BOOLEAN METHODS

© Giovanni De Micheli

Stanford University

Boolean methods

© GDM ==

e Exploit Boolean properties.

— Don't care conditions.

e Minimization of the local functions.

e Slower algorithms, better quality results.

External don’t care conditions

© GDM ==

e Controllability don’'t care set CDCy,:

— Input patterns never produced by the
environment at the network’s input.
e Observability don't care set ODCyt:
— Input patterns representing conditions
when an output is not observed by the
environment.

— Relative to each output.

— Vector notation used: ODCgy;.

Example

© GDM =—

NETWORK N1

e Inputs driven by a de-multiplexer.

e CDCyy, = zhahale) +r1va+riw3+ w1z +waws+wows +rses.

Il
=

e Outputs observed when { ii }

8 8

ODCout =

8

8
FNOTNSTEL AN

Example Internal don’t care conditions
overall external don’t care set © GDM —
© GDM =
o+ oot a3+ a4
/
Ty + 2+ 23+ T4
DC.;t = CDC;,+ODC,,: = /1+ + 3+ CDCin ODCout
CI}ﬁ_ i) r3 Tl .l L .
Ty + T2+ 3+ 71
SUBNETWORK
NETWORK
Internal don't care conditions
© GDM — Example
© GDM =

e Induced by the network structure.

e Controllability don’t care conditions:
— Patterns never produced at the inputs
of a subnetwork.
e Observability don’t care conditions:

— Patterns such that the outputs of a
subnetwork are not observed.

y = abx+a'’cx

e CDC of vy includes ab'z + a/2’.

e Minimize f, to obtain: fy = az + d'c.

Satisfiability don’t care conditions
© GDM ==

e Invariant of the network:

e SDC = Y a®fs
’U,’z:EVG

e Useful to compute controllability don’t cares .

CDC computation

© GDM =—

e Network traversal algorithm:
— Consider different cuts
moving from input to output.

e Initial CDC is CDCj,.

e Move cut forward.

— Consider SDC contributions of
predecessors.

— Remove unneded variables by consensus.

CDC computation

© GDM ==

CONTROLLABILITY(Gn(V,E) , CDCy,) {

c=vl

CDCCUt = CDCin;

foreach vertex vy € V in topological order {
C =CUuy;
CDCeyt = CDCoyt + fz ® x;
D ={v e C s.t. all dir. succ. of v are in C}
foreach vertex vy € D

CDCeyt = Cy(CDCcut);

cC=C - D,

b

CDCoyt = CDCeyt;

Example

X1 x2 X3 x4

(a) (b) ©

Example

© GDM —
Assume CDCi, = z}x),.

Select vertex wv,:
— Contribution to CDCyu: a @ (z2 ® x3).
— Drop variables D = {z3,z3} by consensus:

_ ! .0
— CDCeyt = x|z},

Select vertex vy:

— Contribution to CDCeu: b® (z1 + a).
* CDCeyt = xiz), +b® (x1 + a).

— Drop variable x; by consensus:
* CDCey = bla}, + ba.

CDCou = € = 2}.

CDC computation
by image computation

© GDM =—

e Network behavior at cut: f.

e CDC,.y,t is just the complement of the
image of (CDCy,)" with respect to f.

o CDC,yt is just the complement of the range
of f when CDC;,, = 0.

e Range can be computed recursively.

— Terminal case: scalar function.

* Range of y = f(x) is y+v' (any value)
unless f (or f!) is a tautology
and the range is y (or).

Example

o

O T

© GDM ==
RANGE VECTORS

={O—¢ o o

{>—e 0 1 1

range(f) = d range((b + ¢)|i=pe=1)+
+d' range((b + ¢)|d=be=0)

Whend=1,thenbc=1—b+c=1is TAUTOLOGY.

If I choose 1 as top entry in output vector:

— the bottom entry is also 1.
_ |1 1
7|71
When d = 0, then bc =0 — b+ ¢ = {0, 1}.

If I choose 0 as top entry in output vector:

— the bottom entry can be 0 or 1.

range(f) =de+d'(e+e') =de+d =d +e

Example

X1 x2 x3 x4

(@) (b) ©

f— {fl]:{ (z1+a)(za + a)]z{x1$4‘|‘a
f (z1+a) + (za+a) z1+2a+a

|

Example

© GDM ==

(@ (®)

d range(f2|(w1w4+(z):l) +
d/ range(f2|(11“+a):0)

d range(ml + Ta + a|(zlz4+a)=l) +

d range(w1 + x4 + al sz +a)=0)

de+d(e+¢)
e+d

o CDCout = (e +d') =de' = z12}.

d range(1) + d range(a’(z1 ® x4))

Perturbation method

© GDM ==

Modify network by adding an extra input 4.

Extra input can flip polarity of a signal x.

Replace local function fi by fa ®9.

Perturbed terminal behavior: f¥(§).

Example

© GDM ==

Observability don’t care conditions

© GDM ==

e Conditions under which a change in
polarity of a signal z is not perceived at
the outputs.

e Complement of the Boolean difference:

- 8f/8x = f|a}=1 ®f|a:=O-

e Equivalence of perturbed function: f#(0) @ f*(1)

Observability don’t care computation
© GDM =—

e Problem:

— Outputs are not expressed as function
of all variables.

— If network is flattened to obtain f,
it may explode in size.
e Requirement:
— Local rules for ODC computation.

— Network traversal.

Single-output network
with tree structure

© GDM ==

e Traverse network tree.

e At root:

— ODC,,; is given.

e At internal vertices:

— ODC, = (df,/0z) + ODC,

Example

© GDM ==

= b+ec
b = z1+a
c = x4+ as

x1 al a2 x4

Assume ODCyyt = ODCe = 0.

ODC, = (df./dc) = b.

e ODCyy = ODCy+ (0fy/021) = c+ a1.

General networks

ODCy = (9fe/0b) = (b +)p=18(b+)|p=0 = c.

© GDM ==

e Fanout reconvergence.
e For each vertex with two (or more) fanout
stems:

— The contribution of the ODC along the
stems cannot be added tout court.

— Interplay of different paths.

e More elaborate analysis.

Two-way fanout stem

© GDM ==

Compute ODC sets associated with edges.

Combine ODCs at vertex.

Formula derivation:

— Assume two equal perturbations on the
edges.

— ODC,; = f*1*2(1,1) @ f*1-%2(0,0)

ODC formula derivation
© GDM ==

ODC, = f1"2(1,1) & f1¥2(0,0)
— fwl’xQ(l,l) =) fwlaxQ(o,O)

@ (F1°2(0,1) @ f*1°2(0,1))
= (fF172(1,1) @ f172(0,1))

3 (f*12(0,1) @ f*122(0,0))
= ODCgyls,=1 ® ODCg:|s5,=0
= ODCw,y|w2=w/ & ODC.:lzi=x
= ODCuyl,—py ® ODC,.

e Because x = x1 = x».

Multi-way stems
Theorem

© GDM ==
Let vz € V be any internal or input vertex.

Let {z;,: =1,2,...,p} be the edge vars
corresponding to {(z,y;) ; t=1,2,...,p}.

Let ODCyy, , ¢+ = 1,2,...,p the edge
ODCs.

S

Observability don’t care algorithm

© GDM ==

OBSERVABILITY(GR(V,E) , ODCou) {
foreach vertex v, € V in reverse topological order {
for (i =1 to p)
ODC,,, = (9f,/92)'1 + ODC,;
ODC, =&@"_,0DC,yci==a, =o'}

Example

i)
A
11

x1 x2 x3 x4

(a) (b)

oDC, = (Cl’) ;ODC, = (é) ;ODC, = (lz);) 1ODC, = (‘;)

_ [tz _ a'z!, + 1
ODC,, = <c+z1> - (a+4z4+m1)

_(V+za\ _ a'z’ + x4
ODCq. = (b+w4) = (a+3‘vl+z4)

_ — _ azx), + 1 = (do\+xa _
ODC, = ODC,|e=s®ODC0 = (a’ + x4+ z1) ® (a +a1+za)

_< T1T4)
T \z1taa

Transformations with don’t cares

© GDM ==

e Boolean simplification:
— Use standard minimizer (Espresso).

— Minimize the number of literals.

e Boolean substitution:

— Simplify a function by adding an extra
input.

— Equivalent to simplification
with global don’t care conditions.

Example
Boolean substitution

© GDM ==

e Substitute g = a+cd into f, = a+bed+ €
to get f, =a+bg +e.

e SDC set: ¢®(a+cd) = q¢a+q'cd+qa’(cd)’.

o Simplify f;, = a4+ bed + e with ¢'a + ¢’cd +
ga'(cd)' as don’t care .

e Simplification yields f, = a + bg + e.

e One literal less by changing the support
of fh'

Single-vertex optimization

© GDM ==

SIMPLIFY _SV(Gn(V,E)){
repeat {
vy = Selected vertex ;
Compute the local don’t care set DCy;
Optimize the function f; ;
tuntil (no more reduction is possible)

Optimization and perturbations
© GDM =

e Replace f; by gz.

e Perturbation 6; = fz @ gq.

e Condition for feasible replacement:

— Perturbation bounded by local don't care
set

- 5;2 Q DCe:ct + ODCI

— If not a primary input
consider also CDC set.

Example

© GDM =—

e NO external don'’t care set.

e Replace AND by wire: gz = a

e Analysis:
—0=fr®Dge = ab®a = ab.
—0ODCy =y =V 4.

— d=abl C DCy =¥ + ¢ = feasible!

Degrees of freedom

© GDM =—

e Fully represented by don’t care conditions:
— External don’t cares .
— Internal observability and controllability.
e Don’t cares represent an upper bound on
the perturbation.

e Approximations:

— Use smaller don’t care sets to speed-up
the computation.

Multiple-vertex optimization

© GDM ==

e Simplify more than one local function at

a time.

e Potentially better (more general) approach.

e Analysis:

— Multiple perturbations.

e Condition for feasible replacement:

— Upper and lower bounds on the
perturbation.

— Boolean relation model.

Example

e The two perturbations are related.

e Cannot change simultaneously:
— ab — a.

— ¢cb —c.

Multiple-vertex optimization
Boolean relation model
© GDM ==

I z

s
v
\

a b c T,y

0O 0 O0]{o00, 01,10}
0O 0 1]{00,01, 10}
0O 1 0]{o00, 01,10}
0 1 1]{o00,01,10}
1 0 0)|{o00,01, 10}
1 0 1)|{00,01, 10}
1 1 o) {o00,01, 10}
1 1 1 {11}

Multiple-vertex optimization
Boolean relation model

© GDM =—

e Compute Boolean relation:
— Flatten the network. Analyze patterns.

— Derive equivalence relation from ODCs.

e Use relation minimizer.

Multiple-vertex optimization
Boolean relation model

a b c | T,y
e Example of minimum function: 1 x x| 10
* 1 1

01

© GDM =—

SIMPLIFY _MVR(G.(V,E)){
repeat {
U = selected vertex subset;
foreach vertex v, € U
Compute OCDy;
Determine the equiv. classes of the Boolean relation
of the subnetwork induced by U;
Find an optimal function compatible with the relation
using a relation minimizer;
tuntil (no more reduction is possible);

Multiple-vertex optimization
compatible don't cares

© GDM ==

e Determine compatible don'’t cares :

— CODCs: subset of ODCs.

— Decouple dependencies.

— Reduced degrees of freedom.

e Using compatible ODCs, only upper bounds
on the perturbation need to be satisfied.

Example
two perturbations

© GDM ==

e First vertex:
— CODC equal to its ODC set.

— CODCyy = ODCy,.

e The second vertex:

— CODC smaller than its ODC to be
safe enough to allow transformations
permitted by the first ODC.

— CODCyy = Cay(0DCay)+0DCa,0DCY,

e Order dependence.

Example
first vertex vy

@ (b)

e CODCy =0DCy = o =b4+d

e ODCy =y =V +¢

Cy(¥) + vz =y'z = 4)ab = abd.

Example (2)

@ (b)

e Allowed perturbation:
— fy=bc—gy=c.

—dy=bcHec=bcCCODCy =V +d

e Disallowed perturbation:
— fe=ab— gz =a.

— s =abPa=ab £ CODCy = abc.

e The converse holds if vy is the first vertex.

Multiple-vertex optimization
compatible don’'t cares

© GDM ==

SIMPLIFY MV (Gn(V,E)){
repeat {
U = selected vertex subset;
foreach vertex vy € U
Compute COCD; and the corresponding
local don’t care subset DCy;
Optimize simultaneously the functions at U;
tuntil (no more reduction is possible);

Summary
Boolean methods

© GDM =—

e Boolean methods exploit don’t care sets
and simplification of logic representations.

e Don’t care set computation:

} — Controllability and observability.
e Single and multiple transformations.
Synthesis and testability
© GDM — Test for stuck-ats
© GDM =
e Testability:

— Ease of testing a circuit.

e Assumptions:
— Combinational circuit.

— Single or multiple stuck-at faults.

e Full testability:

— Possible to generate test set for all faults.

— Restrictive interpretation.

e Net y stuck-at 0.
— Input pattern that sets y to true.
— Observe output.

— Output of faulty circuit differs.

e Net y stuck-at 1.

— Same, but set y to false.

e Need controllability and observability.

Using testing methods for synthesis

© GDM —
Test sets
don’t care interpretation
© GDM — e Redundancy removal.
— Use TPG to search for untestable faults.
e Stuck-at 0 on net y.
— {tly(t) - ODCy(t) = 1}. e If stuck-at O on net y is untestable:
— Set y=0.
e Stuck-at 1 on net y.
— Propagate constant.
— {tly'(t) - ODCY(t) = 1}.
e If stuck-at 1 on y is untestable:
— Sety=1.
— Propagate constant.
Example Redundancy removal
© GDM = =— and perturbation analysis

©

© GDM ==

L
e Stuck-at O on y.
— y set to 0. Namely gz = fzly=o0-

— Perturbation:

* 0= fo @ faly=0 = y-0fx/0y.

e Perturbation is feasible & fault is untestable.

— No input vector t can make
y(t) - ODCy(t) true.

— No input vector can make
y(t) -ODCL(t) - 8fy/0y true.

x because ODCy = ODC; + (8f+/0y)".

Redundancy removal
and perturbation analysis

© GDM ==

Assume untestable stuck-at 0 fault.

y-ODC! - 9fs/dy C SDC.

Local don't care set:

— DCy D ODCy +y-ODCY - dfy/dy.

— DCy 20DCy +y- 8fw/8y-

Perturbation § = y-0f;/0y.

— Included in the local don't care set.

Synthesis for testability

© GDM ==

e Synthesize networks that are fully testable.
— Single stuck-at faults.

— Multiple stuck-at faults.

e Two-level forms.

e Multiple-level networks.

Two-level forms

e Full testability for single stuck-at faults:

— Prime and irredundant cover.

e Full testability for multiple stuck-at faults:

— Prime and irredundant cover when:

* Single-output function.
* No product term sharing.

* Each component is PIL.

Example
f=ab +bc+ac+ ab

© GDM ==

Multiple-level networks
Definitions

© GDM ==

e A logic network Gn(V, E) ,
with local functions in sum of product form.
e Prime and irredundant (PI):
— No literal nor implicant of any local
function can be dropped.
e Simultaneously prime and irredundant (SPI):

— No subset of literals and/or implicants
can be dropped.

Multiple-level networks
Theorems

© GDM ==

e A logic network is PI and only if:
— its AND-OR implementation is fully testable
for single stuck-at faults.
e A logic network is SPI if and only if:

— its AND-OR implementation is fully testable
for multiple stuck-at faults.

Multiple-level networks
Synthesis

© GDM ==

e Compute full local don'’t care sets.

— Make all local functions PI w.r. to
don't care sets.

e Pitfall:

— Don't cares change as functions change.

e Solution:

— Iteration (Espresso-MLD).

e If iteration converges, network is fully testable.

Multiple-level networks
Synthesis

© GDM ==

e Flatten to two-level form.

— When possible — no size explosion.

e Make SPI by disjoint logic minimization.

e Reconstruct multiple-level network:

— Algebraic transformations preserve
multifault testability.

Summary

© GDM ==

e Synergy between synthesis and testing.

e Testable networks correlate to small-area
networks.

e Don’t care conditions play a major role.

