
FINITE-STATE MACHINE

OPTIMIZATION

cGiovanni De Micheli

Stanford University

Outline

c GDM

� Modeling synchronous circuits:

{ State-based models.

{ Structural models.

� State-based optimization methods:

{ State minimization.

{ State encoding.

Synchronous Logic Circuits

c GDM

� Interconnection of:

{ Combinational logic gates.

{ Synchronous delay elements:

� E-T or M-S registers.

� Assumptions:

{ No direct combinational feedback.

{ Single-phase clocking.

Modeling synchronous circuits

c GDM

� State-based model:

{ Model circuits as �nite-state machines.

{ Represent by state tables/diagrams.

{ Apply exact/heuristic algorithms for:

� State minimization.

� State encoding.

� Structural models:

{ Represent circuit by synchronous logic network.

{ Apply:

� Retiming.

� Logic transformations.

State-based optimization

c GDM

FSM Specification State Minimization

State Encoding Combinational Optimization

Formal �nite-state machine model

c GDM

� A set of primary inputs patterns X.

� A set of primary outputs patterns Y .

� A set of states S.

� A state transition function:

{ Æ : X � S ! S.

� An output function:

{ � : X � S ! Y for Mealy models

{ � : S ! Y for Moore models.

State minimization

c GDM

� Completely speci�ed �nite-state machines :

{ No don't care conditions.

{ Easy to solve.

� Incompletely speci�ed �nite-state machines :

{ Unspeci�ed transitions and/or outputs.

{ Intractable problem.

State minimization

for completely speci�ed FSMs

c GDM

� Equivalent states:

{ Given any input sequence

the corresponding output sequences match.

� Theorem:

{ Two states are equivalent i�:

� they lead to identical outputs and

their next-states are equivalent.

� Equivalence is transitive:

{ Partition states into equivalence classes.

{ Minimum �nite-state machine is unique.

Example

c GDM

INPUT STATE N-STATE OUTPUT

0 s1 s3 1
1 s1 s5 1
0 s2 s3 1
1 s2 s5 1
0 s3 s2 0
1 s3 s1 1
0 s4 s4 0
1 s4 s5 1
0 s5 s4 1
1 s5 s1 0

Example

c GDM

1

2

3 4

5

0/1

1/10/1

1/1

0/0

1/1

0/0

1/1

0/1

1/0

Algorithm

c GDM

� Stepwise partition re�nement.

� Initially:

{ All states in the same partition block.

� Then:

{ Re�ne partition blocks.

� At convergence:

{ Blocks identify equivalent states.

Algorithm

c GDM

� �1 = States belong to the same block

when outputs are the same for any input.

� While further splitting is possible:

{ �k+1 = States belong to the same block

if they were previously in the same block

and their next-states are in the same

block of �k for any input.

Example

c GDM

� �1 = ffs1; s2g; fs3; s4g; fs5gg:

� �2 = ffs1; s2g; fs3g; fs4g; fs5gg:

� �2 = is a partition into equivalence classes:

{ States fs1; s2g are equivalent.

Example

minimal �nite-state machine

c GDM

INPUT STATE N-STATE OUTPUT

0 s12 s3 1
1 s12 s5 1
0 s3 s12 0
1 s3 s12 1
0 s4 s4 0
1 s4 s5 1
0 s5 s4 1
1 s5 s12 0

Example

c GDM

3 4

5

0/1

1/10/1

1/1

0/0

1/1

0/0

1/10/11/0

12

Computational complexity

c GDM

� Polynomially-bound algorithm.

� There can be at most jSj partition

re�nements.

� Each re�nement requires considering each

state:

{ Complexity O(jSj2).

� Actual time may depend upon:

{ Data-structures.

{ Implementation details.

State minimization

for incompletely speci�ed FSMs

c GDM

� Applicable input sequences:

{ All transitions are speci�ed.

� Compatible states:

{ Given any applicable input sequence

the corresponding output sequences match.

� Theorem:

{ Two states are compatible i�:

� they lead to identical outputs

� (when both are speci�ed)

� and their next-states are compatible

� (when both are speci�ed).

State minimization

for incompletely speci�ed FSMs

c GDM

� Compatibility is not an equivalency

relation.

� Minimum �nite-state machine is not unique.

� Implication relations make problem intractable.

Example

c GDM

INPUT STATE N-STATE OUTPUT

0 s1 s3 1
1 s1 s5 *
0 s2 s3 *
1 s2 s5 1
0 s3 s2 0
1 s3 s1 1
0 s4 s4 0
1 s4 s5 1
0 s5 s4 1
1 s5 s1 0

Trivial method

for the sake of illustration

c GDM

� Consider all the possible don't care assignments

{ n don't care imply

� 2n completely speci�ed FSMs.

� 2n solutions.

� Example:

{ Replace * by 1.

� � = ffs1; s2g; fs3g; fs4g; fs5gg:

{ Replace * by 0.

� � = ffs1; s5g; fs2; s3; s4gg:

Compatibility and implications

Example

c GDM

� Compatible states fs1; s2g.

� If fs3; s4g are compatible:

{ then fs1; s5g are compatible.

� Incompatible states fs2; s5g.

Compatibility and implications

c GDM

� Compatible pairs:

{ fs1; s2g

{ fs1; s5g (fs3; s4g

{ fs2; s4g (fs3; s4g

{ fs2; s3g (fs1; s5g

{ fs3; s4g (fs2; s4g [fs1; s5g

� Incompatible pairs:

{ fs2; s5g; fs3; s5g

{ fs1; s4g; fs4; s5g

{ fs1; s3g

Compatibility and implications

c GDM

� A class of compatible states is such that

all state pairs are compatible.

� A class is maximal:

{ If not subset of another class.

� Closure property:

{ A set of classes such that all compatibility

implications are satis�ed.

� The set of maximal compatibility classes:

{ Has the closure property.

{ May not provide a minimum solution.

Maximal compatible classes

c GDM

� fs1; s2g

� fs1; s5g (fs3; s4g

� fs2; s3; s4g (fs1; s5g

� Cover with MCC has cardinality 3.

Formulation of the state minimization

problem

c GDM

� A class is prime, if not subset of another

class implying the same set or a subset of

classes.

� Compute the prime compatibility classes.

� Select a minimum number of PCC such

that:

{ all states are covered.

{ all implications are satis�ed.

� Binate covering problem.

Prime compatible classes

c GDM

� fs1; s2g

� fs1; s5g (fs3; s4g

� fs2; s3; s4g (fs1; s5g

� Minimum cover: ffs1; s5g; fs2; s3; s4gg.

� Minimum cover has cardinality 2.

Heuristic algorithms

c GDM

� Approximate the covering problem.

{ Preserve closure property.

{ Sacri�ce minimality.

� Consider all maximal compatibility classes.

{ May not yield minimum.

State encoding

c GDM

� Determine a binary encoding of the states:

{ that optimize machine implementation:

� area.

� cycle-time.

� Modeling:

{ Two-level circuits.

{ Multiple-level circuits.

Two-level circuit models

c GDM

� Sum of product representation.

{ PLA implementation.

� Area:

{ # of products � # I/Os.

� Delay:

{ Twice # of products plus # I/Os.

� Note:

{ # products of a minimum implementation.

{ # I/Os depends on encoding length.

State encoding

for two-level models

c GDM

� Symbolic minimization of state table.

� Constrained encoding problems.

{ Exact and heuristic methods.

� Applicable to large �nite-state machines .

Symbolic minimization

c GDM

� Extension of two-level logic optimization.

� Reduce the number of rows of a table,

that can have symbolic �elds.

� Reduction exploits:

{ Combination of input symbols in the

same �eld.

{ Covering of output symbols.

State encoding of �nite-state machines

c GDM

� Given a (minimum) state table of a �nite-state

machine :

{ �nd a consistent encoding of the states

� that preserves the cover minimality

� with minimum number of bits.

Example

c GDM

COMBINATIONAL

Primary

State

Primary

Inputs Outputs

clock

CIRCUIT

REGISTERS

INPUT P-STATE N-STATE OUTPUT

0 s1 s3 0
1 s1 s3 0
0 s2 s3 0
1 s2 s1 1
0 s3 s5 0
1 s3 s4 1
0 s4 s2 1
1 s4 s3 0
0 s5 s2 1
1 s5 s5 0

Example

c GDM

� Minimum symbolic cover:

* s1s2s4 s3 0
1 s2 s1 1
0 s4s5 s2 1
1 s3 s4 1

� Covering constraints:

{ s1 and s2 cover s3

{ s5 is covered by all other states.

� Encoding constraint matrices:

A =

�
1 1 0 1 0
0 0 0 1 1

�
B =

2
6664
0 0 1 0 1
0 0 1 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0

3
7775

Example

c GDM

� Encoding matrix (one row per state):

E =

2
6666664

1 1 1
1 0 1
0 0 1
1 0 0
0 0 0

3
7777775

� Encoded cover of combinational component:

* 1** 001 0
1 101 111 1
0 *00 101 1
1 001 100 1

Multiple-level circuit models

c GDM

� Logic network representation.

{ Logic gate interconnection.

� Area:

{ # of literals.

� Delay:

{ Critical path length.

� Note

{ # literals and CP in a minimum network.

State encoding

for multiple-level models

c GDM

� Cube-extraction heuristics [Mustang-Devadas].

� Rationale:

{ When two (or more) states have a

transition to the same next-state:

� Keep the distance of their encoding

short.

� Extract a large common cube.

� Exploit �rst stage of logic.

� Works �ne because most FSM logic is

shallow.

Example

c GDM

� 5-state FSM (3-bits).

{ s1 ! s3 with input i.

{ s2 ! s3 with input i0.

� Encoding:

{ s1 ! 000 = a0b0c0.

{ s2 ! 001 = a0b0c.

� Transition:

{ ia0b0c0+ i0a0b0c = a0b0(ic+ i0c0)

{ 6 literals instead of 8.

Algorithm

c GDM

� Examine all state pairs:

{ Complete graph with jV j= jSj.

� Add weight on edges:

{ Model desired code proximity.

� Embed graph in the Boolean space.

DiÆculties

c GDM

� The number of occurrences of common

factors depends on the next-state encoding.

� The extraction of common cubes interact

with each other.

Algorithm implementation

c GDM

� Fanout-oriented algorithm:

{ Consider present states and outputs.

{ Maximize the size of the most frequent

common cubes.

� Fanin-oriented algorithm:

{ Consider next states and inputs.

{ Maximize the frequency of the largest

common cubes.

Finite-state machine decomposition

c GDM

� Classic problem.

{ Based on partition theory.

{ Recently done at symbolic level.

� Di�erent topologies:

{ Cascade, parallel, general.

� Recent heuristic algorithms:

{ Factorization [Devadas].

Example

c GDM

(b) (c)

(a)

(d)

REG

REG

REG

REG

REG

REG

REG

COMB. CIRC.

COMB. CIRC. COMB. CIRC.

COMB. CIRC. COMB. CIRC.

COMB. CIRC.COMB. CIRC.

Summary

c GDM

� Finite-state machine optimization is

commonly used.

{ Large body of research.

� State reduction/encoding correlates well

to area minimization.

� Performance-oriented methods are still

being researched.

