TIMING ISSUES IN MULTI-LEVEL LOGIC OPTIMIZATION

© Giovanni De Micheli

Stanford University

Outline

- © GDM **-**

- Timing verification.
 - Delay modeling.
 - Critical paths.
 - The false path problem.
- Algorithms for timing optimization.

Timing verification and optimization

—— © GDM —

- Verification:
 - Check that a circuit runs at speed:
 - * Satisfies I/O delay constraints.
 - * Satisfies cycle-time constraints.
- Optimization:
 - Minimum area
 - * subject to *delay* constraints.
 - Minimum delay
 - * (subject to area constraints).

Delay modeling

— © GDM —

- Gate delay modeling:
 - Straightforward for bound networks.
 - Approximations for unbound networks.
- Network delay modeling:
 - Compute signal propagation:
 - * Topological methods.
 - * Logic/topological methods.

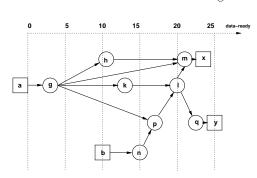
Gate delay modeling unbound networks

- © GDM -

- Virtual gates:
 - Logic expressions.
- Stage delay model:
 - Unit delay per vertex.
- Refined models:
 - Depending on fanout.

Example

■ © GDM



Propagation delays:

$$-d_{g}=3$$
; $d_{h}=8$; $d_{m}=1$; $d_{k}=10$; $d_{l}=3$;

$$-d_n = 5$$
; $d_p = 2$; $d_q = 2$; $d_x = 2$; $d_y = 3$;

Network delay modeling

- © GDM -

- For each vertex v_i .
- Propagation delay d_i .
 - I/O propagation delays are usually zero.
- Data-ready time t_i .
 - Input data-ready times denote when inputs are available.
 - Computed elsewhere by forward traversal:

$$-t_i = d_i + \max_{j|(v_j,v_i)\in E} t_j$$

Network delay modeling

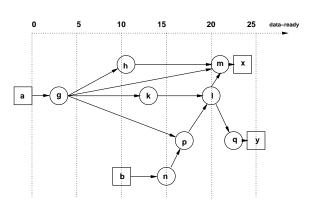
_____ © GDM ____

- For each vertex v_i .
- Required data-ready time \overline{t}_x .
 - Specified at the primary outputs.
 - Computed elsewhere by backward traversal:

$$- \overline{t}_i = \min_{j \mid (v_i, v_j) \in E} \overline{t}_j - d_j$$

- Slack s_i .
 - Difference between required and actual data-ready times $s_i = \overline{t}_i t_i$.

- © GDM -



• Required data-ready times:

$$-\overline{t}_x = 25$$
 and $\overline{t}_y = 25$.

Topological critical path

— © GDM —

- Assume topologic computation of:
 - Data-ready by forward traversal.
 - Required data-ready by backward traversal.
- Topological critical path:
 - Input/output path with zero slacks.
 - Any increase in the vertex propagation delay affects the output data-ready time.
- A topological critical path may be false.
 - No event can propagate along that path.

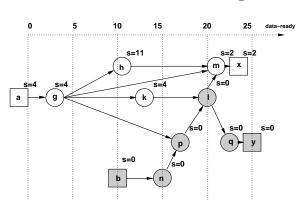
Example

- © GDM **-**

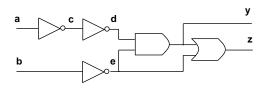
- $s_x = 2$; $s_y = 0$
- $\bar{t}_m = 25 2 = 23$; $s_m = 23 21 = 2$;
- $\bar{t}_q = 25 3 = 22$; $s_q = 22 22 = 0$;
- $\bar{t}_l = \min\{23 1; 22 2\} = 20; s_l = 20 20 = 0;$
- $\bar{t}_h = 23 1 = 22$; $s_h = 22 11 = 11$;
- $\bar{t}_k = 20 3 = 17$; $s_k = 17 13 = 4$;
- $\bar{t}_p = 20 3 = 17$; $s_p = 17 17 = 0$;
- $\bar{t}_n = 17 2 = 15$; $s_n = 15 15 = 0$;
- $\bar{t}_b = 15 5 = 10$; $s_b = 10 10 = 0$;
- $\bar{t}_g = \min\{22 11; 17 10; 17 2\} = 7; s_g = 7 3 = 4;$
- $\bar{t}_a = 7 3 = 4$; $s_b = 4 0 = 4$.

Example

■ © GDM



- © GDM **-**



- All gates have unit delay.
- All inputs ready at time 0.
- Longest topological path: $(v_a, v_c, v_d, v_y, v_z)$.
 - Path delay: 4 units.
- Critical true path: (v_a, v_c, v_d, v_y) .
 - Path delay: 3 units.

Sensitizable paths

_____ © GDM ___

- Path:
 - Ordered set of vertices.
- *Inputs* to a vertex:
 - Direct predecessors.
- Side-inputs of a vertex:
 - Inputs not on the path.

Sensitizable paths

– © GDM **–**

- A path in a logic network is sensitizable if an event can propagate from its tail to its head.
- A critical path is a sensitizable path of maximum weight.
- Only sensitizable paths should be considered.
- Non-sensitizable paths are *false* and can be discarded.

Dynamic sensitization condition

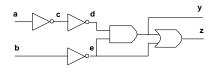
_____ © GDM _

- Path: $P = (v_{x_0}, v_{x_1}, \dots, v_{x_m})$.
- ullet An event propagates along P if

$$-\partial f_{x_i}/\partial x_{i-1} = 1 \ \forall i = 1, 2, \dots, m.$$

- Remark:
 - Boolean differences are function of the side-inputs and values on the side-inputs may change.
 - Boolean differences must be true
 at the time that the event propagates.

© GDM -



- Path: $(v_a, v_c, v_d, v_y, v_z)$
 - $-\ \partial f_y/\partial d=e=1$ at time 2.
 - $-\partial f_z/\partial y=e'=1$ at time 3.
- Not dynamically sensitizable because *e* settles at time 1.

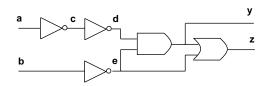
Static sensitization

- © GDM -

- Simpler, weaker model.
- We neglect the requirement on when the Boolean differences must be true to propagate an event.
- There is an assignment of primary inputs ${\bf c}$ such that $\partial f_{x_i}({\bf c})/\partial x_{i-1}=1 \ \forall i=1,2,\ldots,m.$
- May lead to underestimate delays.

Example

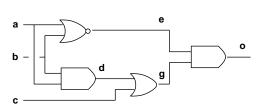
- © GDM



• Not statically sensitizable.

Example

• © GDM



• All gates have unit propagation delay.

<u> —</u> © GDM —

- Topological critical paths:
 - $\{(v_a, v_d, v_g, v_o); (v_b, v_d, v_g, v_o)\}$
 - Path delay: 3.
 - Not statically sensitizable.
- Other path:
 - $-(v_a, v_e, v_o)$
 - Path delay: 2.
- Assume:
 - -c = 0 and a, b dropping from 1 to 0.
 - Event propagates to output !!!

Modes for delay computation

—— © GDM —

- Floating mode delay computation is simpler than transition mode computation.
- Floating mode is a pessimistic approach.
- Floating mode is more robust:
 - Transition mode may not have the monotone speed-up property.

Modes for delay computation

_____ © GDM -

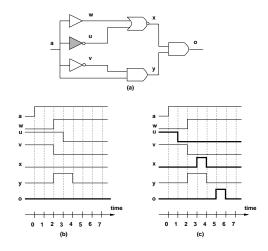
- Transition mode:
 - Variables assumed to hold previous values.
 - * Model circuit node capacitances.
 - Need two input vectors to test.
- Floating mode:
 - Circuit is assumed to be memoryless.
 - Need only one test vector.
 - Variables have unknown value until set by input test vector.

Monotone speed-up property

_____ © GDM -

- Propagation delays are upper bounds.
 - What happens if gates are faster than expected?
- We must insure that speeding-up a gate does not slow-down the circuit.
 - Topological critical paths are robust.
 - What about dynamically sensitizable paths in transition mode?

© GDM



- Propagation delays: 2 units.
- Shaded gate: 3 units and 1 unit.

Static co-sensitization

- © GDM ----

- Path: $P = (v_{x_0}, v_{x_1}, \dots, v_{x_m})$.
- A vector *statically co-sensitizes* a path to 1 (or to 0) if
 - $-x_m=1$ or (0) and
 - $-\ v_{x_{i-1}}$ has a controlling value whenever v_{x_i} has a controlled value.
- Necessary condition for a path to be true.

Static co-sensitization

© GDM •

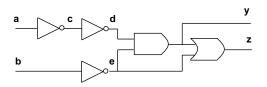
- Assumption:
 - Circuit modeled by AND, OR, INV gates.
 - -INV are irrelevant to the analysis.
 - Floating mode.
- Controlling values:
 - 0 for AND gate.
 - 1 for OR gate.
- Gate has controlled value.

False path detection test

- © GDM •

- For all input vectors, one of the following is true:
 - (1) A gate is controlled and
 - * the path provides a non-controlling value
 - * a side-input provides a controlling value.
 - (2) A gate is controlled and
 - * the path and a side-input have controlling values
 - * the side-input presents the controlling value first.
 - (3) A gate is not controlled and
 - * a side-input presents the non-controlling value last.

- © GDM



- Path: $(v_a, v_c, v_d, v_y, v_z)$.
- For a = 0, b = 0
 - condition (1) occurs at the OR gate.
- For a = 0, b = 1
 - condition (2) occurs at the AND gate.
- For a = 1, b = 0
 - condition (2) occurs at the OR gate.
- For a = 1, b = 1
 - condition (1) occurs at the AND gate.

Important problems

- Check if circuit works at speed \overline{t} .
 - Verify that all true paths are faster than \overline{t} .
 - Show that all paths slower than \overline{t} are false.
- Compute groups of false paths.
- Compute critical true path:
 - Binary search for values of \overline{t} .
 - Show that all paths slower than \overline{t} are false.

Algorithms for delay minimization

<u> —</u> © GDM —

- Alternate:
 - Critical path computation.
 - Logic transformation on critical vertices.
- Consider quasi critical paths:
 - Paths with near-critical delay.
 - Small slacks.

Algorithms for delay minimization

- © GDM ---

```
\label{eq:repeat} \begin{split} & \text{REDUCE\_DELAY(} \ G_n(V,E) \ , \epsilon) \big\{ \\ & \text{repeat } \big\{ \\ & \text{Compute critical paths and critical delay } \tau; \\ & \text{Set output required data-ready times to } \tau; \\ & \text{Compute slacks;} \\ & U = \text{vertex subset with slack lower than } \epsilon; \\ & W = \text{select vertices in } U; \\ & \text{Apply transformations to vertices } W; \\ & \big\} \\ & \text{until (no transformation can reduce } \tau \ ); \\ & \big\} \end{split}
```

— © GDM -

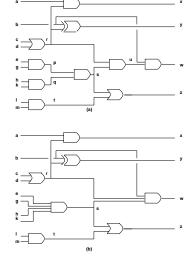
– © GDM *–*

Transformations for delay reduction

- Reduce propagation delay.
- Reduce dependencies from critical inputs.
- Favorable transformation:
 - Reduces local data-ready time.
 - Any data-ready time increase at other vertices is bounded by the local slack.

- Unit gate delay.
- Transformation:
 - Elimination.
- Always favorable.
- Obtain several area/delay trade-off points.

Example



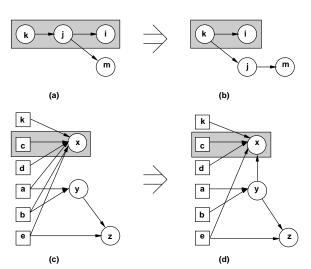
- ullet Iteration 1: eliminate $v_p,v_q.$ (No literal increase.)
- ullet Iteration 2: eliminate v_u . (No literal increase.)
- Iteration 3: eliminate v_r, v_s, v_t . (Literals increase.)

More refined delay models

_____ © GDM -

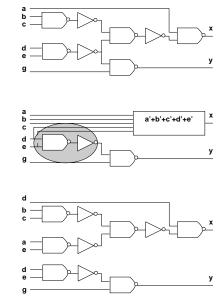
- Elimination:
 - Reduces one stage.
 - Yields more complex and slower gates.
 - May slow other paths.
- Substitution:
 - Adds one dependency.
 - Loads and slows a gate.
 - May slow other paths.

- © GDM -



Example

• © GDM



- NAND delay =2. INVERTER delay =1.
- ullet All input data-ready are 0, except $t_d=3$.

Speed-up algorithm

– © GDM —

- ullet Determine a subnetwork W of depth d.
- Collapse subnetwork by elimination.
- ullet Duplicate vertices with successors outside W:
 - Record area penalty.
- Resynthesize W by timing-driven decomposition.
- Heuristics:
 - Choice of W.
 - Monitor area penalty and potential speed-up

Algorithms for minimal-area synthesis under delay constraints

_____ © GDM __

- Make network timing feasible.
 - May not be possible.
- Minimize area while preserving timing feasibility.
 - Use area optimization algorithms.
 - Monitor delays and slacks.
 - Reject transformations yielding negative slacks.

Making a network timing feasible.

<u> —</u> © GDM —

- Naive approach:
 - Mark vertices with negative slacks.
 - Apply transformations to marked vertices.
- Refined approach.
 - Transform multiple I/O delay constraints into single constraint by delay padding.
 - Apply algorithms for CP minimization.
 - Stop when constraints are satisfied.

Summary

— © GDM ——

- Timing optimization is crucial for achieving competitive logic design.
- Timing optimization problems are hard:
 - Detection of critical paths.
 - * Elimination of false paths.
 - Network transformations.

Example

 $\overline{\mathbf{t}} = [2332]^T$

- © GDM **-**

