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Outline

c
 GDM

� Modeling and problem analysis.

� Rule-based systems for library binding.

� Algorithms for library binding:

{ Structural covering/matching.

{ Boolean covering/matching.

� Concurrent optimization and binding.

Library binding

c
 GDM

� Given an unbound logic network

and a set of library cells:

{ Transform into an interconnection

of instances of library cells.

{ Optimize area, (under delay constraints.)

{ Optimize delay, (under area constraints.)

{ Optimize power, (under delay constraints.)

� Called also technology mapping:

{ Method used for re-designing circuits

in di�erent technologies.

Library models

c
 GDM

� Combinational elements:

{ Single-output functions:

� e.g. AND, OR, AOI.

{ Compound cells: e.g. adders, encoders.

� Sequential elements:

{ Registers, counters.

� Miscellaneous:

{ Schmitt triggers.



Major approaches
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� Rule-based systems:

{ Mimic designer activity.

{ Handle all types of cells.

� Heuristic algorithms:

{ Restricted to single-output combinational

cells.

� Most tools use a combination of both.

Rule-based library binding

c
 GDM

� Binding by stepwise transformations.

� Data-base:

{ Set of patterns associated with best

implementation.

� Rules:

{ Select subnetwork to be mapped.

{ Handle high-fanout problems,

bu�ering, etc.

Example

c
 GDM

Strategies

c
 GDM

� Search for a sequence of transformations.

� Search space:

{ Breadth (options at each step).

{ Depth (look-ahead).

� Meta-rules determine dynamically breadth

and depth.



Rule-based library binding
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� Advantages:

{ Applicable to all kinds of libraries.

� Disadvantages:

{ Large rule data-base:

� Completeness issue.

� Formal properties of bound network.

{ Data-base updates.

Algorithms for library binding

c
 GDM

� Mainly for single-output combinational cells.

� Fast and eÆcient:

{ Quality comparable to rule-based

systems.

� Library description/update is simple:

{ Each cell modeled by its function

or equivalent pattern.

Problem analysis

c
 GDM

� Matching:

{ A cell matches a sub-network

if their terminal behavior is the same.

{ Input-variable assignment problem.

� Covering:

{ A cover of an unbound network

is a partition into subnetworks

which can be replaced by library cells.

Assumptions

c
 GDM

� Network granularity is �ne.

{ Decomposition into base functions.

� 2-input AND;OR;NAND;NOR.

� Trivial binding:

{ Replacement of each vertex by base

cell.



Example
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Example
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m1: {v1,OR2}

m2: {v2,AND2}
m3: {v3,AND2}
m4: {v1,v2,OA21}
m5: {v1,v3,OA21}

Example
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� Vertex covering:

{ Covering v1: (m1 +m4 +m5).

{ Covering v2: (m2 +m4).

{ Covering v3: (m3 +m5).

� Input compatibility:

{ Match m2 requires m1:

� (m0

2
+m1).

{ Match m3 requires m1:

� (m0

3
+m1).

� Overall binate clause:

{ (m1+m4+m5)(m2+m4)(m3+m5)(m0

2
+m1)(m0

3
+m1) = 1

Heuristic algorithms

c
 GDM

� Decomposition:

{ Cast network and library in standard

form.

{ Decompose into base functions.

{ Example: NAND2 and INV.

� Partitioning:

{ Break network into cones.

{ Reduce to many multi-input single-output

subnetworks.

� Covering:

{ Cover each subnetwork by library cells.



Decomposition
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Covering
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Heuristic algorithms
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 GDM

� Structural approach:

{ Model functions by patterns.

� Example: trees, dags.

{ Rely on pattern matching techniques.

� Boolean approach:

{ Use Boolean models.

{ Solve tautology problem.

{ More powerful.



Example

Boolean versus structural matching
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x
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x’y’

y’z
xz

� f = xy+ x0y0+ y0z

� g = xy+ x0y0+ xz

� Function equality is a tautology:

{ Boolean match.

� Patterns may be di�erent:

{ Structural match may not be found.

Example

Boolean versus structural matching
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x y z

f g

� f = xy+ x0y0+ y0z

� g = xy+ x0y0+ xz

� Patterns do not match.

Structural matching and covering
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� Expression patterns:

{ Represented by dags.

� Identify pattern dags in network:

{ Sub-graph isomorphism.

� Simpli�cation:

{ Use tree patterns.

Example
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Tree-based matching
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� Network:

{ Partitioned and decomposed:

� NOR2 (or NAND2) + INV.

� Generic base functions.

{ Subject tree.

� Library:

{ Represented by trees.

{ Possibly more than one tree per cell.

� Pattern recognition:

{ Simple binary tree match.

{ Aho-Corasick automaton.

Simple library
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Tree covering
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� Dynamic programming:

{ Visit subject tree bottom-up.

� At each vertex:

{ Attempt to match:

� Locally rooted subtree.

� All library cells.

� Optimum solution, for the subtree.

Example
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Example
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Match of s: t1
cost = 2

Match of u: t2
cost = 3

Match of t: t1
cost = 2+3=5 cost  = 4

Match of t: t3 Match  of  r: t2
cost = 3+2+4 =9

Match of r : t4
cost = 5+3=8

Example
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� Minimum-area cover.

� Area costs:

{ INV:2; NAND2:3; AND2:4; AOI21:6.

� Best choice:

{ AOI21 fed by a NAND2 gate.

Example
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Minimum delay cover

c
 GDM

� Dynamic programming approach.

� Cost related to gate delay.

� Delay modeling:

{ Constant gate delay.

� Straightforward.

{ Load-dependent delay:

� Load fanout unknown.

� Binning techniques.



Minimum delay cover

constant delays
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� The cell pattern tree and the rooted

subtree are isomorphic.

{ The vertex is labeled with the cell delay.

� The cell tree is isomorphic to a subtree

with leaves L.

{ The vertex is labeled with the cell cost

plus the maximum of the labels of L.

Example
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� Inputs data-ready times are 0

except for td = 6:

� Constant delays:

{ INV:2; NAND2:4; AND2:5; AOI21:10.

� Compute data-ready times bottom-up:

{ tx = 4; ty = 2; tz = 10tw = 14.

� Best choice:

{ AND2, two NAND2 and an INV gate.

Example
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Minimum delay cover

load-dependent delays
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� Model:

{ Assume a �nite set of load values.

� Dynamic programming approach:

{ Compute an array of solutions

for each possible load.

{ For each input to a matching cell

the best match for any load is selected.

� Optimum solution,

when all possible loads are considered.



Example
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� Inputs data-ready times are 0

except for td = 6:

� Load-dependent delays:

{ INV:1+l; NAND2:3+l; AND2:4+l;

AOI21:9+l.

� Loads:

{ INV:1; NAND2:1; AND2:1; AOI21:1.

� Same solution as before.

Example

c
 GDM

� Inputs data-ready times are 0
except for td = 6:

� Load-dependent delays:

{ INV:1+l; NAND2:3+l; AND2:4+l; AOI21:9+l;
SINV:1+0.5l;.

� Loads:

{ INV:1; NAND2:1; AND2:1; AOI21:1; SINV:2.

� Assume output load is 1:

{ Same solution as before.

� Assume output load is 5:

{ Solution uses SINV cell.

Example
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Library binding

and polarity assignment

c
 GDM

� Search for lower cost solution

by not constraining the signal polarities.

� Most circuit allow us to choose

the input/output signal polarities.

� Approaches:

{ Structural covering.

{ Boolean covering.



Structural covering

and polarity assignment
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� Pre-process subject network:

{ Add inverter pairs between NANDs.

{ Provide signals with both polarity.

� Add inverter-pair cell to the library:

{ To eliminate unneeded pairs.

{ Cell corresponds to a connection

with zero cost.

Example
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Boolean covering

c
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� Decompose network into base functions.

� When considering vertex vi:

{ Construct clusters by local elimination.

{ Several functions associated with vi.

� Limit size and depth of clusters.

Example
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fj;1 = xy;

fj;2 = x(a+ c);

fj;3 = (e+ z)y;

fj;4 = (e+ z)(a+ c);

fj;5 = (e+ c0 + d)y;

fj;6 = (e+ c0 + d)(a+ c);



Boolean matching

P-equivalence
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� Cluster function f(x): sub-network behavior.

� Pattern function g(y): cell behavior.

� P-equivalence:

{ Exists a permutation operator P,

such that f(x) = g(P x) is a tautology?

� Approaches:

{ Tautology check over all input

permutations.

{ Multi-rooted pattern ROBDD

capturing all permutations.

Input/output polarity assignment
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� Allow for reassignment of input/output

polarity.

� NPNclassi�cation of Boolean functions.

� NPN -equivalence:

{ Exists a permutation matrix P,

and complementation operators Ni;No

such that f(x) = No g(P Ni x)

is a tautology?

� Variations:

{ N -equivalence, PN -equivalence

Boolean matching

c
 GDM

� Pin assignment problem.

{ Map cluster variables x to pattern vars y.

{ Characteristic equation: A(x;y) = 1.

� Pattern function under variable assignment:

{ gA(x) = SyA(x;y) g(y)

� Tautology problem.

{ f(x) � gA(x)

{ 8x(f(x) � Sy (A(x;y) g(y)))

Example
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� Assign x1 to y02 and x2 to y1.

� Characteristic equation:

{ A(x1; x2; y1; y2) = (x1 � y2)(x2 � y1)

� AND pattern function:

{ g = y1y2

� Pattern function under assignment:

{ Sy1;y2Ag =

= Sy1;y2(x1 � y2)(x2�y1)y1y2 = x2x
0
1



Signatures and �lters
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� Capture some properties of Boolean

functions.

� If signatures do not match, there is no

match.

� Used as �lters to reduce computation.

� Signatures:

{ Unateness.

{ Symmetries.

{ Co-factor sizes.

{ Spectra.

Filters based on

unateness and symmetries

c
 GDM

� Any pin assignment must associate

{ unate (binate) variables in f(x)

with unate (binate) variables in g(y).

� Variables or groups of variables

{ that are interchangeable in f(x)

must be interchangeable in g(y).

Example

c
 GDM

� Cluster function: f = abc.

{ Symmetries:f(a; b; c)g { unate.

� Pattern functions:

{ g1 = a+ b+ c

� Symmetries:f(a; b; c)g { unate.

{ g2 = ab+ c

� Symmetries:f(a; b)(c)g { unate.

{ g3 = abc0+ a0b0c

� Symmetries:f(a; b; c)g { binate.

Concurrent optimization

and library binding

c
 GDM

� Motivation:

{ Logic simpli�cation is usually done

prior to binding.

{ Logic simpli�cation/substitution

can be combined with binding.

� Mechanism:

{ Binding induces some don't care

conditions.

{ Exploit don't cares as degrees of

freedom in matching.



Example
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UNBOUND

BOUND

Boolean matching with don't care

conditions
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� Given f(x); fDC(x) and g(y):

{ g matches f if g is equivalent to ef

where f � f 0DC � ef � f + fDC

� Matching condition:

{ 8x(fDC(x) + f(x) � Sy (A(x;y) g(y)))

Example
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� Assume vx is bound to OR3(c0; b; e).

� Don't care set includes x� (c0 + b+ e).

� Consider fj = x(a+ c) with CDC = x0c0.

� No simpli�cation. Mapping into AOI gate.

� Matching with DC. Mapping into MUX gate.

Example
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Example
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Extended matching
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� Augment pattern function with mux function.

{ Each cell input can be routed to any

cluster input (or voltage rail).

{ Input polarity can be changed.

{ Cell and cluster may di�er input size.

� De�ne composite function G(x;c):

{ Pin assignment is determining c.

� Matching formula: M(c) = 8x [G(x;c) � f(x)]

Example

c
 GDM

y

y

y

1

2

3

g

y

y

y

1

2

3

C0 C1C2

M1

M2

M3

x 1
x2
x 3

Gg

C C C C C C3 4 5 6 7 8

� g = y1+ y2 y03

� y1(c;x) = (c0c1x1+ c0c
0
1x2+ c00c1x3)� c2

� G= y1(c;x) + y2(c;x) y3(c;x)
0

Extended matching modeling

c
 GDM

� Model composite functions by ROBDDs.

{ Assume: n-input cluster and m-input

cell.

{ For each cell input:

� dlog2 ne variables for pin permutation.

� One variable for input polarity.

{ Total size of c: m(dlog2 ne+1).

� A match exists if there is at least one value

of c satisfyingM(c) = 8x [G(x;c) � f(x)].
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� g = x0y, f = wz0

� G(a; b; c; d; w; z) = (c� (za+ wa0))0(d� (zb+ wb0))

� f�G = (wz0)�((c� (za+ wa0))0(d� (zb+ wb0)))

� M(a; b; c; d) = ab0c0d0 + a0bcd

Extended matching
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� Captures implicitly all possible matches.

� No extra burden when exploiting don't care

sets.

{ M(c) = 8x [G(x;c) � f(x) + fDC(x)]

� EÆcient BDD-based representation.

� Extensions to support multiple-output matching

Summary
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� Library binding is very important.

� Rule-based approach:

{ General, sometimes ineÆcient.

� Algorithmic approach:

{ Pattern-based: fast, but limited.

{ Boolean: more general and eÆcient.


