
LIBRARY BINDING

c
Giovanni De Micheli

Stanford University

Outline

c
 GDM

� Modeling and problem analysis.

� Rule-based systems for library binding.

� Algorithms for library binding:

{ Structural covering/matching.

{ Boolean covering/matching.

� Concurrent optimization and binding.

Library binding

c
 GDM

� Given an unbound logic network

and a set of library cells:

{ Transform into an interconnection

of instances of library cells.

{ Optimize area, (under delay constraints.)

{ Optimize delay, (under area constraints.)

{ Optimize power, (under delay constraints.)

� Called also technology mapping:

{ Method used for re-designing circuits

in di�erent technologies.

Library models

c
 GDM

� Combinational elements:

{ Single-output functions:

� e.g. AND, OR, AOI.

{ Compound cells: e.g. adders, encoders.

� Sequential elements:

{ Registers, counters.

� Miscellaneous:

{ Schmitt triggers.

Major approaches

c
 GDM

� Rule-based systems:

{ Mimic designer activity.

{ Handle all types of cells.

� Heuristic algorithms:

{ Restricted to single-output combinational

cells.

� Most tools use a combination of both.

Rule-based library binding

c
 GDM

� Binding by stepwise transformations.

� Data-base:

{ Set of patterns associated with best

implementation.

� Rules:

{ Select subnetwork to be mapped.

{ Handle high-fanout problems,

bu�ering, etc.

Example

c
 GDM

Strategies

c
 GDM

� Search for a sequence of transformations.

� Search space:

{ Breadth (options at each step).

{ Depth (look-ahead).

� Meta-rules determine dynamically breadth

and depth.

Rule-based library binding

c
 GDM

� Advantages:

{ Applicable to all kinds of libraries.

� Disadvantages:

{ Large rule data-base:

� Completeness issue.

� Formal properties of bound network.

{ Data-base updates.

Algorithms for library binding

c
 GDM

� Mainly for single-output combinational cells.

� Fast and eÆcient:

{ Quality comparable to rule-based

systems.

� Library description/update is simple:

{ Each cell modeled by its function

or equivalent pattern.

Problem analysis

c
 GDM

� Matching:

{ A cell matches a sub-network

if their terminal behavior is the same.

{ Input-variable assignment problem.

� Covering:

{ A cover of an unbound network

is a partition into subnetworks

which can be replaced by library cells.

Assumptions

c
 GDM

� Network granularity is �ne.

{ Decomposition into base functions.

� 2-input AND;OR;NAND;NOR.

� Trivial binding:

{ Replacement of each vertex by base

cell.

Example

c
 GDM

(a) (b)

(c) (d)

a

b
c

d

e

f

x

y

w

z

z = a + w
w = x + y
y = d u
x = b + c
u = e f

u

v

v

v

v

v

Example

c
 GDM

AND2

OR2

Cost

5

4

4

Library

(a) (b)

m3

m1

m2
m4

m5
v

v

v

1

2

3

v

v

v

1

2

3

a

b

c

d

x

y

z

y = a x
z = x d

x = b + c

(c)

(d)

a

b

c

d

b

y

z

(e)

y

z

a

b

c

d

y

z

a

d

b

c

(f)

x

OA21

m1: {v1,OR2}

m2: {v2,AND2}
m3: {v3,AND2}
m4: {v1,v2,OA21}
m5: {v1,v3,OA21}

Example

c
 GDM

� Vertex covering:

{ Covering v1: (m1 +m4 +m5).

{ Covering v2: (m2 +m4).

{ Covering v3: (m3 +m5).

� Input compatibility:

{ Match m2 requires m1:

� (m0

2
+m1).

{ Match m3 requires m1:

� (m0

3
+m1).

� Overall binate clause:

{ (m1+m4+m5)(m2+m4)(m3+m5)(m0

2
+m1)(m0

3
+m1) = 1

Heuristic algorithms

c
 GDM

� Decomposition:

{ Cast network and library in standard

form.

{ Decompose into base functions.

{ Example: NAND2 and INV.

� Partitioning:

{ Break network into cones.

{ Reduce to many multi-input single-output

subnetworks.

� Covering:

{ Cover each subnetwork by library cells.

Decomposition

c
 GDM

D Q

data[0][0]
EN

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

Partitioning

c
 GDM

data[0][0]
EN

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

+

*

* *

+

*

*

*

Covering

c
 GDM

data[0][0]
EN

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

+

*

* *

+

*

*

*

Heuristic algorithms

c
 GDM

� Structural approach:

{ Model functions by patterns.

� Example: trees, dags.

{ Rely on pattern matching techniques.

� Boolean approach:

{ Use Boolean models.

{ Solve tautology problem.

{ More powerful.

Example

Boolean versus structural matching

c
 GDM

x
yz

xy

x’y’

y’z
xz

� f = xy+ x0y0+ y0z

� g = xy+ x0y0+ xz

� Function equality is a tautology:

{ Boolean match.

� Patterns may be di�erent:

{ Structural match may not be found.

Example

Boolean versus structural matching

c
 GDM

+

* * *

x y z

+

* * *

x y z

f g

� f = xy+ x0y0+ y0z

� g = xy+ x0y0+ xz

� Patterns do not match.

Structural matching and covering

c
 GDM

� Expression patterns:

{ Represented by dags.

� Identify pattern dags in network:

{ Sub-graph isomorphism.

� Simpli�cation:

{ Use tree patterns.

Example

c
 GDM

(c) (d)

a b

d

c

(a) (b)

N

N

a b

N

N N

a b c d

N

N N

a b

NN

I

I

II

II

I

I

I

Tree-based matching

c
 GDM

� Network:

{ Partitioned and decomposed:

� NOR2 (or NAND2) + INV.

� Generic base functions.

{ Subject tree.

� Library:

{ Represented by trees.

{ Possibly more than one tree per cell.

� Pattern recognition:

{ Simple binary tree match.

{ Aho-Corasick automaton.

Simple library

c
 GDM

NAND2

NOR2

OR2

AOI21

AND2

INV

t2.1
t2.2

t3.1
t3.2

t4.1
t4.2

t5.1
t5.2

AOI22

t7.1
t7.2
t7.3
t7.4

t6A.1
t6A.2
t6A.3

t6B.1
t6B.2
t6B.3

t1.1I1v

I1N1v

I1N1I1v
I1N2I1v

N1I1v
N2I1v

I1N1N1v
I1N1N2v
I1N2I1v

I1N1I1v
I1N2N1v
I1N2N2v

I1N1N1v
I1N1N2v
I1N2N1v
I1N2N2v

N1v
N2v

(a) (b) (c) (d)

I1N2v

Tree covering

c
 GDM

� Dynamic programming:

{ Visit subject tree bottom-up.

� At each vertex:

{ Attempt to match:

� Locally rooted subtree.

� All library cells.

� Optimum solution, for the subtree.

Example

c
 GDM

t1 t2 t3 t4r

s t

u

SUBJECT TREE PATTERN TREES

cost = 2 cost = 3 cost = 4 cost = 5

INV NAND AND OR

Example

c
 GDM

r

s t

u

t4

t2

r

s t

u

r

s t

u

r

s t

u

r

s t

u

Match of s: t1
cost = 2

Match of u: t2
cost = 3

Match of t: t1
cost = 2+3=5 cost = 4

Match of t: t3 Match of r: t2
cost = 3+2+4 =9

Match of r : t4
cost = 5+3=8

Example

c
 GDM

� Minimum-area cover.

� Area costs:

{ INV:2; NAND2:3; AND2:4; AOI21:6.

� Best choice:

{ AOI21 fed by a NAND2 gate.

Example

c
 GDM

Network

a

b c

d

y

x

w

o

z

Subject graph

1

2

v 1

v v

v

1 2

x NAND2(b,c)

y

z

w

o

INV(a)

NAND2(x,d)

NAND2(y,z)

INV(w)

AND2(y,z)

AOI21(x,d,a)

Vertex

t2

t1

t2

t2

t3

t1

Match Gate Cost

t6B

1

2

N

N

NI

I

3

2

3 * 3 + 2 * 2 = 13

2 * 3 + 4 + 2 = 12

2* 3 = 6

3 * 3 + 2 = 11

3 + 6 = 9

Minimum delay cover

c
 GDM

� Dynamic programming approach.

� Cost related to gate delay.

� Delay modeling:

{ Constant gate delay.

� Straightforward.

{ Load-dependent delay:

� Load fanout unknown.

� Binning techniques.

Minimum delay cover

constant delays

c
 GDM

� The cell pattern tree and the rooted

subtree are isomorphic.

{ The vertex is labeled with the cell delay.

� The cell tree is isomorphic to a subtree

with leaves L.

{ The vertex is labeled with the cell cost

plus the maximum of the labels of L.

Example

c
 GDM

� Inputs data-ready times are 0

except for td = 6:

� Constant delays:

{ INV:2; NAND2:4; AND2:5; AOI21:10.

� Compute data-ready times bottom-up:

{ tx = 4; ty = 2; tz = 10tw = 14.

� Best choice:

{ AND2, two NAND2 and an INV gate.

Example

c
 GDM

Network

a

b c

d

y

x

w

o

z

Subject graph

1

2

v 1

v v

v

1 2

x NAND2(b,c)

y

z

w

o

INV(a)

NAND2(x,d)

NAND2(y,z)

INV(w)

AND2(y,z)

AOI21(x,d,a)

Vertex

t2

t1

t2

t2

t3

t1

Match Gate Cost

t6B

1

2

N

N

NI

I

4

2

6 + 4 = 10

10 + 4 = 14

14 + 2 = 16

10 + 5 = 15

10 + 6 = 160

0 0

6

Minimum delay cover

load-dependent delays

c
 GDM

� Model:

{ Assume a �nite set of load values.

� Dynamic programming approach:

{ Compute an array of solutions

for each possible load.

{ For each input to a matching cell

the best match for any load is selected.

� Optimum solution,

when all possible loads are considered.

Example

c
 GDM

� Inputs data-ready times are 0

except for td = 6:

� Load-dependent delays:

{ INV:1+l; NAND2:3+l; AND2:4+l;

AOI21:9+l.

� Loads:

{ INV:1; NAND2:1; AND2:1; AOI21:1.

� Same solution as before.

Example

c
 GDM

� Inputs data-ready times are 0
except for td = 6:

� Load-dependent delays:

{ INV:1+l; NAND2:3+l; AND2:4+l; AOI21:9+l;
SINV:1+0.5l;.

� Loads:

{ INV:1; NAND2:1; AND2:1; AOI21:1; SINV:2.

� Assume output load is 1:

{ Same solution as before.

� Assume output load is 5:

{ Solution uses SINV cell.

Example

c
 GDM

Network

a

b c

d

y

x

w

o

z

Subject graph

1

2

v 1

v v

v

1 2

x NAND2(b,c)

y

z

w

o

INV(a)

NAND2(x,d)

NAND2(y,z)

INV(w)

AND2(y,z)

AOI21(x,d,a)

Vertex

t2

t1

t2

t2

t3

t1

Match Gate

Cost

t6B

1

2

N

N

NI

I

4

2

0

0 0

6

Load=1 Load=2 Load=5

5 8

3 6

10 11 14

14 15 18

20

19

20

18.5SINV(w)

Library binding

and polarity assignment

c
 GDM

� Search for lower cost solution

by not constraining the signal polarities.

� Most circuit allow us to choose

the input/output signal polarities.

� Approaches:

{ Structural covering.

{ Boolean covering.

Structural covering

and polarity assignment

c
 GDM

� Pre-process subject network:

{ Add inverter pairs between NANDs.

{ Provide signals with both polarity.

� Add inverter-pair cell to the library:

{ To eliminate unneeded pairs.

{ Cell corresponds to a connection

with zero cost.

Example

c
 GDM

a

b c

d

y

x

w

o

z

(a)

o

a

b c

d

y

x

w

z

(b) (c)

o

a

c

d’

(d)

b’ c’

d’

a’

1 2

3

4

5 6

7

8 9

10 11

12

13

b’ c’

Boolean covering

c
 GDM

� Decompose network into base functions.

� When considering vertex vi:

{ Construct clusters by local elimination.

{ Several functions associated with vi.

� Limit size and depth of clusters.

Example

c
 GDM

a ce

v y

v z

v
x

v j

c

c’ b

fj;1 = xy;

fj;2 = x(a+ c);

fj;3 = (e+ z)y;

fj;4 = (e+ z)(a+ c);

fj;5 = (e+ c0 + d)y;

fj;6 = (e+ c0 + d)(a+ c);

Boolean matching

P-equivalence

c
 GDM

� Cluster function f(x): sub-network behavior.

� Pattern function g(y): cell behavior.

� P-equivalence:

{ Exists a permutation operator P,

such that f(x) = g(P x) is a tautology?

� Approaches:

{ Tautology check over all input

permutations.

{ Multi-rooted pattern ROBDD

capturing all permutations.

Input/output polarity assignment

c
 GDM

� Allow for reassignment of input/output

polarity.

� NPNclassi�cation of Boolean functions.

� NPN -equivalence:

{ Exists a permutation matrix P,

and complementation operators Ni;No

such that f(x) = No g(P Ni x)

is a tautology?

� Variations:

{ N -equivalence, PN -equivalence

Boolean matching

c
 GDM

� Pin assignment problem.

{ Map cluster variables x to pattern vars y.

{ Characteristic equation: A(x;y) = 1.

� Pattern function under variable assignment:

{ gA(x) = SyA(x;y) g(y)

� Tautology problem.

{ f(x) � gA(x)

{ 8x(f(x) � Sy (A(x;y) g(y)))

Example

c
 GDM

� Assign x1 to y02 and x2 to y1.

� Characteristic equation:

{ A(x1; x2; y1; y2) = (x1 � y2)(x2 � y1)

� AND pattern function:

{ g = y1y2

� Pattern function under assignment:

{ Sy1;y2Ag =

= Sy1;y2(x1 � y2)(x2�y1)y1y2 = x2x
0
1

Signatures and �lters

c
 GDM

� Capture some properties of Boolean

functions.

� If signatures do not match, there is no

match.

� Used as �lters to reduce computation.

� Signatures:

{ Unateness.

{ Symmetries.

{ Co-factor sizes.

{ Spectra.

Filters based on

unateness and symmetries

c
 GDM

� Any pin assignment must associate

{ unate (binate) variables in f(x)

with unate (binate) variables in g(y).

� Variables or groups of variables

{ that are interchangeable in f(x)

must be interchangeable in g(y).

Example

c
 GDM

� Cluster function: f = abc.

{ Symmetries:f(a; b; c)g { unate.

� Pattern functions:

{ g1 = a+ b+ c

� Symmetries:f(a; b; c)g { unate.

{ g2 = ab+ c

� Symmetries:f(a; b)(c)g { unate.

{ g3 = abc0+ a0b0c

� Symmetries:f(a; b; c)g { binate.

Concurrent optimization

and library binding

c
 GDM

� Motivation:

{ Logic simpli�cation is usually done

prior to binding.

{ Logic simpli�cation/substitution

can be combined with binding.

� Mechanism:

{ Binding induces some don't care

conditions.

{ Exploit don't cares as degrees of

freedom in matching.

Example

c
 GDM

UNBOUND

BOUND

Boolean matching with don't care

conditions

c
 GDM

� Given f(x); fDC(x) and g(y):

{ g matches f if g is equivalent to ef

where f � f 0DC � ef � f + fDC

� Matching condition:

{ 8x(fDC(x) + f(x) � Sy (A(x;y) g(y)))

Example

c
 GDM

a ce
z

x

c

c’ b

f

+

*

+

+

y

� Assume vx is bound to OR3(c0; b; e).

� Don't care set includes x� (c0 + b+ e).

� Consider fj = x(a+ c) with CDC = x0c0.

� No simpli�cation. Mapping into AOI gate.

� Matching with DC. Mapping into MUX gate.

Example

c
 GDM

x

a

c

cx

ax

x’c’

cx

c’a

Example

c
 GDM

j

c’ be

a c

c’b e

j

a

c
x x

(a) (b)

Extended matching

c
 GDM

� Augment pattern function with mux function.

{ Each cell input can be routed to any

cluster input (or voltage rail).

{ Input polarity can be changed.

{ Cell and cluster may di�er input size.

� De�ne composite function G(x;c):

{ Pin assignment is determining c.

� Matching formula: M(c) = 8x [G(x;c) � f(x)]

Example

c
 GDM

y

y

y

1

2

3

g

y

y

y

1

2

3

C0 C1C2

M1

M2

M3

x 1
x2
x 3

Gg

C C C C C C3 4 5 6 7 8

� g = y1+ y2 y03

� y1(c;x) = (c0c1x1+ c0c
0
1x2+ c00c1x3)� c2

� G= y1(c;x) + y2(c;x) y3(c;x)
0

Extended matching modeling

c
 GDM

� Model composite functions by ROBDDs.

{ Assume: n-input cluster and m-input

cell.

{ For each cell input:

� dlog2 ne variables for pin permutation.

� One variable for input polarity.

{ Total size of c: m(dlog2 ne+1).

� A match exists if there is at least one value

of c satisfyingM(c) = 8x [G(x;c) � f(x)].

Example

c
 GDM

&

 z

w

f

&

x

y

z

w

a

b

G
1

0

1

0

c

d

� g = x0y, f = wz0

� G(a; b; c; d; w; z) = (c� (za+ wa0))0(d� (zb+ wb0))

� f�G = (wz0)�((c� (za+ wa0))0(d� (zb+ wb0)))

� M(a; b; c; d) = ab0c0d0 + a0bcd

Extended matching

c
 GDM

� Captures implicitly all possible matches.

� No extra burden when exploiting don't care

sets.

{ M(c) = 8x [G(x;c) � f(x) + fDC(x)]

� EÆcient BDD-based representation.

� Extensions to support multiple-output matching

Summary

c
 GDM

� Library binding is very important.

� Rule-based approach:

{ General, sometimes ineÆcient.

� Algorithmic approach:

{ Pattern-based: fast, but limited.

{ Boolean: more general and eÆcient.

