SYNCHRONOUS-LOGIC
OPTIMIZATION

© Giovanni De Micheli

Stanford University

Outline

e Structural optimization methods:
— Peripheral retiming
— Synchronous-logic transformations.

— Synchronous don’t cares .

e Relations between state-based models and

structural models.

Peripheral retiming

© GDM ==

e Alternate retiming and comb. synthesis.

e Move register position to periphery:

— Maximize the scope of combinational
logic.

— Borrow and release synchronous delays.

e Optimize combinational logic.

e Return borrowed synchronous delays.

Example

@

Assumption for peripheral retiming

© GDM =—

e The network graph is acyclic.

e There are no two paths from an input to
an output vertex with different weights.

There exists integer vectors

—aczIV'land b e zIV°, such that

- w(vi,...,vj) = a; + bj for all paths
(vi,...,v;j) with v; € Vl,vj cVvo.

Remarks:

— Applicable to pipelined networks.

— Extensible to circuits with feedback
by using partitioning.

Logic transformations
and peripheral retiming

© GDM ==

e Apply combinational logic transformations.

e Requirement:

— No negative weight on I/O paths
to guarantee that circuit can be
retimed again.

e Reject some transformations.

Example

Algebraic synchronous logic
transformations

© GDM ==

e Combine transformations with retiming.

e Transform combinational logic expressions:
— Within register boundaries.

— Across register boundaries.

e Extension of algebraic transformations.

Example of synchronous elimination
© GDM =

: c . . a
DO

c=ab, T =d+c@1 r=d+a@lb@1

Example of synchronous substitution
© GDM ==

r=a®@l + b, y=a®2c+ b@1lc

r=a@l 4+b;, y=2xQlc

Boolean synchronous logic
transformations

© GDM =—

e Boolean function minimization:
— Functions of delayed variables.

— Explicit synchronous don't care
conditions.

— Extension of combinational methods.

e Boolean relation minimization:
— Problem generalization.

— Implicit don'’t care conditions.

Extension of classic don’t care conditions
to the synchronous domain
© GDM =——

e Controllability don’t care sets:

— Conditions that cannot occur:

* Due to external connections.

* Due to internal connections.

e Observability don't care sets:

— Conditions such that a variable is not
observed at present or in the future.

* At some external port.

* At some internal gate.

Explicit don't care representation

© GDM =—

e Synchronous literal: literal with time label.

e Synchronous product: product of sync.
literals.

e Don’t care sets:
— Sums of synchronous products.
— Time invariant component.

— Time dependent component.

e Initialization:

— (02 6(=3) p(=2)) = (1,0,1).

e Transient don’t care condition:

— /3 + o/

e Time-invariant don’t care condition:

—)y (ntl)
Example
© GDM =
Synchronous logic optimization {D - |
using explicit don’t care sets. 2>
© GDM — (€ :
L — =]

e Compute local don't care sets:

— Extensions of controllability, observability
algorithms for combinational circuits.

e Optimize functions w.r. to local don't
care sets:

— Rename time-labeled variables.

— Use two-level minimizers.

e Replace EXNOR gate by an AND gate.

— Perturbation:

* o) = (u(")v("’)+u’(")v'("))®(u(")v(")) W OWIC)

e Compute local don't care set:

— DC, contains /("1 4, (n=1)7(0)

e Perturbation is bounded by don’t care set:

— Replacement feasible !

Example

Implicit don’t care conditions

© GDM ==

e EXxplicit don't care sets do not represent
all degrees of freedom for optimization.

e There are some feasible simplifications
that require a more complex model.
— Synchronous Boolean relation models.
— Implicit don’t care condition

representations.

e Specialized algorithms.

Example

Path reconvergence with unequal delays

e ey

(b) a X

=D

5]

© GDM ==

z

z

© @D @D _z

Example of implicit representation

© GDM ==

e Equating terminal behavior:
—F=z,®x),_1 =yn®yp_1

— (2, @z, _)O(Yn D yp—1) =1

e Example of solutions:
— Yn = Tn
/

— Yn = Tp

—UYn =Tn D Tp_1DYn—1

Relating the structural to the
state-based modeils.

© GDM ==

State encoding:

— Maps the state-based representation into
a structural one.

State extraction:

— Recovers the state information from a
structural model.

Remark:

— A circuit with n register may have 2"
states.

— Unreachable states.

State Extraction

e State variables: p,q.

e Initial state: p =0, ¢=0.

e Four possible states.

(b)

State Extraction

© GDM ==

Reachability analysis.

— Given a state
determine which states are reachable
for some inputs.

— Given a state subset
determine the reachable state subset.

— Start from initial state.

— Stop when convergence is reached.

Notation:

— A state (or state subset) is an
expression over the state variables.

Reachability analysis

e State transition function: f

e Initial state: rg.

e States reachable from rqg:

— Image of rg under f.

e States reachable from set ry:

— Image of r, under f.

e Iteration:

© GDM ==

— rp+1 = rpU (image of r, under).

e Convergence:

— rp41 = 7, for some k.

Example

© GDM ==
Example
- © GbM — e Image of p'q’ under f:
/
- Co——(*) — When (p = 0;¢ = 0), freduces to {:; }
| G2 @ _ . 0 1
0 Range is 1 and 0
1/1
e States reachable from the reset state:
(@) (b)
—(p=1¢g=0)and (p=0;¢g=1).
e Initial state ro = p'q’. —ri=p'¢d+pd +rq=p"+¢.
1ot 0 0 1
e The state transition function f= | P 7 +p,q e States reachable from ry: { 0 } { 1 } { 0 }
zp + pq
e Convergence: sg = p'q’; s1 = pq’; so = plq.
Example
© GDM ==
0/1
Completing the extraction Go &
/ "
© GDM = - 11 !
B Cf G
e Determine state set (vertex set). "
e Determine transitions (edge set) and @ ®
I/O labels.
. . oy
— Inverse image computation. e Transitions into so = p'q.
— Look at conditions that lead you into — Patterns that make f = { 8]

a given state.
— (@P'd 4+ pg) (xp' +pd') = 2'p'q

— Transition from state so, = p'q under
input .

Remarks

© GDM =—

e Extraction is performed efficiently with BDDs.

e Model the transition relation x(i, X,y) with
BDD.

— Links possible triples of

x (input, state, next-state).

e Image of r;, (where r;, depends on X).

- SLX(X(L X, y)) Tk(X)).

Summary
Optimization of synchronous circuits

© GDM ==

e State-based models:

— Classic FSM optimization.

e Structural models:
— Retiming.
— Peripheral retiming.

— Algebraic and Boolean transformations.

e Still area of active research.

