

cell.

- Covering:
 - A cover of an unbound network
 is a partition into subnetworks
 which can be replaced by library cells.

- f = xy + x'y' + y'z
- g = xy + x'y' + xz
- Function equality is a tautology:
 - Boolean match.
- Patterns may be different:
 - Structural match may not be found.

_____ © GDM ____

- Expression patterns:
 - Represented by dags.
- Identify pattern dags in network:
 - Sub-graph isomorphism.
- Simplification:
 - Use tree patterns.

Example

— ©	GDM	-
------------	-----	---

Network	Subject graph	Vertex	Match	Gate	Cost
ို		x	t2	NAND2(b,c)	3
	У	t1	INV(a)	2	
\wedge	N	z	t2	NAND2(x,d)	2* 3 = 6
y L z	1 2	w	t2	NAND2(y,z)	3 * 3 + 2 = 11
ÅÔ	¢' èn	0	t1	INV(w)	3 * 3 + 2 * 2 = 13
$a x d v N^{1}^{2}$		t3	AND2(y,z)	2 * 3 + 4 + 2 = 12	
Ď			t6B	AOI21(x,d,a)	3 + 6 = 9
b c	vd dv				

Example

— © GDM —

Network	Subject graph	Vertex	Match	Gate	Cost
°		x	t2	NAND2(b,c)	4
w	0 I 1	У	t1	INV(a)	2
\wedge	N	z	t2	NAND2(x,d)	6 + 4 = 10
y L z	1/2	w	t2	NAND2(y,z)	10 + 4 = 14
ÅÔ	¢' ∳^	0	t1	INV(w)	14 + 2 = 16
a x d	$v N^{1}^{2}$		t3	AND2(y,z)	10 + 5 = 15
\square			t6B	AOI21(x,d,a)	10 + 6 = 16
b c	vo ov				

Minimum delay cover load-dependent delays

_____ © GDM __

- Model:
 - Assume a finite set of load values.
- Dynamic programming approach:
 - Compute an array of solutions for each possible load.
 - For each input to a matching cell the best match for any load is selected.
- Optimum solution, when all possible loads are considered.

Example

— © GDM —

- Inputs data-ready times are 0 except for $t_d = 6$.
- Load-dependent delays:
 - INV:1+I; NAND2:3+I; AND2:4+I; AOI21:9+I.
- Loads:
 - INV:1; NAND2:1; AND2:1; AOI21:1.
- Same solution as before.

Example © GDM Inputs data-ready times are 0 except for t_d = 6. Load-dependent delays: INV:1+I; NAND2:3+I; AND2:4+I; AOI21:9+I; SINV:1+0.5I;. Loads: INV:1; NAND2:1; AND2:1; AOI21:1; SINV:2. Assume output load is 1:

- Same solution as before.
- Assume output load is 5:
 - Solution uses SINV cell.

Example

– © GDM –

						Cost	
Network	Subject graph	Vertex	Match	Gate	Load=1	Load=2	Load=5
°		x	t2	NAND2(b,c)	4	5	8
w	0 I 1	У	t1	INV(a)	2	3	6
Å	N	z	t2	NAND2(x,d)	10	11	14
y L Z	1 2	w	t2	NAND2(y,z)	14	15	18
$\dot{\lambda}$	¢i ∳N	0	t1	INV(w)			20
a x d			t3	AND2(y,z)			19
Ň			t6B	AOI21(x,d,a)			20
b∏c	v o ov			SINV(w)			18.5

Library binding and polarity assignment

— © GDM —

- Search for lower cost solution by not constraining the signal polarities.
- Most circuit allow us to choose the input/output signal polarities.
- Approaches:
 - Structural covering.
 - Boolean covering.

Boolean matching <i>P</i> -equivalence	Input/output polarity assignment
 © GDM	 © GDM Allow for reassignment of input/output polarity. NPN classification of Boolean functions. NPN-equivalence: Exists a permutation matrix P, and complementation operators N_i, N_o such that f(x) = N_o g(P N_i x) is a tautology?
 Tautology check over all input permutations. Multi-rooted pattern ROBDD capturing all permutations. 	 Variations: – N-equivalence, PN-equivalence
Declose metaking	
Boolean matching	Ехатріе © дрм
• Pin assignment problem.	• Assign x_1 to y_2' and x_2 to y_1 .
- Map cluster variables x to pattern vars y . - Characteristic equation: $A(\mathbf{x}, \mathbf{y}) = 1$.	• Characteristic equation: - $A(x_1, x_2, y_1, y_2) = (x_1 \oplus y_2)(x_2 \oplus y_1)$
• Pattern function under variable assignment: $- g_{\mathcal{A}}(\mathbf{x}) = S_{\mathbf{y}}\mathcal{A}(\mathbf{x}, \mathbf{y}) g(\mathbf{y})$	• AND pattern function: $-g = y_1 y_2$
• Tautology problem.	 Pattern function under assignment:

- $f(\mathbf{x}) \overline{\oplus} g_{\mathcal{A}}(\mathbf{x})$
- $\forall_{\mathbf{X}}(f(\mathbf{x}) \ \overline{\oplus} \ \mathcal{S}_{\mathbf{y}} \ (\mathcal{A}(\mathbf{x}, \mathbf{y}) \ g(\mathbf{y})))$

 $- \mathcal{S}_{y_1, y_2} \mathcal{A}g =$ = $\mathcal{S}_{y_1, y_2} (x_1 \oplus y_2) (x_2 \overline{\oplus} y_1) y_1 y_2 = x_2 x_1'$

© GDM © GDM • Capture some properties of Boolean functions. • If signatures do not match, there is no match. • Used as filters to reduce computation.	Filters based on unateness and symmetries © GDM • Any pin assignment must associate - unate (binate) variables in f(x) with unate (binate) variables in g(y). • Variables or groups of variables
 Signatures: Unateness. Symmetries. Co-factor sizes. Spectra. 	— that are interchangeable in $f(\mathbf{x})$ must be interchangeable in $g(\mathbf{y})$.
• Cluster function: $f = abc$. - Symmetries: $\{(a, b, c)\}$ – unate.	Concurrent optimization and library binding © GDM • Motivation: - Logic simplification is usually done
 Pattern functions: - g₁ = a + b + c * Symmetries:{(a, b, c)} - unate. 	prior to binding. — Logic simplification/substitution can be combined with binding.
$-g_2 = ab + c$ * Symmetries: {(a, b)(c)} - unate. $-g_3 = abc' + a'b'c$	 Mechanism: Binding induces some <i>don't care</i> conditions. Exploit <i>don't cares</i> as degrees of

* Symmetries: $\{(a, b, c)\}$ – binate.

Exploit *don't cares* as degrees of freedom in matching.

— © GDM -

- Given $f(\mathbf{x}), f_{DC}(\mathbf{x})$ and $g(\mathbf{y})$:
 - g matches f if g is equivalent to \tilde{f} where $f\cdot f_{DC}'\leq \tilde{f}\leq f+f_{DC}$
- Matching condition:

$$- \forall_{\mathbf{X}} (f_{DC}(\mathbf{x}) + f(\mathbf{x}) \oplus S_{\mathbf{V}} (\mathcal{A}(\mathbf{x}, \mathbf{y}) g(\mathbf{y})))$$

© GDM

Example

- Assume v_x is bound to OR3(c', b, e).
- Don't care set includes $x \oplus (c' + b + e)$.
- Consider $f_j = x(a + c)$ with CDC = x'c'.
- No simplification. Mapping into AOI gate.
- Matching with DC. Mapping into MUX gate.

- $g = y_1 + y_2 y'_3$
- $y_1(\mathbf{c}, \mathbf{x}) = (c_0 c_1 x_1 + c_0 c'_1 x_2 + c'_0 c_1 x_3) \oplus c_2$
- $G = y_1(\mathbf{c}, \mathbf{x}) + y_2(\mathbf{c}, \mathbf{x}) \ y_3(\mathbf{c}, \mathbf{x})'$

- For each cell input:
 - * $\lceil log_2 n \rceil$ variables for pin permutation.
 - * One variable for input polarity.
- Total size of **c**: $m(\lceil \log_2 n \rceil + 1)$.
- A match exists if there is at least one value of c satisfying M(c) = ∀_x [G(x, c) ⊕ f(x)].

- g = x'y, f = wz'
- $G(a, b, c, d, w, z) = (c \oplus (za + wa'))'(d \oplus (zb + wb'))$
- $f \overline{\oplus} G = (wz') \overline{\oplus} ((c \oplus (za + wa'))'(d \oplus (zb + wb')))$
- M(a, b, c, d) = ab'c'd' + a'bcd

• Extensions to support multiple-output matching

- Rule-based approach:
 - General, sometimes inefficient.
- Algorithmic approach:
 - Pattern-based: fast, but limited.
 - Boolean: more general and efficient.