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Outline

c
 GDM

� Synthesis of pipelined circuits:

{ Scheduling.

{ Binding.

� Data-path synthesis.

� Control-unit synthesis.

High-level synthesis

of pipelined circuits

c
 GDM

� Pipeline circuits:

{ Concurrent execution of operations

on di�erent data sets.

{ Increase throughput:

� I/O data rate.

{ Preserve latency.

� Applicable to:

{ General purpose processors.

{ Digital signal processors.

Example

c
 GDM
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Synthesis of pipelined circuits

c
 GDM

� DSP applications:

{ Mainly data-path pipelining.

{ Few exceptions/interrupts.

{ Mature area.

� Microprocessors:

{ Advanced features:

� Stalls, 
ush, bypass, hazard avoidance.

{ Synthesis tools not ready yet.

Issues in synthesis of pipelined circuits

c
 GDM

� Partitioning:

{ Pipe-stage formation.

� Scheduling:

{ Source vertex of the sequencing graph

�red at constant rate.

� Sharing:

{ More concurrency.

{ Binding and scheduling are a�ected.

Scheduling of pipelined circuits

c
 GDM

� Scheduling of non-pipelined circuit

using pipelined resources.

� Scheduling of pipelined circuit

using non-pipelined resources.

{ Functional pipelining.

� Both problems can be modeled by ILP.

Scheduling for functional pipelining

c
 GDM

� Choose:

{ cycle-time.

{ data-introduction interval Æ0.

� Determine (area,latency) spectrum.

� Key fact:

{ Simultaneous operations at steps:

� l+ pÆ0

{ Reduced sharing.



Scheduling for functional pipelining

ILP model

c
 GDM
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� Used in conjunction with other constraints.

� Use regular ILP solvers.

Scheduling for functional pipelining

Heuristic algorithms

c
 GDM

� List scheduling:

{ Compute resource usage at each step.

{ Determine candidates.

� Force-directed scheduling.

{ Operation-type distribution:

� Account for overlapping.

Example

c
 GDM
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� Distribution graphs for multiplier and ALU.

Loop folding

c
 GDM

� Reduce execution delay of a loop.

� Pipeline operations inside a loop.

{ Overlap execution of operations.

{ Need a prologue and epilogue.

� Use pipeline scheduling for loop graph model.



Example

c
 GDM
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Resource sharing

for pipelined circuits

c
 GDM

� Scheduled graphs:

{ Determine compatibility (or con
ict) graphs.

� The lower the Æ0 (the higher the throughput):

{ The lower the compatibility.

Example: Æ0 = 2

c
 GDM
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Resource sharing

for pipelined circuits

c
 GDM

� Branching constructs:

{ Special care to avoid deadlocks.

� Twisted pairs:

{ Two mutually compatible operation pairs

with twisted dependencies.

� Sharing operations in twisted pairs

must be avoided.



Example

c
 GDM
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Data path synthesis

c
 GDM

� Resource binding.

� Connectivity synthesis:

{ Connection of resources to:

multiplexers busses and registers.

{ Control unit interface.

{ I/O ports.

� Physical data-path synthesis.

Example

c
 GDM
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Control synthesis

c
 GDM

� Synthesis of the control unit.

� Logic model:

{ Synchronous FSM.

� Physical implementation:

{ Microcode (ROM,PLA).

{ Hard-wired FSM.

{ Distributed FSM.



Control synthesis

c
 GDM

� Synthesize circuit that:

{ Executes scheduled operations.

{ Provides synchronization.

{ Supports:

� Iteration.

� Branching.

� Hierarchy.

� Interfaces.

� Assumption:

{ Synchronous implementation.

{ Control unit is a FSM (or connection

of FSMs).

Controlling scheduled operations

c
 GDM

� Simple model:

{ No branching, iteration, hierarchy.

{ No data-dependent delays.

� Implementation:

{ FSM-oriented design:

� Hardware: PLAs, gates, registers.

� One FSM state per schedule level.

{ Microcode-oriented design:

� Hardware: ROM, PLA, counter.

FSM-based implementation

c
 GDM

� Simple model:

{ next-state function: unconditional.

{ output function: activate operations.

� Extended model:

{ Branching and iteration:

� Conditional next-state function.

{ Hierarchy:

� Hierarchical FSM connection.

Example

c
 GDM
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Microcode implementation

c
 GDM

� Horizontal microcode:

{ One bit per activation signal.

{ One microcode word per schedule level.

{ Maximum performance.

{ Wide words.

� Vertical microcode:

{ Encode each resource activation signal.

{ Shorter words.

{ One (or more) words per schedule level.

Example of horizontal microcode

c
 GDM
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Counter Activation signals

Address Microwords

Reset

Example of vertical microcode

c
 GDM

Activation signals

Microwords

0 0 0 1
0 0 1 0
0 1 1 0 
1 0 0 0
1 0 1 0

0 0 1 1
0 1 1 1
1 0 0 1
1 0 1 1

0 1 0 0

0 1 0 1

Decoder

Microcode compaction problem

c
 GDM

� Partition ROM word into �elds.

� Encode signals in each �eld.

� Allow for a code for NOP.

� Activation signals in each �eld must not

be

concurrent.

� Problems:

{ Minimize number of �elds.

{ Minimize total ROM width.



Microcode optimization

c
 GDM

� Con
ict graph:

{ Concurrent operations.

{ Optimum vertex coloring

yields minimum number of �elds.

� Compatibility graph:

{ Non-concurrent operations.

{ Optimum clique partitioning

yields minimum number of �elds.

{ Minimum weighted clique partitioning

yields minimum number of bits.

Example

c
 GDM

�eld op code

A 1 01
A 3 10
A 4 11

B 2 1

C 6 01
C 7 10
C 5 11

D 8 01
D 9 10

E 10 01
E 11 10

Example

c
 GDM

Activation signals

Microwords

A B C D E

Microword format

1 1   0    0 0    0 0    0 0
0 0   0    1 1    0 0    0 0

0 1   1    0  1   0 1    0 1
1 0   0    1 0    1 0    1 0

D1 D2 D3 D4

1,3,4 2 6,7,5 8,9 10,11

Hierarchical control

c
 GDM

� Exploit the hierarchical structure of sequencing

graphs.

� One controller per entity.

� Interconnected �nite state machines.

� Handshake:

{ activate signals.

{ condition signals.

{ reset signals.



Example

c
 GDM
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Control synthesis for

unbounded-latency sequencing graphs

c
 GDM

� Data-dependent delay operations.

{ activate signals.

{ completion signals.

� Synchronization problem:

{ Wait on completion signals.

{ Wait on external synchronization.

� Several strategies.

{ Clustering.

{ Adaptive Control.

{ Relative Scheduling.

Summary

Control synthesis

c
 GDM

� Di�erent approaches.

� Implementations:

{ FSM, connection of FSMs or ROM.

� Techniques:

{ Bounded delays only:

� FSM { microcode.

{ Unbounded delays:

� Di�erent methods to provide synchronizatio


