FINITE-STATE MACHINE OPTIMIZATION

© Giovanni De Micheli

Stanford University

• Modeling synchronous circuits: - State-based models. - Structural models.

- State-based optimization methods:
 - State minimization.
 - State encoding.

Synchronous Logic Circuits

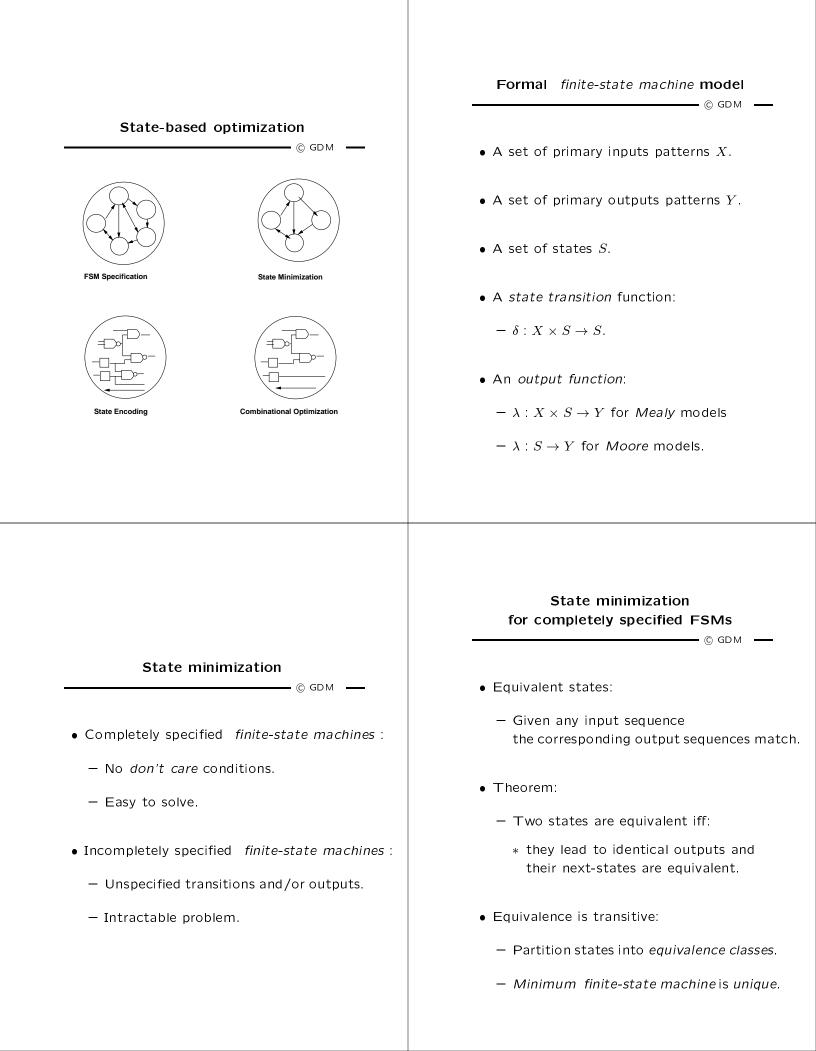
— © GDM —

- Interconnection of:
 - Combinational logic gates.
 - Synchronous delay elements:
 - * E-T or M-S registers.
- Assumptions:
 - No direct combinational feedback.
 - Single-phase clocking.

Modeling synchronous circuits

- © GDM -

- State-based model:
 - Model circuits as *finite-state machines*.
 - Represent by state tables/diagrams.
 - Apply exact/heuristic algorithms for:
 - * State minimization.
 - * State encoding.
- Structural models:
 - Represent circuit by synchronous logic network.
 - Apply:
 - * Retiming.
 - * Logic transformations.



Example

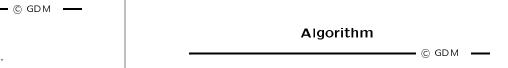
🗕 © GDM 🗕

INPUT	STATE	N-STATE	OUTPUT
0	<i>s</i> ₁	<i>s</i> 3	1
1	s_1	<i>s</i> 5	1
0	^s 2	<i>s</i> 3	1
1	^s 2	<i>s</i> 5	1
0	<i>s</i> 3	^s 2	0
1	<i>s</i> 3	s_1	1
0	^s 4	⁸ 4	0
1	^s 4	^{\$5}	1
0	<i>s</i> 5	<i>s</i> 4	1
1	<i>s</i> 5	<i>s</i> ₁	0

- © GDM 0/1 0/0 3 1/1 0/1 0/0 1/0 1/1 1/1 0/11/1 5 2

Algorithm

- Stepwise partition refinement.
- Initially:
 - All states in the same partition block.
- Then:
 - Refine partition blocks.
- At convergence:
 - Blocks identify equivalent states.



- Π_1 = States belong to the same block when outputs are the same for any input.
- While further splitting is possible:
 - $\Pi_{k+1} =$ States belong to the same block if they were previously in the same block and their next-states are in the same block of Π_k for any input.

Example

Example

— © GDM —

• $\Pi_1 = \{\{s_1, s_2\}, \{s_3, s_4\}, \{s_5\}\}.$

- $\Pi_2 = \{\{s_1, s_2\}, \{s_3\}, \{s_4\}, \{s_5\}\}.$
- $\Pi_2 =$ is a partition into equivalence classes:
 - States $\{s_1, s_2\}$ are equivalent.

	Example	
minimal	finite-state machine	
	© GDM	-

INPUT	STATE	N-STATE	OUTPUT
0	s ₁₂	<i>s</i> 3	1
1	^s 12	^s 5	1
0	<i>s</i> 3	s ₁₂	0
1	<i>s</i> 3	s ₁₂	1
0	<i>s</i> 4	<i>s</i> 4	0
1	<i>s</i> 4	<i>s</i> 5	1
0	<i>s</i> 5	<i>s</i> 4	1
1	<i>s</i> 5	s ₁₂	0



- Computational complexity
 - © GDM -
- Polynomially-bound algorithm.
- There can be at most |S| partition refinements.
- Each refinement requires considering each state:
 - Complexity $O(|S|^2)$.
- Actual time may depend upon:
 - Data-structures.
 - Implementation details.

State minimization for incompletely specified FSMs

_____ © GDM ____

- Applicable input sequences:
 - All transitions are specified.
- Compatible states:
 - Given any applicable input sequence the corresponding output sequences match.
- Theorem:
 - Two states are compatible iff:
 - \ast they lead to identical outputs
 - \cdot (when both are specified)
 - $\ast\,$ and their next-states are compatible
 - \cdot (when both are specified).

State minimization for incompletely specified FSMs

_____ © GDM __

- Compatibility is not an *equivalency* relation.
- Minimum finite-state machine is not unique.
- Implication relations make problem intractable.

Example

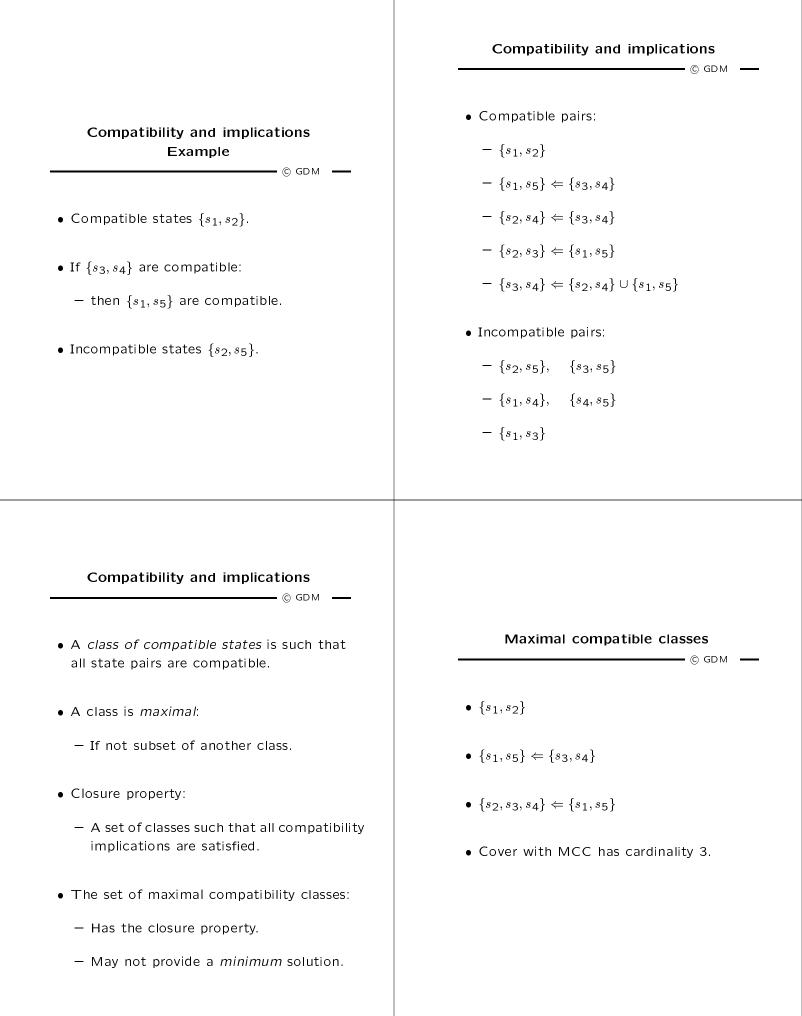
— © GDM —

INPUT	STATE	N-STATE	OUTPUT
0	<i>s</i> ₁	<i>s</i> 3	1
1	s_1	<i>s</i> 5	*
0	<i>s</i> 2	<i>s</i> 3	*
1	<i>s</i> ₂	<i>s</i> 5	1
0	<i>s</i> 3	^s 2	0
1	<i>s</i> 3	s_1	1
0	<i>s</i> 4	<i>s</i> 4	0
1	<i>s</i> 4	<i>s</i> 5	1
0	<i>s</i> 5	<i>s</i> 4	1
1	<i>s</i> 5	<i>s</i> ₁	0

Trivial method for the sake of illustration

_____ © GDM ____

- Consider all the possible don't care assignments
 - -n don't care imply
 - * 2ⁿ completely specified FSMs.
 - $* 2^n$ solutions.
- Example:
 - Replace * by 1.
 - * $\Pi = \{\{s_1, s_2\}, \{s_3\}, \{s_4\}, \{s_5\}\}.$
 - Replace * by 0.
 - * $\Pi = \{\{s_1, s_5\}, \{s_2, s_3, s_4\}\}.$



Formulation of the state minimization problem

___ © GDM ____

- A class is prime, if not subset of another class implying the same set or a subset of classes.
- Compute the prime compatibility classes.
- Select a minimum number of PCC such that:
 - all states are covered.
 - all implications are satisfied.
- Binate covering problem.

Prime compatible classes

— © GDM —

- $\{s_1, s_2\}$
- $\{s_1, s_5\} \Leftarrow \{s_3, s_4\}$
- $\{s_2, s_3, s_4\} \leftarrow \{s_1, s_5\}$
- Minimum cover: $\{\{s_1, s_5\}, \{s_2, s_3, s_4\}\}$.
- Minimum cover has cardinality 2.

Heuristic algorithms

— © GDM —

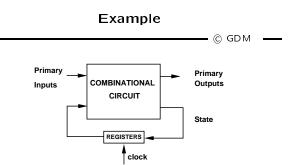
- Approximate the covering problem.
 - Preserve closure property.
 - Sacrifice minimality.
- Consider all maximal compatibility classes.
 - May not yield minimum.

- Determine a binary encoding of the states: - that optimize machine implementation: * area.
 - * cycle-time.
- Modeling:
 - Two-level circuits.
 - Multiple-level circuits.

Two-level circuit models	State encoding for two-level models
• Sum of product representation.	© GDM
– PLA implementation.	• Symbolic minimization of state table.
• Area:	 Constrained encoding problems.
– # of products \times # I/Os.	 Exact and heuristic methods.
• Delay:	• Applicable to large <i>finite-state machines</i> .
- Twice # of products $plus$ # I/Os.	
• Note:	
 # products of a <i>minimum</i> implementation. 	
- # I/Os depends on encoding length.	
Symbolic minimization	State encoding of finite-state machines

- Extension of two-level logic optimization.
- Reduce the number of rows of a table, that can have symbolic fields.
- Reduction exploits:
 - Combination of input symbols in the same field.
 - Covering of output symbols.

- Given a (minimum) state table of a *finite-state* machine :
 - $-\,$ find a consistent encoding of the states
 - $\ast\,$ that preserves the cover minimality
 - \ast with minimum number of bits.



INPUT	P-STATE	N-STATE	OUTPUT
0	s_1	⁸ 3	0
1	s_1	^s 3	0
0	^s 2	^s 3	0
1	^s 2	s_1	1
0	<i>s</i> 3	⁸ 5	0
1	<i>s</i> 3	<i>8</i> 4	1
0	<i>s</i> 4	^s 2	1
1	<i>s</i> 4	<i>s</i> 3	0
0	<i>s</i> 5	^s 2	1
1	^{\$} 5	^{\$} 5	0

Example

- © GDM -

• Minimum symbolic cover:

*	$s_{1}s_{2}s_{4}$	s_3	0
1	^s 2	s_1	1
0	<i>s</i> 4 <i>s</i> 5	s_2	1
1	s_3	s_4	1

- Covering constraints:
 - $-s_1$ and s_2 cover s_3
 - $-\ s_5$ is covered by all other states.
- Encoding constraint matrices:

							ΓΟ	0	1	0	1 .	1
	[1	1	0	1	01		0	0	1	0	1	
Α =		T	0	1	1	в =	0	0	0	0	1	
	[U	0	0	T	Ţ	В =	0	0	0	0	1	
							0	0	0	0	0	

Example

_____ © GDM ____

• Encoding matrix (one row per state):

$$\mathbf{E} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

• Encoded cover of combinational component:

*	1**	001	0
1	101	111	1
0	*00	101	1
1	001	100	1

- Multiple-level circuit models
 - © GDM —
- Logic network representation.
 - Logic gate interconnection.
- Area:
 - # of literals.
- Delay:
 - Critical path length.
- Note
 - # literals and CP in a *minimum* network.

State encoding for multiple-level models

• Cube-extraction heuristics [Mustang-Devadas].

_____ © GDM ____

- Rationale:
 - When two (or more) states have a transition to the same next-state:
 - * Keep the distance of their encoding short.
 - * Extract a large common cube.
- Exploit first stage of logic.
- Works fine because most FSM logic is shallow.

Example

____ © GDM ____

- $s_1 \rightarrow s_3$ with input i.
- $s_2 \rightarrow s_3$ with input i'.
- Encoding:
 - $s_1 \rightarrow 000 = a'b'c'.$
 - $s_2 \rightarrow 001 = a'b'c.$
- Transition:
 - ia'b'c' + i'a'b'c = a'b'(ic + i'c')
 - 6 literals instead of 8.

Algorithm

— © GDM —

- Examine all state pairs:
 - Complete graph with |V| = |S|.
- Add weight on edges:
 - Model desired code proximity.
- Embed graph in the Boolean space.

- Difficulties
- The number of *occurrences* of common factors depends on the next-state encoding.
- The extraction of common cubes interact with each other.

Algorithm implementation

_____ © gdm ___

- Fanout-oriented algorithm:
 - Consider present states and outputs.
 - Maximize the size of the most frequent common cubes.
- Fanin-oriented algorithm:
 - Consider next states and inputs.
 - Maximize the frequency of the largest common cubes.

Finite-state machine decomposition

- © GDM •

- Classic problem.
 - Based on partition theory.
 - Recently done at symbolic level.
- Different topologies:
 - Cascade, parallel, general.
- Recent heuristic algorithms:
 - Factorization [Devadas].

