Automatic layout and optimization of static CMOS cells

Frédéric Mailhot

Giovanni DeMichels

Computer Systems Laboratory
Department of Electrical Engineering
Stanford University
Palo Alto, CA 94305

Abstract

A novel algorithm for generating complex CMOS gates from Boolean
factored forms is presented. It uses a hierarchical composition of cells
corresponding to the sub-expressions of a Boolean factored form. Com-
position rules that allow for constructing the gates in linear time are
derived. Cell width/height trade-offs are made possible to ease pitch-
matching. The algorithm has been coded in a pair of programs, called
Castor and Pollux. The programs have been used to generate moder-
ately complex layouts, consisting of circuits having up to a few thousand
transistors. They can also be used to automatically generate a library
of logic gates.

1 Introduction

Computer-aided synthesis of digital circuits has shown to be a viable
way of designing large and complex hardware systems. Logic synthesis
techniques allow designers to optimize circuit representations in terms of
logic equations and map them into forms amenable for gate implemen-
tation. This paper addresses the automatic layout of complex digital
gates from their logic specifications. This problem is important in two
respects: first as a way of generating parametrized cells for a library
and second for vhe automatic generation of macro-cells from the logic
specification of a combinational or sequential logic unit.

Automatic layout techniques require a structured implementation. In
MOS technology, logic gates can be implemented by aligning transis-
tors in a linear array. In particular, for static CMOS implementations, a
layout strategy was proposed by Uehara and van Cleemput [13], where
1 tary transistor pairs are organized in an array with polysili-
con gates formed by vertical lines and with drain/source connections by
abutment (Fig. 1). This structure requires as many transistor pairs as
there are inputs to the gate. Ideally, all source/drains of the transistor
pairs should connect by abutment, to reduce total area and parasitic
capacitance, and hence to improve the gate switching performance. Un-
fortunately, for a given logic function, it is not always possible to achieve
such a connection and diffusion gaps may be necessary. Moreover, the
search for an arrangement of the transistor pairs that minimizes the
area (or equivalently minimizes the diffusion gaps) is a difficult problem,
and very likely intractable. For this reason, Uehara and vanCleemput
introduced a simple heuristic algorithm to align the gates.

Nair, Bruss and Reif {11] analyzed the problem in terms of graph
theory, and published a linear-time algorithm which finds a transistor
pair ordering under the assumption that one exists with no diffusion
gaps. Unfortunately their paper does not report on how to solve the
problem of finding an optimum, or local optimal solution in the general
case, when diffusion gaps do exist. Maziasz proposed a linear-time
algorithm for aligning optimally transistor pairs, under the limiting
assumption of a fixed topology, i.e. no rearrangement of the series

comp

CH2643-5/88/0000/0180$01.00 © 1988 IEEE

180

Figure 1: Uehara and vanCleemput’s layout strategy

components of the graph is allowed {8]. Hill presented an automatic
layout system with an emphasis on the gate matrix structure [5].

Optimal gate design is much simpler in the case of nMOS (pMOS)
or dynamic CMOS technology, because it involves only the chaining of
transistors of one type (either N or P), rather than transistor pairs.
A heuristic algorithm was presented by McMullen and Otten [10] and
linear-time algorithms by Miiller [9]. Recently, Wimer, Pinter and Feld-
man [14] presented a layout structure for static CMOS gates that is rem-
iniscent of Hill’s work [5]. It used a routing channel between the N and
the P parts of the circuit, therefore simplifying the problem of aligning
transistor pairs to that of aligning two independent sets of transistors,
at the expense of some area spent in routing.

In this paper we consider the automatic synthesis and optimization
of gates implementing logic functions in static CMOS technology. In
addition we consider two important implementation issues: bounding
the cell height and allowing transistors with non uniform polysilicon
gate widths. The first consideration is important for pitch-matching
the cells in a standard-cell like fashion, the second for the design of
high-performance cells. Note that the previously published algorithms
had no control on the height of the cell and that the corresponding gate
implementations used transistors with uniform polysilicon gate widths.

We then present a heuristic algorithm to compute a near optimal order-
ing of the transistor pairs and show the layout implementation in three
different styles. We conclude this paper by relating the use of gate
synthesis to the OLYMPUS synthesis system at Stanford University.

2 CMOS gate implementation styles

Gates implemented by linear transistor pair arrays in CMOS technology
can use different layout styles. We consider here three of these styles.
The first style uses one level of metal and is the one proposed by Uehara
and van Cleemput (Fig. 1). The gate personality is determined by
the sequence of the transistor pairs (possibly including diffusion gaps)
and by metal stripes contacting the diffusion areas. Power and ground
lines run horizontally in metal at the top and the bottom of the cell
respectively.

The second style uses two levels of metals. One level is used to strap
the diffusion area to reduce the parasitic resistance while the other level
of metal is used to connect the first one to personalize the gate (Fig. 2).
This style allows efficient gate implementations with wider gates.

Figure 2: Layout with two levels of metal

The third style has power and ground busses close to the center of
the cells. Transistors may have polysilicon gates with arbitrarily large
widths, extending in the external direction (Fig. 3). With this layout
style, transistors with variable widths may be used within the same
gate. The transistors that are larger than a certain limit are broken into
smaller parallel ones, as done in [5] and in the CLEO layout system [3].

3 Algorithms for cell layout

The three implementation styles can be abstracted by the same struc-
tural model. Each gate instance may be represented by a symbolic
layout, representing the transistor pair sequence, the diffusion gaps and
the metal interconnections. Such a symbolic layout is then mapped au-
tomatically into a geometric layout in any of the three implementation
styles.

3.1 Optimal input order (width minimization)

While previous work [13] [11] was related to transforming an electric
diagram of a circuit into a layout, we consider here asa starting point a
representation in terms of logic equations. The reason for our choice is
that synthesis systems are today displacing schematic capture programs

181

Figure 3: Layout with central Vdd and Gnd lines

for digital design specification. The right-hand side of each logic equa-
tion consists of a Boolean factored form (Bff), which can be described
as follows using a Backus-Naur form (BNf) [1]:

Bff — literal | literal' | (Bff) | Bff + Bff | Bff *+ Bff!
eg: A, A+B, A+C(B+D(E+F))
The BN{ description shows the Boolean factored form has the prop-

erty of being generated by successive reductions [1] applied on literals
(Fig. 4).

Bft
S A I W
Bff * Bff
/ 1\ / b\
Bff #* Bff Bff + Bff
| / I\ | |
x Bff + Bff ¢t w
| |
y z

Figure 4: Successive reductions? for z(y + z)(t + w)

The algorithm presented here is based on that property. There is
a close analogy between these reductions and the way a logic gate is
constructed: whenever two Bff are reduced together, two groups of
transistors (called cells thereafter) have to be combined. For nMOS
transistors, a sum (Bff 4+ Bfl) is implemented by putting the two cells
in parallel, and a product (Bff Bff) by putting them in series (pMOS
transistors require the opposite). For static CMOS implementations, a
cell is an array of transistor pairs (N and P) whose gates are aligned.
The simplest component of a Bff, a literal, is implemented by a cell
having two transistors (P and N) on top of each other. In general a
Bff is implemented by a series/parallel connection of N and P type
transistors. We assume, as in [13], that the graphs abstracting the
interconnection of the N and the P parts are the dual of each other, and
are series/parallel reducible. The corresponding decomposition tree is
an alternative representation of the BNf. Therefore a general cell can
be constructed by combining basic cells in a similar way as the Bff is
reduced from literals. Then the problem of constructing a logic gate

1The * is optional in a product of Bff
2The reductions (B f f) — Bf f have been omitted for the sake of simplicity

n

n

Dape

v

Vil:

Figure 5: Cell abstraction

can be simplified to the one of finding its component cells for each level
of the BNf hierarchy, and the way they interact with each others.

Adjacent cells can be combined in two ways. They can abut di-
rectly (providing direct connection in the diffusion layer between the
source/drain of the transistors), or they can be separated by a diffu-
sion gap. Ideally no diffusion gap should be used, to achieve minimum
cell length. Unfortunately, there are Bffs with no corresponding linear
alig t of transistors, or equivalently decomposition trees with no
corresponding dual Euler paths, as formally shown in [11]. It is then
the purpose of our method to minimize the number of diffusion gaps.
For this reason, an appropriate way of classifying the cells is to explore
the way they connect to neighbors. A cell can possibly be abutted to
from two sides. Hence there are three different types of cells (Fig. 5),
with a simple set of composition rules defining how they can be reduced
together:

Type A: A cell that can be abutted to other cells from both sides.
Type B: A cell that can be abutted to other cells on one side only.
Type C: A cell that cannot be abutted to others (needs a cut).

The type of a cell is determined by the position of its terminal con-
nections, i.e. the diffusion corresponding to the source and the sink of
the series/parallel graphs representing the N and P transistor networks.

Type A cells have all terminal connections on the right and the left
side of the cell.

e.g.: literal, odd number of literals in a logic sum or product.

Type B cells have only one pair of terminals (N and P) on one side
of the cell.
e.g.: an even number of literals in a logic sum or product.

Type C cells are the remaining ones.
eg.: (a+b)(d+e)

The composition rules the 3 types follow are the following (where ||
means joining two adjacent cells):

A|All---|A = A (odd numberof A’s) (1)
= B (even number of A's) (2)

AlB = B ®

Alc = B)

BB = C (5)

BlC = B (6)

182

cllc = ¢)

Only compositions involving type C cells (rules 4, 6 and 7) involve
the introduction of a diffusion gap. Since A || B = B, then in our
algorithm rule 3 has the priority over rules 1 and 2. Therefore merging
any number of type A cells with one type B cell results finally into
one single type B cell. A composition example for x(y + z)(t + w) is
shown next, using the BNf reductions shown in Fig. 4. An associated
schematic is also shown in Fig. 6. Notice that the final cell generates
the complement of the initial equation.

T : A type cell (rule 1)

(y+2) A || A = B type cell (rule 2)
(t+w) A || A =B type cell (rule 2)
(y+2) = B || A = B type cell (rule 3)

y+2)z (t+w) B || B = C type cell (rule 5)

XYz Lw (y +z) (t +w) (y +z)x

vy +z)x (t +w)

Figure 6: Schematics associated with the composition example

The way we defined the Bff lends itself very easily to LR parsing (1].
We therefore assume a well formed parse tree (which follows very closely
the Backus-Naur Form description) is available before applying the algo-
rithm. The logic information that is read into a tree is readily available
from logic minimization programs like MIS [2} or Minerva [6}. The al-
gorithm visits the tree in depth-first search and constructs the symbolic
layout bottom-up, by combining the symbolic layouts corresponding to
the children of each cell. The algorithm is detailed in Fig. 7.

build_hierarchically(father)

if the parent cell has no child (literal cell) {
create a type A cell as the father }
else {
for each child of the parent cell {
build_hierarchically(child);

}
merge.children(father); }

Figure 7: Pseudo code for cell building

The sequence in which cells are combined affects the type of the re-
sulting cell. Since the overall goal is to minimize the number of diffusion
gaps, the algorithm discriminates between the three cell types to achieve
better parent cells. The merge_children procedure merges type A cells
first, then type B, and finally type C as shown in Fig. 8.

Proposition 3.1 The number of gaps required by the cell sequence gen-
erated in procedure mergechildren is minimal with respect to all per-
mulations of the children.

Proof: Let us assume a cell has z type A, y type B and z type C
children (subcells). By definition, a diffusion gap is needed whenever
a type C cell is merged with another cell. Therefore 2 — 1 gaps are
needed if there are only type C cells, and at least z gaps if there are
other types of cells. Also by definition, a gap is required whenever a
pair of type B cells are combined with type B or C cells. Therefore, at
least z + | 51| cuts are needed.

Let us compare this result with the number of diffusion gaps gener-
ated by procedure merge_children. This number depends on the total
number of type C cells, including those generated by merging type A
and type B cells (composition rules 3 and 5). Hence we need to know
how many additional type C cells are generated while combining type
A and B cells.

If there are no type B cells initially (y = 0), then type A cells are
combined together (using composition rules 1 or 2), into one single cell,
namely one type B cell if z is even or one type A cell if z is odd.
Therefore z cuts are required if z # 0 and z — 1if 2 = 0.

If there is at least one type B cell initially (y > 0), then all type A. cells
are merged with one of the existing type B cells (composition rule 3).
Then, by composition rule 5, procedure merge-children combines these
type B cells into | %] type C cells. Let 2’ = z + |¥] be the resulting
number of type C cells , to be combined with an additional type B
cell if y is odd. Then the total number of diffusion gaps generated in
the parent cell is z + £ — 1 if y is even and z + |4] if y is odd, ie.
2+ |55 ©

Therefore, procedure merge-children minimizes the number of dif-
fusion gaps introduced by reordering one level of subcells. How-
ever, this is not sufficient to state that the algorithm finds a global
minimum number of gaps. Consider for example the logic function
(a+ b)(c+ d(e + f)(g + h)). The algorithm finds abcefdgh as the best
ordering of the inputs. This order requires one diffusion gap between
the polysilicon gates implementing the c and the e literal. A better or-
dering would be efdcabgh, because it needs no diffusion gap. However,
to find such an order, the permutations over more than one level of the
Bff hierarchy have to be considered at the same time. Such a search,
possibly of exponential complexity, is not considered by our present ap-
proach because of computing time and because the results obtained by
the present algorithm have shown to be close to minimum.

merge_children(father)

for each child of the parent cell: {

Check the type of the child cell (A, B, or C)
Iftype = A

Add the child to the list of type A cells
Iftype =B

Add the child to the list of type B cells
If type = C

Add the child to the list of type C cells

}

if the list of type B cells is not empty {
take one type B cell as the starting cell

}
for each cell in the list of type A cells:
{

Merge the cell with the ones already merged
(If it is the first cell to be merged, take it as the starting cell)

}
for each cell in the list of type B cells: {
Merge the cell with the ones aiready merged

for each cell in the list of type C cells: {
Merge the cell with the ones already merged
}

Figure 8: Pseudo code for cell merging

The algorithm merges the cells bottom up to construct a symbolic
layout of the root cell. For a n-input gate, there are always (n— 1) cells
processed in merge-children (in between n elements there are (n — 1)
spaces). Therefore, the algorithm has linear time complexity.

183

3.2 Optimal track assignment (heigth minimiza-
tion)

The geometric layout of the cell is derived from the symbolic one. The
geometric cell length depends on the number of inputs as well as diffu-
sion gaps. The geometric cell height depends on the number of metal
interconnection stripes needed.

Proposition 3.2 The number of metal interconnections (rows) re-
quired in the cell layout corresponding to a Bff is at most 4(D = 2)+ 7
ifD>1and4if D=1, where D is the factorization depth of the Bff.
This number includes power and ground.

Proof: At each level of factorization of the Bff, there is a series/parallel
connection on the N and the P part of the subcells, or vice versa. Let
us first look only at what happens on one side of the cell (either N or
P). When combining two or more subcells, the resulting number of rows
is at least equal to the maximum number needed in any of the subcells
before the joining. A parallel connection may require two additional
rows. Suppose N children cells are combined, all having two terminals,
say a left and a rigth one. Then, in the parallel connection, a metal
stripe contacts the left terminals of the children cells in the odd posi-
tion and the right terminals of the children celis in the even position.
The second metal stipe contacts the remaining terminals. A series con-
nection requires also two additional rows, in the general case when the
terminals are inside the children cells (e.g. type C cells). In the special
case of a series connection of type A subcells (e.g. cells corresponding
to literals), then the series connection requires no additional row. In
the case that the children cells are of type A and B only, at most one
additional row is needed. These two special cases apply to the first level
of factorization.

Therefore when both the N and the P parts of two subcells are joined,
at most 4 additional rows are required in the general case, 3 if the factor-
ization depth is 2, and 2 if the depth is 1. A type A cell implementing a
literal needs 2 metal stripes. Then the maximum cell heigth is bounded
by 24+2434+(D-2)4)=4D-2)+7if D >2,2+2+43=7if
D=2and2+2=4ifD=1 O

Note that proposition 3.2 states only a bound on the number of
stripes. In practice, fewer stripes may be required. For this reason,
a line packing procedure [4] is applied to minimize the final heigth of
the cell. The line packing is done independently on the N and the P
part of the gate, once the ordering of the inputs is obtained and a netlist
of metal stripes connecting sources and drain is derived.

For each part (N or P) of the gate, there are two special stripes, corre-
sponding to the power contact (Vdd or Gnd) and the output contact. In
the graph representation of the transistors network, theses two stripes
are represented by the source and sink. All the other metal stripes are
simply intermediate equipotentials. Since the power contact and the
output contact are interchangeable, they are not distinguished initially.
The algorithm first orders the metal stripes by the coordinate of their
left end. It then iteratively chooses the leftmost stripe that fits on a
track without overlapping stripes that were already placed. When no
more stripes are found to fit on a certain track, a new track is-begun.
The power and output stripes need special attention in that process:
the power stripe takes one entire track, and the output stripe has to
be placed closest to the dual (P or N) output stripe. A pseudo-code
description of the line packing algorithm is shown in Fig. 9.

Boolean factored forms are optimized in terms of literals in the logic
synthesis stage, to reduce the cell length. Therefore each Bff is initially
factored as much as possible. If the corresponding cell height does
not satisfy the design requirements (e.g. pitch matching), then the
Boolean factored form can be reduced in depth until the desired height
is achieved. Because the number of metal tracks needed is bounded by
the deepest factor in the Bff, then the expansion should always be done
on the factor with the largest depth. This allows to trade-off cell length
for cell height.

stripe_compaction()

for each metal stripe {
put the stripe in the to_place list
find the left end coordinate
find the right end coordinate
}

sort the stripes by their left end coordinate
set the right limit to zero
reset the chosen_list

while there is a stripe in the to_place list {
take the stripe with the leftmost left end that is greater
or equal to the right limit

if a stripe was chosen {
if the stripe is the source or sink {
if there is no source or sink already in the chosen_list {
put the stripe in the chosenlist
mark the chosenJist as containing the source or sink
set the right limit to the right end of the stripe

else { leave the stripe in the to_place list

}
else { put the stripe in the chosenJist
set the right limit to the right end of the stripe

else (if no stripe was chosen) {
if the chosen.list has the source or the drain in it {
if there is no other stripe in the list {
mark the list as the power line

else { mark the list as the output line
if the power line is not defined yet {
get the remaining source or sink line
mark it as the power line
put it in the completed_ lines list

}
} o .
copy the chosenist into a completed_lines list
reset the chosen_list

Figure 9: Pseudo code for stripe compaction

4 Layout system implementation

The software implementation consists of two programs. The first one,
named Castor, parses the logic description and creates a symbolic lay-
out and an intetconnection netlist. The second one, Pollux, constructs
the geometric layout, using a user-defined implementation style.

The software is designed to generate a macro-cell made of combi-
national and/or sequential circuits. Special cell generators construct
the geometric layout of registers and tristates elements. Combinational
gates are constructed for each Boolean factored form. To save com-
puting time, each form (or equivalently each BNf) is ranked using a
technique similar to the one presented in {12]. The ranking allows to
generate one master cell for each given type and to instantiate it if
multiple occurrences are needed. Inverters are inserted whenever a sig-
nal needs to be complemented. Table 1 shows run times and results
for single logic equations (coming from existing publications). The re-
quired number of gaps , optimum number of gaps, and heigth (number
of horizontal tracks required) of the generated gates are shown. Table 2
shows run times for circuits copsisting of multiple equations, latches
and tristates. Program Castor was used on a MicroVax II for these
tests.

The transformation of a symbolic layout into a geometric one is pro-
grammed in the GDT 3.1 environment [15]. Four cell generators were
written in the L language for the combinational logic gates, latches, tris-
tates and the root macro-cell generator. The root macro-cell uses the
three other generators to draw each different master cell. These master
cells are then instantiated and assembled using the place-and-route tool
available in the GDT environment. An layout generated by the system
is given in Fig. 10. It is a four-bit look-ahead carry with latches and
tristates on the outputs.

Programs Castor and Pollux are part of the OLYMPUS synthesis

184

Equation Ref. Cuts Tracks | Time
(optimum) | (bound)
a+bc+de 10 0(0) 5 (6) 1.2 (s)
alb+ c(d+e(f +g(h+1)))) | [13] 0(0) 6(30) |16 (s)
abtcd+(e+ f)g+h) (8] 1(0) 6(10) {14¢(s)
(ab+ cd)e [91 1(1) 5(10) §13(s)
Table 1: Run times for single gate circuits

L Circuit | # Equations | # Latches | # Tristates | Time

1 17 0 7 27 (s)

2 16 5 5 2.7 (s)

3 42 8 0 4.6 (s)

4 1341 294 0 128.1(s)

Table 2: Run times for circuits of various sizes

systemn developed at Stanford University. OLYMPUS is an integrated
set of synthesis programs. Circuit behavior, described in a high level
language, HardwareC [7], is transformed into the corresponding logic
view. The logic description is then optimized in terms of delay and/or
area. Gate synthesis is used as the back-end of OLYMPUS to map the
optimized logic description onto silicon macro-cells.

5 Conclusion

A novel algorithm for complex CMOS gates generation has been pre-
sented. By abstracting the problem of building a gate to the one of
reducing a Backus-Naur form, simple composition rules were derived.
These rules allowed for building the gates in linear time. The imple-
mentation allows trading off width for heigth.

The system has been used to generate moderately complex layouts,
consisting of circuits having up to a few thousand gates. It can also be
used to automatically generate a library of logic gates.

Acknowledgements

This work is supported in part by the National Science Foundation
under grant MIP-8710748, by a Stanford CIS seed grant, by the Natural
Sciences and Engineering Council of Canada, and by the Quebec Fonds
F.C.AR.

References

[1] A.V. Aho, R. Sethi and J.D. Ullman, Compilers Principles, Tech-
nigues, and Tools, Addison-Wesley, 796 p., 1986.

[2] RK. Brayton, R. Rudell, A. Sangiovanni-Vincentelli and A.R.
Wang, MIS: A Multiple-Level Logic Optimization System, IEEE
Transactions on CAD, Vol. CAD-6, Nu. 6, pp.1062-1081, novem-
ber 1987.

[3] A. Domic, private communication, march 1988.

[4] A.Hashimoto and J. Stevens, Wire routing by Optimizing Channe!
Assignment within large aperture, Proceedings of the 8th Design
Automation Workshop, pp. 155-169, 1971.

(5] D.D. Hill, Sc2: A Hybrid Automatic Layout System, Proceedings
of the ICCAD, Santa Clara, pp. 172-174, 18-21 june 1985.

[6] T. Klein, private conununication, may 1988.

{7] D.C. Ku and G. DeMicheli, Hercules: a system for high level syn-
thesis, Proceedings of the 25th ACM/IEEE Design Automation
Conference, Anaheim, 1988.

18

9

=

[10]

(1]

(12]

<"
=] =
|
| o]
L G | L | | ljF ! I:

7
ETT

R
7
4

Figure 10: Layout of a four-bit look-ahead adder

R.L. Maziasz and J.P. Hayes, Layout Optimization of CMOS Func-
tional Cells, Proceedings of the 24th ACM/IEEE Design Automa-
tion Conference, pp. 544-551, 1987.

R. Miller and T. Lengauer, Linear Algorithms for Two CMOS
Layout Problems, Proceedings of Aegean Workshop on Comput.,
July 1986.

C.T. McMullen and R.H.J .M. Otten, Layout Compilation of Linear
Transistor Arrays, Proceedings of the International Symposium on
Circuits and Systems, Kyoto, Vol. 1, pp.5-7, 5-7 june 1985.

R. Nair, A. Bruss, and J. Reif, Linear Time Algorithms for Optimal
CMOS Layout, VLSI: Algorithms and Architectures, P. Bertolazzi
and F. Luccio (Editors), Elsevier Science Publishers B.V., pp. 327-
38, 1985 New York, December 1983.

C.A. Neff and R. Nair, A Ranking Algorithm for MOS Circuit Lay-
outs, IEEE Transactions on Computer-Aided Design, Vol. CAD-6,
No. 1, pp.17-21, january 1987.

[13] T.Ueharaand W.M. vanCleemput, Optimal layout of CMOS Func-

tional Arrays, IEEE Transactions on Computers, Vol. C-30, Nu. 5,

185

pp. 305-12, may 1981

[14] S. Wimer, R.Y. Pinter and J.A. Feldman, Optimal Chaining of

CMOS Transistors in @ Functional Cell, IEEE Transactions on
Computer-Aided Design, Vol. CAD-6, No. 5, pp.795-801, septem-
ber 1987.

[15] Silicon Compiler Systems, GDT Database and Language Tools Ref-

erence, Version 3.1, December 28, 1987.

