FINITE-STATE MACHINE
OPTIMIZATION

© Giovanni De Micheli

Stanford University

Outline

© GDM ==

e Modeling synchronous circuits:
— State-based models.

— Structural models.

e State-based optimization methods:
— State minimization.

— State encoding.

Synchronous Logic Circuits
© GDM =—

e Interconnection of:
— Combinational logic gates.

— Synchronous delay elements:

* E-T or M-S registers.

e Assumptions:
— No direct combinational feedback.

— Single-phase clocking.

Modeling synchronous circuits

© GDM ==

e State-based model:
— Model circuits as finite-state machines.
— Represent by state tables/diagrams.

— Apply exact/heuristic algorithms for:
* State minimization.

* State encoding.

e Structural models:
— Represent circuit by synchronous logic network.

— Apply:
* Retiming.

% Logic transformations.

State-based optimization
© GDM ==

FSM Specification State Minimization

State Encoding Combinational Optimization

Formal finite-state machine model

© GDM ==

A set of primary inputs patterns X.

e A set of primary outputs patterns Y.

A set of states S.

e A state transition function:

—9: X xS—6S.

An output function:
— A: X xS —=Y for Mealy models

— A: S =Y for Moore models.

State minimization

© GDM ==

e Completely specified finite-state machines :
— No don't care conditions.

— Easy to solve.

e Incompletely specified finite-state machines

— Unspecified transitions and/or outputs.

— Intractable problem.

State minimization
for completely specified FSMs

© GDM ==

e Equivalent states:
— Given any input sequence
the corresponding output sequences match.
e Theorem:

— Two states are equivalent iff:

* they lead to identical outputs and
their next-states are equivalent.

e Equivalence is transitive:
— Partition states into equivalence classes.

— Minimum finite-state machineis unique.

Initially:

Stepwise partition refinement.

— All states in the same partition block.

e T hen:

— Refine partition blocks.

e At convergence:

— Blocks identify equivalent states.

Example Example
© GDM == © GDM ==
INPUT | STATE | N-STATE | OUTPUT
0 S1 s3 1
1 s1 S5 1
0 5o 53 1
1 82 S5 1
0 s3 5o 0
1 $3 S1 1
0 S4 sS4 0
1 S4 S5 1
0 S5 sS4 1
1 S5 s1 0
Algorithm
© GDM =—

Algorithm

© GDM ==

e /I, = States belong to the same block
when outputs are the same for any input.

e While further splitting is possible:

— I} 1 = States belong to the same block
if they were previously in the same block
and their next-states are in the same
block of II;, for any input.

Example

o 117 = {{s1,s2},{s3,54},{ss}}

o Il = {{51582}7{83}7{54}7{55}}'

e JI> = is a partition into equivalence classes:

© GDM

— States {s1,s2} are equivalent.

Example
minimal finite-state machine

© GDM ==

INPUT | STATE | N-STATE | OUTPUT
S12 s3 1
512 S5 1
83 812 0
s3 512 1
S4 sS4 0
Sq S5 1
S5 S4 1
S5 812 0

HFOFrRORFRrORrRO

Example

0/1

© GDM ==

11

0/0

Computational complexity

© GDM =—

Polynomially-bound algorithm.

There can be at most |S| partition
refinements.

Each refinement requires considering each
state:

— Complexity O(|S|?).

Actual time may depend upon:
— Data-structures.

— Implementation details.

State minimization
for incompletely specified FSMs

© GDM ==

e Applicable input sequences:

— All transitions are specified.

e Compatible states:

— Given any applicable input sequence
the corresponding output sequences match.

e T heorem:

— Two states are compatible iff:
* they lead to identical outputs
- (when both are specified)

* and their next-states are compatible

- (when both are specified).

State minimization
for incompletely specified FSMs

© GDM ==

e Compatibility is not an equivalency
relation.

e Minimum finite-state machineis not unique.

e Implication relations make problem intractable.

Example

© GDM ==

INPUT | STATE | N-STATE | OUTPUT
0 S1 s3 1
1 s1 s5 *
0 s2 53 *
1 82 S5 1
0 s3 5o 0
1 $3 S1 1
0 S4 sS4 0
1 S4 S5 1
0 S5 sS4 1
1 S5 s1 0

Trivial method
for the sake of illustration

© GDM ==

e Consider all the possible don't care assignment

— n don’'t care imply

* 2™ completely specified FSMs.

* 2™ solutions.

e Example:
— Replace * by 1.
* IT = {{s1,s2},{s3}, {sa},{ss}}.
— Replace * by 0.

x [T = {{s1,s5},{s2,53,54}}

Compatibility and implications
Example

e Compatible states {s1,s2}.

o If {s3,s4} are compatible:

— then {s1,s5} are compatible.

e Incompatible states {sp, s5}.

© GDM ==

Compatibility and implications

e Compatible pairs:
— {s1,s2}
— {s1,s5} <= {s3,4}
— {s2,54} <= {s3,4}
— {s2,s3} < {51,585}

— {83,54} < {52,584} U {s1,55}

e Incompatible pairs:
- {52735}7 {83735}
- {51734}7 {84735}

- {Sla 83}

Compatibility and implications

e A class of compatible states is such that
all state pairs are compatible.

e A class is maximal.:

— If not subset of another class.

e Closure property:

— A set of classes such that all compatibility

implications are satisfied.

e The set of maximal compatibility classes:
— Has the closure property.

— May not provide a minimum solution.

© GDM ==

Maximal compatible classes

{517 52}

{s1,85} <= {53,854}

{527 83, 84} <~ {817 55}

Cover with MCC has cardinality 3.

© GDM ==

© GDM ==

Formulation of the state minimization
problem

© GDM ==

A class is prime, if not subset of another
class implying the same set or a subset of
classes.

e Compute the prime compatibility classes.

Select a minimum number of PCC such
that:

— all states are covered.

— all implications are satisfied.

e Binate covering problem.

Prime compatible classes

© GDM ==

{s1,s2}

{s1,85} < {53,854}

{52,83,84} < {51,585}

Minimum cover: {{s1,ss},{s2,53,54}}.

Minimum cover has cardinality 2.

Heuristic algorithms

© GDM ==

e Approximate the covering problem.
— Preserve closure property.

— Sacrifice minimality.

e Consider all maximal compatibility classes.

— May not yield minimum.

State encoding

© GDM ==

e Determine a binary encoding of the states:

— that optimize machine implementation:

* area.

* cycle-time.

e Modeling:
— Two-level circuits.

— Multiple-level circuits.

Two-level circuit models

© GDM ==

e Sum of product representation.

— PLA implementation.

e Area:

— # of products x # I/Os.

e Delay:

— Twice # of products plus # 1/Os.

e Note:
— # products of a minimum implementation.

— # I/Os depends on encoding length.

State encoding
for two-level models

© GDM ==

e Symbolic minimization of state table.

e Constrained encoding problems.

— Exact and heuristic methods.

e Applicable to large finite-state machines .

Symbolic minimization

© GDM ==

e Extension of two-level logic optimization.

e Reduce the number of rows of a table,
that can have symbolic fields.

e Reduction exploits:

— Combination of input symbols in the
same field.

— Covering of output symbols.

State encoding of finite-state machines

© GDM ==

e Given a (minimum) state table of a finite-state
machine :

— find a consistent encoding of the states

* that preserves the cover minimality

* With minimum number of bits.

Example
© GDM =
Primary . . Primary
Inputs COMBINATIONAL Outputs

CIRCUIT

State
[—

?clock

Example

© GDM =—

e Minimum symbolic cover:

* s18984 s3 O
1 82 81 1
0 s4s5 sp 1
1 s3 S4 1

e Covering constraints:

INPUT | P-STATE | N-STATE | OUTPUT
0 51 3 0 — s1 and sp cover s3
1 S1 S3 0 i
0 P 3 0 — sg is covered by all other states.
1 82 S1 1
0 83 S5 0 e Encoding constraint matrices:
1 $3 sS4 1
0 54 52 1 00101
11010
1 sS4 s3 0 A=|0001 1 B=|000O01
0 S5 $2 1 0 00O01
1 s5 s5 0 0 00O0DO
Multiple-level circuit models
© GDM =
Example
© GDM =

e Encoding matrix (one row per state):

m

|
OrOKRKR
oNeoNeoNeN
OO R KK

e Encoded cover of combinational component:

* 1*%* 001 O
1 101 111 1
0 *00 101 1
1 001 100 1

e [ogic network representation.

— Logic gate interconnection.

e Area:

— # of literals.

e Delay:

— Critical path length.

e Note

— # literals and CP in a minimum network.

State encoding
for multiple-level models

© GDM ==

e Cube-extraction heuristics [Mustang-Devadas].

e Rationale:

— When two (or more) states have a
transition to the same next-state:

x Keep the distance of their encoding
short.

* Extract a large common cube.

e Exploit first stage of logic.

e Works fine because most FSM logic is
shallow.

Example

© GDM ==

e 5-state FSM (3-bits).
— s1 — s3 with input «.

— 85 — s3 With input .

e Encoding:
— 51 — 000 =da't'(.

— 55 — 001 = d'Ve.

e Transition:
— ia'b/'d +i'a'bc = o'V (ic + i)

— 6 literals instead of 8.

Algorithm

© GDM ==

e Examine all state pairs:

— Complete graph with |V]| =|S|.

e Add weight on edges:

— Model desired code proximity.

e Embed graph in the Boolean space.

Difficulties

© GDM ==

e The number of occurrences of common
factors depends on the next-state encoding.

e The extraction of common cubes interact
with each other.

Algorithm implementation

© GDM =—

e Fanout-oriented algorithm:
— Consider present states and outputs.
— Maximize the size of the most frequent
common cubes.
e Fanin-oriented algorithm:
— Consider next states and inputs.

— Maximize the frequency of the largest
common cubes.

Finite-state machine decomposition

© GDM ==

e Classic problem.
— Based on partition theory.

— Recently done at symbolic level.

e Different topologies:

— Cascade, parallel, general.

e Recent heuristic algorithms:

— Factorization [Devadas].

Example

© GDM ==

COMB. CIRC.

REG
(@)

"—> [[
COMB. CIRC COMB. CIRC.

REG j REG
- -

COMB. CIRC COMB. CIRC.

REG

(b) (c)

COMB. CIRC COMB. CIRC.

REG j REG

(d)

Summary

© GDM ==

e Finite-state machine optimization is
commonly used.
— Large body of research.

e State reduction/encoding correlates well
to area minimization.

e Performance-oriented methods are still
being researched.

