LIBRARY BINDING

(C)Giovanni De Micheli

Stanford University

Outline

- Modeling and problem analysis.
- Rule-based systems for library binding.
- Algorithms for library binding:
- Structural covering/matching.
- Boolean covering/matching.
- Concurrent optimization and binding.

Library binding

© GDM -

- Given an unbound Iogic network and a set of library cells:
- Transform into an interconnection of instances of library cells.
- Optimize area, (under delay constraints.)
- Optimize delay, (under area constraints.)
- Optimize power, (under delay constraints.)
- Called also technology mapping:
- Method used for re-designing circuits in different technologies.

Library models

© GDM -

- Combinational elements:
- Single-output functions:
* e.g. AND, OR, AOI.
- Compound cells: e.g. adders, encoders.
- Sequential elements:
- Registers, counters.
- Miscellaneous:
- Schmitt triggers.

Major approaches

- Rule-based systems:
- Mimic designer activity.
- Handle all types of cells.
- Heuristic algorithms:
- Restricted to single-output combinational cells.
- Most tools use a combination of both.

Rule-based library binding

(C) GDM

- Binding by stepwise transformations.
- Data-base:
- Set of patterns associated with best implementation.
- Rules:
- Select subnetwork to be mapped.
- Handle high-fanout problems, buffering, etc.

Strategies

Example

© GDM -

$-\mathrm{OO}_{-}-\mathrm{DO} \quad \Rightarrow \quad-\mathrm{OO}_{-}-$

- Search for a sequence of transformations.
- Search space:
- Breadth (options at each step).
- Depth (look-ahead).
- Meta-rules determine dynamically breadth and depth.

Rule-based library binding

- Advantages:
- Applicable to all kinds of libraries.
- Disadvantages:
- Large rule data-base:
* Completeness issue.
* Formal properties of bound network.
- Data-base updates.

Algorithms for library binding

- Mainly for single-output combinational cells.
- Fast and efficient:
- Quality comparable to rule-based systems.
- Library description/update is simple:
- Each cell modeled by its function or equivalent pattern.

Problem analysis

© GDM

- Matching:
- A cell matches a sub-network if their terminal behavior is the same.
- Input-variable assignment problem.
- Covering:
- A cover of an unbound network is a partition into subnetworks which can be replaced by library cells.

Assumptions

- Network granularity is fine.
- Decomposition into base functions.
* 2-input $A N D, O R, N A N D, N O R$.
- Trivial binding:
- Replacement of each vertex by base cell.

Example

(a)
m1: \{v1,OR2\} m2: $\{(v 2, A N D 2\}$
m3:
: $13, A N D 2\}$
m4: \{v1,v2,0A21
m4: ((v1,v2,OA21)

(d)

(b)

(e)

(c)

Example

- Vertex covering:
- Covering $v_{1}:\left(m_{1}+m_{4}+m_{5}\right)$.
- Covering $v_{2}:\left(m_{2}+m_{4}\right)$.
- Covering $v_{3}:\left(m_{3}+m_{5}\right)$
- Input compatibility
- Match m_{2} requires m_{1} :
* $\left(m_{2}^{\prime}+m_{1}\right)$.
- Match m_{3} requires m_{1}
* $\left(m_{3}^{\prime}+m_{1}\right)$.
- Overall binate clause:
$-\left(m_{1}+m_{4}+m_{5}\right)\left(m_{2}+m_{4}\right)\left(m_{3}+m_{5}\right)\left(m_{2}^{\prime}+m_{1}\right)\left(m_{3}^{\prime}+m_{1}\right)=1$

Heuristic algorithms

© GDM

- Decomposition:
- Cast network and library in standard form.
- Decompose into base functions.
- Example: NAND2 and INV.
- Partitioning:
- Break network into cones.
- Reduce to many multi-input single-output subnetworks.
- Covering:
- Cover each subnetwork by library cells.

Partitioning

Heuristic algorithms

(C) GDM

- Structural approach:
- Model functions by patterns.
* Example: trees, dags.
- Rely on pattern matching techniques.
- Boolean approach:
- Use Boolean models.
- Solve tautology problem.
- More powerful.

Example
 Boolean versus structural matching

- $f=x y+x^{\prime} y^{\prime}+y^{\prime} z$
- $g=x y+x^{\prime} y^{\prime}+x z$
- Function equality is a tautology:
- Boolean match.
- Patterns may be different:
- Structural match may not be found.

- $f=x y+x^{\prime} y^{\prime}+y^{\prime} z$
- $g=x y+x^{\prime} y^{\prime}+x z$
- Patterns do not match.

Structural matching and covering

Example

- Expression patterns:
- Represented by dags.
- Identify pattern dags in network:
- Sub-graph isomorphism.
- Simplification:
- Use tree patterns.

Tree-based matching

(C) GDM

- Network:
- Partitioned and decomposed
* NOR2 (or NAND2) + INV.
* Generic base functions.
- Subject tree.
- Library:
- Represented by trees.
- Possibly more than one tree per cell.
- Pattern recognition:
- Simple binary tree match.
- Aho-Corasick automaton.

Tree covering

- Dynamic programming:
- Visit subject tree bottom-up.
- At each vertex:
- Attempt to match:
* Locally rooted subtree.
* All library cells.
- Optimum solution, for the subtree.

Example

Example

Example

- Minimum-area cover.
- Area costs:
- INV:2; NAND2:3; AND2:4; AOI21:6.
- Best choice:
- AOI21 fed by a NAND2 gate.

Example (C) GDM -

Network	Subject graph	Vertex	Match	Gate	Cost
		x	$t 2$	NAND2(b,c)	3
		y	${ }^{11}$	$\operatorname{INV}(\mathrm{a})$	2
		z	${ }^{\text {t2 }}$	NAND2(x,d)	$2^{*} 3=6$
		w	${ }^{\text {t2 }}$	NAND2(y,z)	$3 * 3+2=11$
		0	${ }^{11}$	$\mathrm{INV}(\mathrm{w})$	$3 * 3+2 * 2=13$
			${ }^{13}$	AND2(y,z)	$2 * 3+4+2=12$
			${ }^{\text {t6B }}$	AOI21(x,d,a)	$3+6=9$

Minimum delay cover

- Dynamic programming approach.
- Cost related to gate delay.
- Delay modeling:
- Constant gate delay.
* Straightforward.
- Load-dependent delay:
* Load fanout unknown.
* Binning techniques.

Minimum delay cover constant delays

- The cell pattern tree and the rooted subtree are isomorphic.
- The vertex is labeled with the cell delay.
- The cell tree is isomorphic to a subtree with leaves L.
- The vertex is labeled with the cell cost plus the maximum of the labels of L.

Example

- Inputs data-ready times are 0 except for $t_{d}=6$.
- Constant delays:
- INV:2; NAND2:4; AND2:5; AOI21:10.
- Compute data-ready times bottom-up:
$-t_{x}=4, t_{y}=2 ; t_{z}=10 t_{w}=14$.
- Best choice:
- AND2, two NAND2 and an INV gate.

Example

Network	Subject graph	Vertex	Match	Gate	Cost
		x	t2	NAND2(b,c)	4
		y	t1	INV(a)	2
		z	t2	NAND2(x,d)	$6+4=10$
		w	t2	NAND2(y,z)	$10+4=14$
		0	$t 1$	INV (w)	14-2 $=16$
			t3	AND2(y,z)	$10+5=15$
			t6B	AOI21(x,d,a)	$10+6=16$

Minimum delay cover

 load-dependent delays- Model:
- Assume a finite set of load values.
- Dynamic programming approach:
- Compute an array of solutions for each possible load.
- For each input to a matching cell the best match for any load is selected.
- Optimum solution, when all possible loads are considered.

Example

- Inputs data-ready times are 0 except for $t_{d}=6$.
- Load-dependent delays:
- INV:1+I; NAND2:3+I; AND2:4+1; AOI21:9+I.
- Loads:
- INV:1; NAND2:1; AND2:1; AOI21:1.
- Same solution as before.

Example

- Inputs data-ready times are 0 except for $t_{d}=6$.
- Load-dependent delays:
- INV:1+I; NAND2:3+I; AND2:4+1; AOI21:9+।; SINV:1+0.5I;
- Loads:
- INV:1; NAND2:1; AND2:1; AOI21:1; SINV:2.
- Assume output load is 1:
- Same solution as before.
- Assume output load is 5 :
- Solution uses SINV cell.

Example

Network	Subject graph	Vertex	Match	Gate	Cost		
					Load=1	Load=2	Load=5
		x	t2	NAND2(b,c)	4	5	8
		y	$t 1$	$\operatorname{INV}(\mathrm{a})$	2	3	6
		z	$t 2$	NAND2(x,d)	10	11	14
		w	${ }^{\text {t2 }}$	NAND2(y,z)	14	15	18
		0	${ }^{11}$	$\mathrm{INV}(\mathrm{w})$			20
			${ }^{\text {t }}$	AND2(y,z)			19
			${ }^{\text {t6B }}$	AO212(x,d,a)			20
				$\operatorname{sinv}(\mathbf{w})$			18.5

Library binding and polarity assignment
© GDM

- Search for lower cost solution
by not constraining the signal polarities.
- Most circuit allow us to choose the input/output signal polarities.
- Approaches:
- Structural covering.
- Boolean covering.

Structural covering and polarity assignment

(c) GDM

- Pre-process subject network:
- Add inverter pairs between NANDs.
- Provide signals with both polarity.
- Add inverter-pair cell to the library:
- To eliminate unneeded pairs.
- Cell corresponds to a connection with zero cost.

Example

Boolean covering

- Decompose network into base functions.
- When considering vertex v_{i} :
- Construct clusters by local elimination.
- Several functions associated with v_{i}.
- Limit size and depth of clusters.

Example

$$
\begin{aligned}
& f_{j, 1}=x y ; \\
& f_{j, 2}=x(a+c) ; \\
& f_{j, 3}=(e+z) y ; \\
& f_{j, 4}=(e+z)(a+c) ; \\
& f_{j, 5}=\left(e+c^{\prime}+d\right) y ; \\
& f_{j, 6}=\left(e+c^{\prime}+d\right)(a+c) ;
\end{aligned}
$$

Boolean matching
 \mathcal{P}-equivalence

Input/output polarity assignment

(C) GDM -

- Allow for reassignment of input/output
- \mathcal{P}-equivalence:
- Exists a permutation operator \mathcal{P}, such that $f(\mathbf{x})=g(\mathcal{P} \mathbf{x})$ is a tautology?
- Approaches:
- Tautology check over all input permutations.
- Multi-rooted pattern ROBDD capturing all permutations.
- Cluster function $f(\mathbf{x})$: sub-network behavior.
- Pattern function $g(\mathbf{y})$: cell behavior.
polarity.
- $\mathcal{N P} \mathcal{N}$ classification of Boolean functions.
- $\mathcal{N} \mathcal{P N}$-equivalence:
- Exists a permutation matrix \mathcal{P}, and complementation operators $\mathcal{N}_{i}, \mathcal{N}_{o}$ such that $f(\mathbf{x})=\mathcal{N}_{o} g\left(\mathcal{P} \mathcal{N}_{i} \mathbf{x}\right)$ is a tautology?
- Variations:
- \mathcal{N}-equivalence, $\mathcal{P N}$-equivalence

Boolean matching

- Pin assignment problem.
- Map cluster variables \mathbf{x} to pattern vars \mathbf{y}.
- Characteristic equation: $\mathcal{A}(\mathbf{x}, \mathbf{y})=1$.
- Pattern function under variable assignment:
$-g_{\mathcal{A}}(\mathbf{x})=\mathcal{S}_{\mathbf{y}} \mathcal{A}(\mathbf{x}, \mathbf{y}) g(\mathbf{y})$
- Tautology problem.
$-f(\mathbf{x}) \oplus g_{\mathcal{A}}(\mathbf{x})$
$-\forall \mathbf{x}\left(f(\mathbf{x}) \Phi \mathcal{S}_{\mathbf{y}}(\mathcal{A}(\mathbf{x}, \mathbf{y}) g(\mathbf{y}))\right)$

Example

- Assign x_{1} to y_{2}^{\prime} and x_{2} to y_{1}.
- Characteristic equation:

$$
-A\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\left(x_{1} \oplus y_{2}\right)\left(x_{2} \oplus y_{1}\right)
$$

- AND pattern function:
$-g=y_{1} y_{2}$
- Pattern function under assignment:

$$
\begin{aligned}
& -\mathcal{S}_{y_{1}, y_{2}} \mathcal{A} g= \\
& ==\mathcal{S}_{y_{1}, y_{2}}\left(x_{1} \oplus y_{2}\right)\left(x_{2} \bar{\oplus} y_{1}\right) y_{1} y_{2}=x_{2} x_{1}^{\prime}
\end{aligned}
$$

- Capture some properties of Boolean functions.
- If signatures do not match, there is no match.
- Used as filters to reduce computation.
- Signatures:
- Unateness.
- Symmetries.
- Co-factor sizes.
- Spectra.

Filters based on unateness and symmetries

\qquad

- Any pin assignment must associate
- unate (binate) variables in $f(\mathbf{x})$ with unate (binate) variables in $g(\mathbf{y})$.
- Variables or groups of variables
- that are interchangeable in $f(\mathbf{x})$ must be interchangeable in $g(\mathbf{y})$.

Example

- Cluster function: $f=a b c$.
- Symmetries: $\{(a, b, c)\}$ - unate.
- Pattern functions:
$-g_{1}=a+b+c$
* Symmetries: $\{(a, b, c)\}$ - unate.
$-g_{2}=a b+c$
* Symmetries: $\{(a, b)(c)\}$ - unate.
$-g_{3}=a b c^{\prime}+a^{\prime} b^{\prime} c$
* Symmetries: $\{(a, b, c)\}$ - binate.

Concurrent optimization and library binding

- Motivation:
- Logic simplification is usually done prior to binding.
- Logic simplification/substitution can be combined with binding.
- Mechanism:
- Binding induces some don't care conditions.
- Exploit don't cares as degrees of freedom in matching.

Example

Boolean matching with don't care

 conditions(C) GDM

- Given $f(\mathbf{x}), f_{D C}(\mathbf{x})$ and $g(\mathbf{y})$:
- g matches f if g is equivalent to \tilde{f} where $f \cdot f_{D C}^{\prime} \leq \tilde{f} \leq f+f_{D C}$
- Matching condition:
$-\forall \mathbf{x}\left(f_{D C}(\mathbf{x})+f(\mathbf{x}) \oplus \mathcal{S}_{\mathbf{y}}(\mathcal{A}(\mathbf{x}, \mathbf{y}) g(\mathbf{y}))\right)$

Example

- Assume v_{x} is bound to $\operatorname{OR} 3\left(c^{\prime}, b, e\right)$.
- Don't care set includes $x \oplus\left(c^{\prime}+b+e\right)$.
- Consider $f_{j}=x(a+c)$ with $C D C=x^{\prime} c^{\prime}$.
- No simplification. Mapping into $A O I$ gate.
- Matching with DC. Mapping into $M U X$ gate.

Example

Extended matching

- Augment pattern function with mux function.
- Each cell input can be routed to any cluster input (or voltage rail).
- Input polarity can be changed.
- Cell and cluster may differ input size.
- Define composite function $G(\mathbf{x}, \mathbf{c})$:
- Pin assignment is determining c.
- Matching formula: $M(\mathbf{c})=\forall \mathbf{x}[G(\mathbf{x}, \mathbf{c}) \oplus f(\mathbf{x})]$

Extended matching modeling

- Model composite functions by ROBDDs.
- Assume: n-input cluster and m-input cell.
- For each cell input:
* $\left\lceil\log _{2} n\right\rceil$ variables for pin permutation.
* One variable for input polarity.
- Total size of $\mathbf{c}: m\left(\left\lceil\log _{2} n\right\rceil+1\right)$.
- A match exists if there is at least one value of \mathbf{c} satisfying $M(\mathbf{c})=\forall \mathbf{x}[G(\mathbf{x}, \mathbf{c}) \bar{\oplus} f(\mathbf{x})]$.

- $g=x^{\prime} y, f=w z^{\prime}$
- $G(a, b, c, d, w, z)=\left(c \oplus\left(z a+w a^{\prime}\right)\right)^{\prime}\left(d \oplus\left(z b+w b^{\prime}\right)\right)$
- $f \bar{\oplus} G=\left(w z^{\prime}\right) \bar{\oplus}\left(\left(c \oplus\left(z a+w a^{\prime}\right)\right)^{\prime}\left(d \oplus\left(z b+w b^{\prime}\right)\right)\right)$
- $M(a, b, c, d)=a b^{\prime} c^{\prime} d^{\prime}+a^{\prime} b c d$

Extended matching

© GDM

- Captures implicitly all possible matches.
- No extra burden when exploiting don't care sets.
$-M(\mathbf{c})=\forall \mathbf{x}\left[G(\mathbf{x}, \mathbf{c}) \oplus f(\mathbf{x})+f_{D C}(\mathbf{x})\right]$
- Efficient BDD-based representation.
- Extensions to support multiple-output matching

