bit sync field (called preamble), a 24-bit audio quantity
(only 16 bits are commonly used today) and bits for validity, user
data, channel status, and parity (VUCP). The format is illustrated
in fig. 2.
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Figure 2: AES format for serial digital transmission
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Figure 3: Example of biphase coding.

The source bits in the protocol are coded with a biphase mark, one of
the family of self-clocking Manchester codes [3]. This code has the
general property that all information is contained in the transitions.
Clock extraction is simple and channel decoder synchronization is
essentially immediate. The coding rules may be understood if each
source bit is represented by a two-cell doublet. A doublet starts, and
therefore also ends, with a transition. A source bit 0 corresponds
to a doublet with no further transitions and a source bit 1 corre-
sponds to a doublet with one transition between the two bits in the
doublet. Hence, depending on the preceding data, a source bit 0
is represented by (00) or (11) and a source bit 1 is represented by
(01) or (10). For example, a source signal 0-1-1-0-1-0 will be coded
(00)(10)(10)(11)(01)(00), or (11)(01)(01)(00)(10)(11). The wave
forms for this signal are shown in figure 3.

The preambles, necessary to indicate the start of a block, a subframe
A or a subframe B, are coded such that they violate the biphase mark
in a predefined way. A biphase violation occurs when a doublet does
not end, and the next one does not start, with a transition, eg.
(01)(10). Three unambiguous types of preambles are used (see also

figure 4):
preamblel :  Start of a subframe A, which is also start of a block;
preamble2 :  Start of a subframe A elsewhere;
preamble3 :  Start of a subframe B.

The protocal runs synchronously at the speed of the source. The
destination must keep up with the source to avoid losing data.
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Figure 4: Preamble forms.

3 Architecture of the DAIO

The DAIO is a full duplex, fully symmetrical interface chip for the
reception and transmission of digital audio signals. Receive in this
context is defined as the data flow from the digital audio device to
the microprocessor bus and transmit is defined as the data flow the
other way around. Figure 5 shows a block diagram of the DAIO.
Each direction, receive and transmit, has its own set of dedicated
32-bit registers. Registers for receive have a prefix RX and registers
for transmit have a prefix TX. The register bank holds a total of 4
frames for each direction and is double buffered. The host processor
is responsible for proper operation of the DAIO by means of con-
trolling the MODE and STATUS registers and reading or writing the
DATA and CTRL registers in time.

Before the DAIO starts actual data transfer, its MODE registers
have to be written by the host processor. The MODE registers, one
for receive (RXMODE) and one for transmit (TXMODE), select a
direction for data transfer by means of an enable bit. The MODE
registers also select the sampling clock frequency. Different frequen-
cies are required since digital audio applications do not support a
common frequency. The DAIO supports up to four clock frequen-
cies.

3.1 Receive mode

After a direction and a clock frequency are selected the DAIO can
start its actual data processing. In receive mode, the phase decoder
has to lock into the incoming data stream and extract the actual
bit values, preambles and the system clock. The phase decoder runs
on the frequency specified in RXMODE. All other blocks run on the
derived system clock. The sampling frequency is 640 (64 bits per
frame * 10 times oversampling) times the audio frequency. A typical
value is thus 640 * 44.1 kHz.

The phase decoder waits for a transition in the biphase signal and
starts looking for a 'start of block’ preamble. The preambles and
actual bit values are extracted from the biphase signal by means of
counting samples in a ten bits wide window. At a transition, a 4-bit
counter is reset and ten samples of the biphase signal are taken. if
the biphase signal is high the counter is incremented, if the biphase
signal is low the counter is decremented. At the end of the tenth
sample, the value of the counter reflects the actual value of the re-
ceived bit. If a source bit 0 (doublet (00) or (11)) is sent the counter
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Figure 5: Block diagram of the DAIO.

will be either ten (0410) or six (0-10). If a source bit 1 (doublet
(10) or (01)) is sent the value of the counter will be zero. If at the
end of the tenth sample no transition is found a flag indicating a
biphase violation is raised. The last four extracted bits and the pos-
sible biphase violations are saved and monitored for the occurrence
of a preamble. If a preamble is found this is indicated to the control
section. This scheme is able to recover from jitter or spikes in the
biphase signal up to two samples per window.

The extracted bits are shifted in a 20-bit shift register. As long
as no preamble is detected, the superfiuous bits are discarded at the
last stage of the shift register. When a 'start of block’ preamble is
detected by the phase decoder the control section starts counting
bits. At the end of the subframe, which occurs 32 bits later, the last
20 bits of the subframe will be in the shift register. Those are the
significant bits of subframe A. The preamble and the 8 unused bits
are discarded. Bits 4 to 19 of the shift register, the audio bits, are
now parallel shifted into the leftmost 16 bits of RXDATAQ1. Bits 0
to 3, the VUCP bits, are distributed in RXCTRL such that at the
end of 8 subframes all V, U, C and P bits are adjacent (VV..., UU...,
CC..., PP..). In the meantime, bits for the second subframe, this
time a subframe B, are shifted in the shift register. The control sec-
tion checks for the occurrence of a 'start of subframe B’ preamble
and starts counting bits again. At the end of subframe B, bits 4 to
19 in the shift register are parallel shifted into the rightmost part of
RXDATAO1, and bits 0 to 3 are shifted into the appropriate positions
of RXCTRL. At the end of subframe B the variable frame_count is
incremented. Frame_count keeps track of the number of processed
frames in the current block.

The shifting of subframes is repeated for the next 6 subframes,

with the understanding that frames are loaded into RXDATA23, RX-
DATA45 and RXDATAG67 respectively. At the end of the fourth full
frame the contents of RXDATA and RXCTRL are loaded into a buffer
accessible by the host processor. Four frames are stored instead of a
single frame to give the host processor more flexibility in reading the
data. At the end of a block, indicated by the value of frame_count,
the control section waits for a new ’start of block’ preamble.

The DAIO supports both programmed 10 and DMA. In programmed
10 mode an interrupt request is generated when the buffer is full.
In DMA mode a DMA request is set. The DMA controller will ac-
knowledge the pending request and establish access to the respective
data register. A data register is selected through the address lines
A[5:1]. The DAIO can operate in either 16 or 32 bit mode. In 16 bit
mode the host processor must alternate left and right addressing of
the data registers. The host processor must finish reading the data
registers before the next 4 frames are available. If the buffer is not
emptied the contents will be lost and an overflow flag will be set.

3.2 Transmit mode

Before the DAIO can actually start transmitting a serial biphase
signal the host processor must fill the buffer registers. After writ-
ing those registers, the TXMODE register must be written with the
clock frequency is selected and the transmit enable bit. Since trans-
mit and receive are fully independent processes both can be selected
at the same time, provided they operate at the same clock frequency.
The host processor must be able to read /write all registers within the
given time frame. Once transmit is selected the contents of T Xbuffer
are loaded into the registers TXDATAO1, TXDATA23, TXDATA4S5,
TXDATA67 and TXCTRL. An interrupt signal is sent to the host pro-
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cessor indicating TXbuffer is empty. The buffer can be filled either
through programmed 10 or DMA. The four TXDATA registers con-
tain the audio data for two subframes per register, and the TXCTRL
register contains the corresponding VUCP bits for all 8 subframes.
Notice that the audio data in a subframe is currently only 16 bits
wide. The remaining 8 bits in a subframe will be transmitted as zero.

Two shift registers are maintained for the parallel to serial conversion.
The first one generates the header of the outgoing biphase signal and
is 24 bits wide, i.e. 12 source bits coded as doublets. This register
contains the preamble followed by 8 biphase zero's. Dependent on
the value of the last bit of the previous subframe, the preamble starts
either with a (11) or a (00) doublet (see fig. 4). This also determines
the coding of the trailing 8 zero’s. The six different preamble values
are hard-coded and are parallel shifted into the header shift register
upon selection by a control signal. The second shift register is 20
bits wide and contains the audio data (16 bits) and VUCP bits (4
bits) for one subframe. The contents of this data shift register are
not coded with a biphase mark.

At the beginning of a block a preamble 1 with corresponding trail-
ing zero's is loaded into the header register. The contents of the
header shift register are shifted out of the Digital Output (DO) port
at the specified clock frequency. A typical value is 2*64*44.1 kHz
(2 cells per doublet * 64 bits per frame * audio frequency). De-
pending on the alternating sequence of left/right channel data, the
most significant or least significant 16 bits from TXDATAOI and the
corresponding 4 VUCP bits from TXCTRL are loaded into the data
shift register. Once the last bit is shifted out of the header shift reg-
ister, the data shift generator takes over and starts shifting out bits
at half the original frequency. The shifted bit is subject to biphase
encoding which operates at full frequency. At the very last stage the
signal is buffered by a D-latch.

To assure a continuous data stream the header shift register should
be available right after the last bit is shifted out from the data shift
register. This means a choice of whether to start the next preamble
with a (11) or a (00) doublet must be made before the value of the
last biphase coded bit is available. This is accomplished by taking
the exclusive-or of the second bit of the previous doublet with the
last one exclusive orred with the value of the very last bit. For ex-
ample, if the contents of the data shift register end with ...01 and
the 0 is coded in the biphase encoder (11) then the preamble of the
next subframe should start with (00). (This a priori information is
availables for each source bit and can be extended over more bits.)

After two subframes are processed the variable frame_count is in-
cremented. At the end of the eighth subframe the new data from
the buffer is loaded into the TX registers. At the end of a block
a new block is started. If no new data is loaded into the TXbuffer
all subframes are transmitted as zero’s. Transmit is terminated by
clearing the enable bit in TXMODE.

4 Design of the DAIO

The DAIO has been automatically generated from a high level beha-
vorial description by the Olympus Synthesis Sytem. In this section
both the synthesis system in general and its specific application for
the DAIO are presented.

Behavorial Description
Hercules
High Level Syntheels
SUF THOR
Intermediate Format Behavorial Simulator ]
Mnerva mishl
Sequantial Synthesis Loglc Synthesis and Technology Mapping

Figure 6: The Olympus Synthesis System.
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4.1 The Olympus Synthesis System

The Olympus Synthesis System is a vertical system for synthesis of
digital circuits from a behavioral description to layout and consists
of several tools (see figure 4). A behavorial description is written
in the hardware description language HardwareC and is synthesized
by the high level synthesizer Hercules [4]. Hercules’ output is a reg-
ister transfer level description of the behavior in the intermediate
language SLIF (Stanford Logic Intermediate Format). The register
transfer level description can be simulated using the functional sim-
ulator Thor [5]. The SLIF file is used as input to the synchronous
logic synthesizer Minerva [6], which uses Misll [7] for optimization
of the combinational logic. At this point in the synthesis process,
technology mapping is optional. One can either decide to map the
optimized logic onto a specified library, or postpone technology map-
ping to a later stage. In either case, Minerva will write a new SLIF
file containing a netlist description of the mapped network or the set
of equations containing the optimized combinational and sequential
logic. If the network has been mapped onto a specific library the
SLIF file can be translated into the appropriate netlist format. Oth-
erwise, the programs Castor and Pollux [8] can be used to create a
custom layout using a structured cell based implementation.

4.2 Computer Aided Synthesis of the DAIO

The DAIO has been described as a set of independent processes
in HardwareC. A process consists of a hierarchy of statements or
procedures and executes concurrently and independently with re-
spect to other processes in the system. For example, the receive
part of the DAIO has been described in 6 processes. The top level
process daio(), selects receive or transmit activity and a clock fre-
quency from the MODE registers. Process phase_decode() extracts
the value of the source bits, preambles and system clock. Processes
shift_register() and load_subframe() shift bits into the appropriate
positions in the RXDATA and RXCTRL registers. Receive_control()
controls all this activity and keeps track of data correctness. Finally,
process buffer() controls register read/write activity over the bus
and is shared with transmit. Transfer of data between processes is
accomplished through the use of parameters.
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process name inverters | simple gates | complex gates | cells { flipflops | total eq. gates
daio() 20 7 8 2 5 96

receive() 79 220 76 - 90 1319
phase_decode() | 59 142 66 4 57 929
shift_register() | 23 41 - - 22 284

load _subframe() | 89 107 162 - 194 2573

Table 1: Gate use for some processes in the DAIO.
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Figure 7: HardwareC description and synthesized schematic plus simulation result for the toplevel process of DAIO.
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Each process is independently synthesized and mapped onto LS|
Logic’s macrocell library for the LCA 10000 Compacted Array se-
ries [9]. An LS| Logic netlist is generated for each process and dif-
ferent processes are interconnected using LSi Logic's Modular Design
Environment [10]. Table 1 gives statistics on the number and type of
cells used from the LSl library by several processes. The gate types
are broken down into inverters, simple gates like nands and nors,
complex gates like and-or-inverts, cells like muxes and full adders,
and flipflops. The equivalent gate count is the number of 2-input
nands/nors required to implement the circuit.

Hercules currently synthesizes circuits with master-slave flipflops
as the default sequential element, without utilizing the wide
range of available flipflop implementations. Therefore, in process
shift_register(), the reset is implemented by means of adding logic to
the m-s flipflop rather then utilizing an existing flipflop with built-in
reset. Technology mapping also does not take full advantage of both
polarities at the outputs of a flipflop. Only a rudimentary scheme for
deletion of obsolete inverters has been implemented thus far. There-
fore redundant inverters might be found near the Q and Q outputs
of flipflops. Table 1 does not reflect the use of some of the LSI
macro functions. Macro functions are predefined instances of com-
binations of macro cells to describe complex elements, e.g. adders,
comparators, counters, etc.. Hercules supports the use of macro
functions because it is recognized that well known functions, like
adders, should be instantiated from an optimally designed template
rather than being synthesized again and again. Currently, macro
functions are structurally specified in the HardwareC descriptions by
the user.

Figure 7 shows an example of a synthesized part. The top level
process that selects the direction and system clock is described in 80
lines of HardwareC code. After synthesizing and translation into LS|
Logic’s netlist format, a schematic was generated using LSI Logic’s
Modular Design Environment. The netlist was simulated for worst
case conditions with time steps of .1 ns. The simulation results show
outputs clk_sel, error, run_receive and run_transmit as a function of
the inputs. The glitches in clk_sel are due to a change in clock
frequency.

5 Summary and conclusions

This paper described the architecture of a Digital Audio Input Out-
put (DAIO) chip that interfaces a standard 16/32 bits microprocessor
bus with any audio device based on the AES protocol. This novel
design accommodates general-purpose microprocessor systems with
the ability to communicate with Compact Disk and Digital Audio
Tape players.

The DAIO is designed with the aid of the Olympus Synthesis System,
currently under development at Stanford University. The Olympus
Synthesis System is a vertical system for synthesis of digital circuits
from a behavioral description to layout. In the case of the DAIO,
the layout is a mapping onto predefined cells in a Sea of Gates im-
plementation.

Currently, the receive portion of the DAIO chip has been synthesized
and simulated. Simulation has been done using worst case conditions
and process parameters, We are currently working on the synthesis
of the transmit part. The finalized DAIO chip will be fabricated in

a Sea of Gates implementation. At present, the intermediate results
show the feasibility of our synthesis approach. The paradigm used
in Hercules, together with the supporting tools, produces working
designs according to their specification in HardwareC.
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